Bearings and Bushings

Total Page:16

File Type:pdf, Size:1020Kb

Bearings and Bushings BEARINGS AND BUSHINGS. [1457] AT LEAST ONE; Plain bearing. Load bearing. Journal bearing. Track bearing. Bushing and bearing vibration and shock isolators made of rubber, syntactic rubber, polyurethane. Pillow block bearing with at least one bolt. Flange bearing unit with at least one bolt. Ball and roller Thrust bearing. Spherical bearing. Cylindrical bearing. Rodend bearing. Magnetic Jewel bearing. Pair of Magnet load bearing. Air bearing. Fluid bearing. Turbo bearing. eccentric bearing. Spherical roller bearings. Cylindrical roller. Ball bearing. Gear bearing. Tapered roller. Needle roller bearing. Carb toroidal roller bearings. Thrust loads. Radial bearing. Composite bearing. Slewing bearings. Ball bearings. Rollers bearings. Race bearings. Pillow block bearings. Linear track slide or roller bearing. Linear electromagnetic bearing. Linear bushing bearing H/V. Hybrid ball bearings. Linear plain bushing. Self-aligning ball bearings. Linear slide bearing and bushing. Stainless steel raceway. Slides and roller slides bearings. Rack slides. Track roller. Ball screw. Lead screw. Ball spline linear bearing. Temperature bearing. Flexible bearing. Track bearing. bearing seal and bushing. Unidirectional gear bearing. Swash bearing and anchor. Pitch bearing. Hinge bearing. Pivot bearing. One way bearing. One-way Gear. bearing. Anti-reverse bearing. Clutch needle bearing. Integral radial bearings. [1458] Linear bearing and bushing. Double row bearing. EMQ bearings. Stainless steel alloy unit for bearing mount and bearing flange mount. Flexible Oil seal. Oil filled bushing. Cage type bearing. Gasket O, Rings. Ceramic bearings. Tapered roller bearings. High grade thrust washers Chrome, stainless Steel. Instrument bearing flow meter bearing. Plastic bearing. Insert full ceramic bearing. Bearing Mount and suspension unit. Thermoplastic bearings. Plastic bearings. Pressure Roller bearings. Ball bushing. Ball cages. Rod end in operable bearing. Linear guide rod and eye bearing. Self-aligning bearing. Circular Rail Tracks and Wagon wheels. Collar clamp ball bearing. Take-up bearings are mounted bearings in a guide frame, with positioning screw, and mounting hardware. ER Style Bearings. [1459] AT LEAST ONE; Pair of permanent magnets bearing. Active magnetic bearing. pair of electromagnetic magnetic levitating bearing. Insert ball bearing. Plain spherical ball bushing bearing. ER Style Bearings. Plastic hinge bearings and bushings for panels. Full Ceramic bearing Silicon Nitride {SIN4]. {AI203]. {Zr02}. {SIC} Hybrid ceramic bearing. Insert full ceramic bearing. SKF mounted ball bearing units, metric or insert bearing and shaft locking methods. Trunnion bearings. Hinged trunnion bearing. cylindrical rollers are mounted on roller axles having longitudinal lengths in preferable tracks. positioned to align and engage with corresponding circular tracks at an intermediate opposing annular surface. Include multiple cylindrical roller segments. flexible anti-vibration mountings that serve as vibration dampers. Conical rollers are preferred at the top and bottom annular surfaces of the peripheral channel includes the Load bearing mechanism or thrust bearing. Water proof bearing and bearing seal. Water proof track bearing. Airtight bearing in air and water tight casing. Bearing grease and supply. Bearing oil circulation system. [1460] AT LEAST ONE: Hinge mechanical bearing comprising at least one sprocket-wheel in the Hinged or pilotable connection. Wherein the at least one sprocket-wheel is matted with the circular electric servo machine for actuating at least one hinged mounted part. Barrel hinge. Spring hinge. Pivot hinge. Butt/mortise hinge. Case hinge. Continuous hinge or piano hinge. Concealed hinge. Butterfly hinges. Flag hinges. Step hinges. H hinges. HL hinges. Counter flap hinge. Flush hinge Coach hinge. Rising butt hinge. Double action spring hinge. Double action non spring hinge. Tee hinge. Friction hinge. Security hinge. Cranked hinge or storm proof hinge. Lift-off hinge. Self- closing hinge. Collapsible and foldable intake and exhaust hinge duct. Intake bypass augmenting flow and compression in the main intake duct. Hinge joint. Ball and socket