Ontological, Epistemological, and Methodological Positions

Total Page:16

File Type:pdf, Size:1020Kb

Ontological, Epistemological, and Methodological Positions ONTOLOGICAL, EPISTEMOLOGICAL, AND METHODOLOGICAL POSITIONS James Ladyman INTRODUCTION This chapter summarises various important ontological, epistemological and methodological issues in the philosophy of science. Ontology is the theory of what exists and is the foremost concern of metaphysics, which is the study of the most fundamental questions about being and the nature of reality. Ontological issues in the philosophy of science may be specific to a particular special science, such as questions about the ontological status of biological species, or they may be more general, such as whether or not there are objective natural kinds. In the history of science ontological issues have often been of supreme importance; for example, whether or not atoms exist was a question that occupied many scientists in the nineteenth century. In what follows, some fundamental questions of ontology are discussed, some of which, such as those concerning laws of nature, are also ad- dressed in analytic metaphysics. A number of these issues also relate to debates in the foundations of physics about the ontological implications of our best physical theories. Readers who wish to know more about the philosophy of space and time and the nature of matter and motion should consult the companion volume to this on the philosophy of physics. Epistemology is the theory of knowledge and as such is concerned with such matters as the analysis of knowledge and its relationship to belief and truth, the theory of justification, and how to respond to the challenge of local scepticism, say about the past, or global scepticism, which suggests that there is no knowledge. The particular epistemological problems raised by science mostly concern induc- tive inference, since it is widely accepted that substantive knowledge of the world cannot be obtained by deduction alone. The most fundamental such problem is to explicate the relationship between theory and evidence. There are also epistemo- logical issues that only arise when we reflect on the status of unobservable entities posited by our best scientific theories. Finally, methodology here means the theory of the scientific method. Is there a single such method for all the sciences, and if so what is it? How much should we expect the theory of the scientific method to help with the progress of science? Is the scientific method fixed, or does it change over time? Handbook of the Philosophy of Science: General Philosophy of Science - Focal Issues, pp. 303– 376. Volume editor: Theo Kuipers. General editors: Dov M. Gabbay, Paul Thagard and John Woods. c 2007 Elsevier BV. All rights reserved. 304 James Ladyman There is obviously a good deal of overlap between the areas discussed in this chapter. For example, accounts of scientific methodology may have implications for the epistemology of science, and vice versa, and the epistemological issues of whether we ought to be scientific realists has a lot of bearing on whether science can help us address ontological issues. There are vast literatures on all these issues and I have offered some advice about further reading that should help the reader find their way into the subject. 1 ONTOLOGICAL POSITIONS (I) Natural Kinds We divide the world up into individuals and then we class many individuals to- gether in kinds. Hence, we distinguish between horses and donkeys, gold and silver, apples and pears and so on. One of the main concerns of science is to sys- tematically classify natural phenomena and substances into kinds. A system for dividing things into kinds is called a taxonomy. The progress of chemistry, biology, physics and all the sciences is in part the history of a series of re-classifications, and refinements and reinterpretations of existing classifications. For example, in chemistry the kind acid has evolved from the rough notion of a liquid that would react with a base, such as a metal, and produce a salt and water, to the heavily theoretical idea of a chemical that can donate a hydrogen ion; in biology the liv- ing world is no longer divided into plants and animals, rather there is a complex taxonomy of phyla, kingdoms, groups, families, genii, and species; and in physics there have been several taxonomic revolutions from the Newtonian idea of a world of corpuscles and forces, through the late nineteenth century heyday of fields, and into the taxonomy of the four fundamental forces and their associated quantum fields and particles. Nonetheless, there is usually a large degree of retention of taxonomic structure between successive scientific theories. So for example, con- temporary chemistry still classifies as acids the most important acids known in the age of alchemy. A fundamental ontological question is whether taxonomy is a matter or discov- ery or invention, or, in other words, whether there are any objective natural kinds. It is often taken for granted that there are in the case of the natural sciences, but there has always been controversy about whether kinds picked out by the human sciences are objective, or whether they reflect the values of particular societies to which the science and scientists in question belong. For example, there is a consid- erable amount of contemporary debate about whether psychiatric classifications are objective. The idea of objective natural kinds in biology was also cast in doubt by the development of the theory of evolution by natural selection. Species came to be seen as historically contingent and defined by ancestry relationships rather than by morphology. Even when it comes to physics, there are those who deny that the natural kind distinctions it makes are objective rather than pragmatic or socially determined (see the section on Truth below). Ontological, Epistemological, and Methodological Positions 305 In the history of philosophy, questions about natural kinds are closely related to the issue of essentialism because it is often thought that all the members of a kind possess some properties necessarily, and that these properties are characteristic of the kind in question. The idea is that some of the properties of some particular object, are properties that it couldn’t lack without being a different kind of thing. For example, a piece of copper could be a different shape, but it could not fail to be a good conductor of electricity. The modern debate about natural kinds begins with John Locke’s critique of Aristotelian essentialism and the former’s distinction between real and nominal essences. Take gold: the nominal essence is the collection of ideas associated with the word gold, such as