joint. Condyloid joint. Ellipsoid joint. Saddle joint. Pivot joint. Knee joint. Ankle joint. Synovial joint. Saddle joint. Floating hinge. Geared continuous hinge. Living hinge. Plastic hinge. Stamp hinge. Serres hinge mechanism. Axial magnetic bearing. [1461] AT LEAST ONE, mechanical linkage is an assembly of bodies connected to manage forces and movement. Planar and spherical movement. Rod. Rod mount. Rod racks. truck rack. car rack. Reel. Piston rod. rod bearing connecting rod may also convert rotating motion into reciprocating motion. The small end attaches to the piston pin, gudgeon pin or wrist pin, which is currently most often press fit into the connecting rod but can swivel in the piston, a "floating wrist pin" design. The big end connects to the crank pin (bearing journal) on the crank throw, in most engines running on replaceable bearing shells accessible via the connecting rod bolts which hold the bearing "cap" onto the big end. Typically, there is a pinhole bored through the bearing on the big end of the connecting rod so that pressurized lubricating motor oil squirts out onto the thrust side of the cylinder wall to lubricate the travel of the pistons and piston rings. Most small two-stroke engines and some single cylinder four stroke engines avoid the need for a pumped lubrication system by using a rolling-element bearing instead, however this requires the crankshaft to be pressed apart and then back together to replace a connecting rod. Fork and blade rod. Radial engine rod. Articulated connecting rods. Reach rod. Tie rod. Panhard rod. Track rod. Squire barrel rod. [1462] AT LEAST ONE: Electrical joint. Electrical joint. Electrical cable connection with a machine or device contains several types of connector dependable of the voltage and environment of the device, like having a one touch waterproof cable connector mated with the contra female pole on the connection terminal of the machine body. The connector containing a plurality of connecting pins for connecting phases and supply voltages. Electric units and can be mated by a Spring lock connection, turn lock connection, tapered wiring or a flat cable connector, Staking type board connection. High current bus bar connection, Water proof connector rectangular. modular connector male female connector for wire, Fiber optic connection. Fiber optic cables. Electric socket and 220volt, 110volt wall connectors. Electric socket for electric cable connector. Industrial multiphase plugs and sockets. Pin and sleeve connector. Twist-locking connector. Stage pin connector. Perilex-plug. Double insulated more phase electric cable. Overhead electric lines. Underground high voltage cable. Earth rod. 32A 400v 3P+n+E.16A 230v plug and wall mount socket. 380v 90A 5pin Plug and socket. Pin and sleeve. Twist locking connector. Stage pin connector. California 50A connector. Single phase flat pin plugs and socket. Multiphase unique. AC power plugs. AC sockets. USB connector. Board to coaxial cable connectors, jacks, plug and adapter. Board to micro coaxial cable connector having a locking structure. Ultra-small surface mount cable connector. Coaxial switch. Micro SD card connector. Micro USB connector. Flat cable socket and connector. Display protection connector. XLR male- female connector. Crimp electrical connector. Ratchet crimp tool. Cable stripper. Wire wrap tool. Solder and solder tin. Lightning conductor. Lightning screened separable surge arrester. Lightning rod. Multiple lock wire plug. Aluminum Shear bolt splices. Rings and spades. Terminal housing insulation sleeves. Splices. Power terminals. PCB terminals. Magnet wire terminals. Isolated parallel pair cable. Ribbon and flat cable. Twisted pair cable. Multicore cable. Aluminum wire and cables. Signal cable. Sensor cable. {1463} AT LEAST ONE: High voltage Cable with two conductor cable shielded jacket general purpose 600 volt. having a shield of tin coated copper. 24 AWG stranded (19x36) silver-plated copper conductors, cabled and color coded, extruded TFE Teflon® insulation, silver-plated copper braid shield (85% coverage), TFE Teflon tape wrapped jacket. Round, Shielded/Jacketed, Disc. Wire Cable Meets external wiring requirements of National Electrical Code, Article 725 (CL2). 28 AWG stranded wire provides flexibility. Twisted pairs reduce crosstalk for balanced drive applications. Dual shielding with aluminum film. foil and copper braid provide excellent EMI/ESD protection Wires are color coded for easy identification. 35 dB average shielding effectiveness. RoHS Compliant. Jacket material, Polyvinyl Chloride (PVC). XLPE is a solid dielectric. XLPE submarine cables. High voltage AC transmission towers. Single circuit three-phase transmission line Three-phase electric power systems are used for high voltage (66- or 69-kV and above) and extra high voltage (110- or 115-kV and above; most often 138- or 230-kV and above in contemporary systems) AC transmission lines. The towers must be designed to carry three (or multiples of three) conductors. The towers are usually steel lattices or trusses (wooden structures are used in Canada, Germany, and Scandinavia in some cases) and the insulators are either glass or porcelain discs or composite insulators using silicone rubber or EPDM rubber material assembled in strings or long rods whose lengths are dependent on the line voltage and environmental
Recommended publications
  • Factory 6-Speed Tapered Roller Bearing Kit Installation Instructions
    PV1-117139 Factory 6-Speed Tapered Roller Bearing Kit Installation Instructions www.bakerdrivetrain.com PV1-117139 FACTORY 6-SPEED TAPERED ROLLER BEARING KIT TABLE OF CONTENTS 1. Introduction and Fitment 2. Required Parts, Tools, and Reference Materials 3. Included Parts 4. Tapered Roller Bearing Exploded View 5. Torque Specifications and Stock Component Removal 6. Transmission Case Preparation 7. Countershaft Bearing Removal 8. Countershaft Bearing Installation 9. Tapered Roller Bearing Adapter Installation 10. Tapered Roller Bearing Adapter Installation 11. Tapered Roller Bearing Adapter Installation 12. Main Drive Gear Installation 13. Main Drive Gear Installation 14. Main Drive Gear Installation 15. Main Drive Gear Installation 16. Finish Line 17. Terms & Conditions 18. Notes INTRODUCTION BAKER R&D started the design and development process of the GrudgeBox in early 2016. As the design progressed the youngest and most inexperienced member of the group was disturbed by something that the others failed to see until one day he said, “Isn’t the strength of any system only as good as the weakest link?”. After much profanity and embarrassing public outbursts Bert proclaimed, “He’s right!”. So began the development of the tapered roller main drive gear bearing for the GrudgeBox. Word of this leaked out of the R&D department and soon the calls started coming in. Some inquiries were hostile in nature. The decision was made to offer the crown jewel of the GrudgeBox to those with a stock 2007-later transmission. Tapered roller bearings can be found in lathes, 18-wheeler trailer axles, and the left side flywheels on Milwaukee engines from the last century.
    [Show full text]
  • Solids, Nets, and Cross Sections
    SOLIDS, NETS, AND CROSS SECTIONS Polyhedra: Exercises: 1. The figure below shows a tetrahedron with the faces ∆ABD,,∆∆ ABC ACD and ∆ BCD . A The edges are AB,,,, AC AD DB BC and DC . The vertices are A, B, C and D, D B C 2. The given figure is a pentahedron with faces K ∆KLM,∆∆∆ KMN , KNO , KLO and . LMNO . The edges are KL,,,,,, KM KN KO LM MN NO and LO . O L The vertices are K, L, M, N, and O. N M Prisms: Exercises (page-4): 1. The right regular octagonal prism has 8 lateral faces, so totally it has 10 faces. It has 24 edges, 8 of them are lateral edges. The prism has 16 vertices. 2. The figure below illustrates an oblique regular triangular prism. It has 5 faces (3 of them are lateral faces), 3 lateral edges and totally 9 edges. The prism has 6 vertices. Pyramids Exercises (page-6): 1. The pentagonal pyramid has 5 lateral faces and thus 6 faces in total. It has 5 lateral edges, 10 edges and 6 vertices. 2. The hexagonal pyramid has 6 lateral faces and 7 faces in total. It has 6 lateral edges, 12 edges and 7 vertices. Nets Exercises: 1. Regular right hexagonal pyramid 2. Rectangular prism 3. Regular right octagonal prism 4. Regular oblique hexagonal prism 5. and so on… 6. Right Cylinder 7. Right Cone Cross sections: Exercises (page-15): 1. i) In the cross section parallel to the base, the cross section is a regular hexagon of the same size as the base.
    [Show full text]
  • Investigation on Planetary Bearing Weak Fault Diagnosis Based on a Fault Model and Improved Wavelet Ridge
    energies Article Investigation on Planetary Bearing Weak Fault Diagnosis Based on a Fault Model and Improved Wavelet Ridge Hongkun Li *, Rui Yang ID , Chaoge Wang and Changbo He School of Mechanical Engineering, Dalian University of Technology, Dalian 116024, China; [email protected] (R.Y.); [email protected] (C.W.); [email protected] (C.H.) * Correspondence: [email protected]; Tel.: +86-0411-8470-6561 Received: 12 April 2018; Accepted: 9 May 2018; Published: 17 May 2018 Abstract: Rolling element bearings are of great importance in planetary gearboxes. Monitoring their operation state is the key to keep the whole machine running normally. It is not enough to just apply traditional fault diagnosis methods to detect the running condition of rotating machinery when weak faults occur. It is because of the complexity of the planetary gearbox structure. In addition, its running state is unstable due to the effects of the wind speed and external disturbances. In this paper, a signal model is established to simulate the vibration data collected by sensors in the event of a failure occurred in the planetary bearings, which is very useful for fault mechanism research. Furthermore, an improved wavelet scalogram method is proposed to identify weak impact features of planetary bearings. The proposed method is based on time-frequency distribution reassignment and synchronous averaging. The synchronous averaging is performed for reassignment of the wavelet scale spectrum to improve its time-frequency resolution. After that, wavelet ridge extraction is carried out to reveal the relationship between this time-frequency distribution and characteristic information, which is helpful to extract characteristic frequencies after the improved wavelet scalogram highlights the impact features of rolling element bearing weak fault detection.
    [Show full text]
  • 2D and 3D Shapes.Pdf
    & • Anchor 2 - D Charts • Flash Cards 3 - D • Shape Books • Practice Pages rd Shapesfor 3 Grade by Carrie Lutz T hank you for purchasing!!! Check out my store: http://www.teacherspayteachers.com/Store/Carrie-Lutz-6 Follow me for notifications of freebies, sales and new arrivals! Visit my BLOG for more Free Stuff! Read My Blog Post about Teaching 3 Dimensional Figures Correctly Credits: Carrie Lutz©2016 2D Shape Bank 3D Shape Bank 3 Sided 5 Sided Prisms triangular prism cube rectangular prism triangle pentagon 4 Sided rectangle square pentagonal prism hexagonal prism octagonal prism Pyramids rhombus trapezoid 6 Sided 8 Sided rectangular square triangular pyramid pyramid pyramid Carrie LutzCarrie CarrieLutz pentagonal hexagonal © hexagon octagon © 2016 pyramid pyramid 2016 Curved Shapes CURVED SOLIDS oval circle sphere cone cylinder Carrie Lutz©2016 Carrie Lutz©2016 Name _____________________ Side Sort Date _____________________ Cut out the shapes below and glue them in the correct column. More than 4 Less than 4 Exactly 4 Carrie Lutz©2016 Name _____________________ Name the Shapes Date _____________________ 1. Name the Shape. 2. Name the Shape. 3. Name the Shape. ____________________________________ ____________________________________ ____________________________________ 4. Name the Shape. 5. Name the Shape. 6. Name the Shape. ____________________________________ ____________________________________ ____________________________________ 4. Name the Shape. 5. Name the Shape. 6. Name the Shape. ____________________________________ ____________________________________ ____________________________________ octagon circle square rhombus triangle hexagon pentagon rectangle trapezoid Carrie Lutz©2016 Faces, Edges, Vertices Name _____________________ and Date _____________________ 1. Name the Shape. 2. Name the Shape. 3. Name the Shape. ____________________________________ ____________________________________ ____________________________________ _____ faces _____ faces _____ faces _____Edges _____Edges _____Edges _____Vertices _____Vertices _____Vertices 4.
    [Show full text]
  • Three-Dimensional Figures
    Notes Three-Dimensional Figures Polyhedra (the plural of Polyhedron) are three dimensional versions of polygons. They are made up of polygons. They are solid (no holes) and closed. Polyhedra fall into two major classes: Pyramids and Prisms. Note: Prisms and Pyramids are always named “based” on their bases. A Prism with a square base is called a Square Prism; a pyramid with a square base is called a Square Pyramid; a prism with a base that’s an octagon is called an Octagonal Prism; and so on. General Classes of Polyhedra 1) Prism - polyhedron with two opposite faces identical to each other. These opposite faces are called bases. The other faces are called lateral faces. Using the Power Solids, find all of the Prisms. Decide which faces are the bases, and which faces are the lateral faces. Then write the name of each of the prisms that you found: 2) Pyramid - polyhedron with a top "point" (called an apex), where all lateral faces meet. Using the Power Solids, find the two Pyramids. Decide which face is the base, and which faces are the lateral faces. Write the names of those two pyramids below. Other Three Dimensional Figures 1) Cylinder - curved shape analogous to a prism, except with circles for bases. Question: If the two circles are bases, what is the lateral “face”? 2) Cone - curved shape analogous to a pyramid, except with a circle for a base. Question: If the circle is the base, what is the lateral "face"? Note: The bases of cones and cylinders do not have to be circles (they could be ovals, for example), but we will pay attention to only those with circular bases.
    [Show full text]
  • Design and Fabrication of a Multi-Material Compliant Flapping
    This document contains the draft version of the following paper: W. Bejgerowski, J.W. Gerdes, S.K. Gupta, and H.A. Bruck. Design and fabrication of miniature compliant hinges for multi-material compliant mechanisms. International Journal of Advanced Manufacturing Technology, 57(5):437-452, 2011. Readers are encouraged to get the official version from the journal’s web site or by contacting Dr. S.K. Gupta ([email protected]). Design and Fabrication of Miniature Compliant Hinges for Multi-Material Compliant Mechanisms Wojciech Bejgerowski, John W. Gerdes, Satyandra K. Gupta1, Hugh A. Bruck Abstract Multi-material molding (MMM) enables the creation of multi-material mechanisms that combine compliant hinges, serving as revolute joints, and rigid links in a single part. There are three important challenges in creating these structures: (1) bonding between the materials used, (2) the ability of the hinge to transfer the required loads in the mechanism while allowing for the prescribed degree(s) of freedom, and (3) incorporating the process-specific requirements in the design stage. This paper presents the approach for design and fabrication of miniature compliant hinges in multi-material compliant mechanisms. The methodology described in this paper allows for concurrent design of the part and the manufacturing process. For the first challenge, mechanical interlocking strategies are presented. For the second challenge, development of a simulation-based optimization model of the hinge is presented, involving functional and manufacturing constrains. For the third challenge, the development of hinge positioning features and gate positioning constraints is presented. The developed MMM process is described, along with the main constraints and performance measures.
    [Show full text]
  • Design and Analysis of a Modified Power-Split Continuously Variable Transmission Andrew John Fox West Virginia University
    View metadata, citation and similar papers at core.ac.uk brought to you by CORE provided by The Research Repository @ WVU (West Virginia University) Graduate Theses, Dissertations, and Problem Reports 2003 Design and analysis of a modified power-split continuously variable transmission Andrew John Fox West Virginia University Follow this and additional works at: https://researchrepository.wvu.edu/etd Recommended Citation Fox, Andrew John, "Design and analysis of a modified power-split continuously variable transmission" (2003). Graduate Theses, Dissertations, and Problem Reports. 1315. https://researchrepository.wvu.edu/etd/1315 This Thesis is brought to you for free and open access by The Research Repository @ WVU. It has been accepted for inclusion in Graduate Theses, Dissertations, and Problem Reports by an authorized administrator of The Research Repository @ WVU. For more information, please contact [email protected]. Design and Analysis of a Modified Power Split Continuously Variable Transmission Andrew J. Fox Thesis Submitted to the College of Engineering and Mineral Resources at West Virginia University in partial fulfillment of the requirements for the degree of Master of Science in Mechanical Engineering James Smith, Ph.D., Chair Victor Mucino, Ph.D. Gregory Thompson, Ph.D. 2003 Morgantown, West Virginia Keywords: CVT, Transmission, Simulation Copyright 2003 Andrew J. Fox ABSTRACT Design and Analysis of a Modified Power Split Continuously Variable Transmission Andrew J. Fox The continuously variable transmission (CVT) has been considered to be a viable alternative to the conventional stepped ratio transmission because it has the advantages of smooth stepless shifting, simplified design, and a potential for reduced fuel consumption and tailpipe emissions.
    [Show full text]
  • Triangulations and Simplex Tilings of Polyhedra
    Triangulations and Simplex Tilings of Polyhedra by Braxton Carrigan A dissertation submitted to the Graduate Faculty of Auburn University in partial fulfillment of the requirements for the Degree of Doctor of Philosophy Auburn, Alabama August 4, 2012 Keywords: triangulation, tiling, tetrahedralization Copyright 2012 by Braxton Carrigan Approved by Andras Bezdek, Chair, Professor of Mathematics Krystyna Kuperberg, Professor of Mathematics Wlodzimierz Kuperberg, Professor of Mathematics Chris Rodger, Don Logan Endowed Chair of Mathematics Abstract This dissertation summarizes my research in the area of Discrete Geometry. The par- ticular problems of Discrete Geometry discussed in this dissertation are concerned with partitioning three dimensional polyhedra into tetrahedra. The most widely used partition of a polyhedra is triangulation, where a polyhedron is broken into a set of convex polyhedra all with four vertices, called tetrahedra, joined together in a face-to-face manner. If one does not require that the tetrahedra to meet along common faces, then we say that the partition is a tiling. Many of the algorithmic implementations in the field of Computational Geometry are dependent on the results of triangulation. For example computing the volume of a polyhedron is done by adding volumes of tetrahedra of a triangulation. In Chapter 2 we will provide a brief history of triangulation and present a number of known non-triangulable polyhedra. In this dissertation we will particularly address non-triangulable polyhedra. Our research was motivated by a recent paper of J. Rambau [20], who showed that a nonconvex twisted prisms cannot be triangulated. As in algebra when proving a number is not divisible by 2012 one may show it is not divisible by 2, we will revisit Rambau's results and show a new shorter proof that the twisted prism is non-triangulable by proving it is non-tilable.
    [Show full text]
  • Operation Manual
    TURRET MILIING MACHINE OPERATION MANUAL 1 Inspection Record of Knee Vertical Miller I Specification Application No: Type Spindle type Max travel of table Surface table area Spindle revolution S.T. D.S.T. D.S.C Main size mm mm mm mm mm mm mm Type Power Voltage Frequency Pole Phase Mfg. Mfg.no. Main motor Hp Hz P Ph II Precision Inspection Unit:mm3 Inspection Items A.T. Inspection record Straightness of table at cross direction 0.06/1000 1 Table surface surface surface at horizontal direction 0.06/1000 2 Spindle deflection at radial 0.01 Horizontal travel of the 3 at axial 0.02 spindle Spindle Spindle on inspection rod near the Deflection of spindle countersink 0.01 4 countersink on inspection rod 300 mm of the countersink 0.02 Straightness of table horizontal travel & the table 5 0.03 surface Straightness of table front/back travel & the table Table surface Table 6 0.02 surface 7 Parallel of table cross travel & T-tank profile 0.03 T-tank 8 Vertical of table cross travel & T-tank profile 0.02 at cross direction 0.02 Vertical of spindle head 9 travel & table surface at front/back direction(not Spindle head lower before the front of 0.02 working table) at cross direction 0.02/300 Vertical of working table 10 at front/back direction & knee lifting Knee position position Knee (not lower before the front 0.02/300 of working table) at cross direction 0.02/300 Vertical of working table 11 & center line of the at front/back direction Spindle Spindle spindle (not lower before the front 0.02/300 of working table) Sec.chief of O.C.
    [Show full text]
  • Electric Vehicle Drivetrain Final Design Review
    Electric Vehicle Drivetrain Final Design Review June 2, 2017 Sponsor: Zachary Sharpell, CEO of Sharpell Technologies [email protected] (760) 213-0900 Team: E-Drive Jimmy King [email protected] Kevin Moore [email protected] Charissa Seid [email protected] Statement of Disclaimer Since this project is a result of a class assignment, it has been graded and accepted as fulfillment of the course requirements. Acceptance does not imply technical accuracy or reliability. Any use of information in this report is done at the risk of the user. These risks may include catastrophic failure of the device or infringement of patent or copyright laws. California Polytechnic State University at San Luis Obispo and its staff cannot be held liable for any use or misuse of the project. Table of Contents Executive Summary ...................................................................................................................1 1.0 Introduction ..........................................................................................................................2 1.1 Original Problem Statement ...........................................................................................2 2.0 Background ..........................................................................................................................2 2.1 Drivetrain Layout ...........................................................................................................2 2.2 Gear Types .....................................................................................................................4
    [Show full text]
  • Paper Models of Polyhedra
    Paper Models of Polyhedra Gijs Korthals Altes Polyhedra are beautiful 3-D geometrical figures that have fascinated philosophers, mathematicians and artists for millennia Copyrights © 1998-2001 Gijs.Korthals Altes All rights reserved . It's permitted to make copies for non-commercial purposes only email: [email protected] Paper Models of Polyhedra Platonic Solids Dodecahedron Cube and Tetrahedron Octahedron Icosahedron Archimedean Solids Cuboctahedron Icosidodecahedron Truncated Tetrahedron Truncated Octahedron Truncated Cube Truncated Icosahedron (soccer ball) Truncated dodecahedron Rhombicuboctahedron Truncated Cuboctahedron Rhombicosidodecahedron Truncated Icosidodecahedron Snub Cube Snub Dodecahedron Kepler-Poinsot Polyhedra Great Stellated Dodecahedron Small Stellated Dodecahedron Great Icosahedron Great Dodecahedron Other Uniform Polyhedra Tetrahemihexahedron Octahemioctahedron Cubohemioctahedron Small Rhombihexahedron Small Rhombidodecahedron S mall Dodecahemiododecahedron Small Ditrigonal Icosidodecahedron Great Dodecahedron Compounds Stella Octangula Compound of Cube and Octahedron Compound of Dodecahedron and Icosahedron Compound of Two Cubes Compound of Three Cubes Compound of Five Cubes Compound of Five Octahedra Compound of Five Tetrahedra Compound of Truncated Icosahedron and Pentakisdodecahedron Other Polyhedra Pentagonal Hexecontahedron Pentagonalconsitetrahedron Pyramid Pentagonal Pyramid Decahedron Rhombic Dodecahedron Great Rhombihexacron Pentagonal Dipyramid Pentakisdodecahedron Small Triakisoctahedron Small Triambic
    [Show full text]
  • Continuously Variable Transmission Overhaul
    23B-1 GROUP 23B CONTINUOUSLY VARIABLE TRANSMISSION OVERHAUL CONTENTS GENERAL INFORMATION . 23B-2 DISASSEMBLY AND REASSEMBLY . 23B-49 INSPECTION. 23B-51 GENERAL SPECIFICATION . 23B-5 REDUCTION GEAR . 23B-52 SERVICE SPECIFICATIONS. 23B-6 DISASSEMBLY AND REASSEMBLY . 23B-52 INSPECTION. 23B-54 SNAP RING SPACER AND THRUST WASHER FOR ADJUSTMENT. 23B-6 REDUCTION GEAR SUB-ASSEMBLY . 23B-54 TORQUE SPECIFICATIONS . 23B-8 ASSEMBLY . 23B-54 SEALANTS . 23B-9 DIFFERENTIAL. 23B-56 DISASSEMBLY AND REASSEMBLY . 23B-56 LUBRICANT(S) . 23B-10 INSPECTION. 23B-58 SPECIAL TOOLS. 23B-10 DIFFERENTIAL SUB-ASSEMBLY. 23B-58 ASSEMBLY . 23B-58 TRANSMISSION . 23B-15 DISASSEMBLY AND REASSEMBLY. 23B-15 TRANSFER . 23B-60 DISASSEMBLY AND REASSEMBLY . 23B-60 FORWARD CLUTCH . 23B-49 23B-2 CONTINUOUSLY VARIABLE TRANSMISSION OVERHAUL GENERAL INFORMATION GENERAL INFORMATION M1233200101154 TRANSMISSION MODEL Transmission model Engine model Vehicle model F1CJA-2-A5W 4B11 GF2W W1CJA-1-14YA 4B12 GF3W W1CJA-2-A5WA 4B11 GF2W CONTINUOUSLY VARIABLE TRANSMISSION OVERHAUL 23B-3 GENERAL INFORMATION SECTIONAL VIEW <TRANSMISSION> <F1CJA> AKA00549 23B-4 CONTINUOUSLY VARIABLE TRANSMISSION OVERHAUL GENERAL INFORMATION <W1CJA> AKA00548 CONTINUOUSLY VARIABLE TRANSMISSION OVERHAUL 23B-5 GENERAL SPECIFICATION SECTIONAL VIEW <TRANSFER> AK502599 GENERAL SPECIFICATION M1233201000931 Item Specifications Transmission model F1CJA-2-A5W Transmission type Forward: continuously variable (with steel belt), reverse: 1 gear Torque converter Type 3-element⋅1-stage⋅2-phase Stall torque ratio 1.99 Lock-up Present
    [Show full text]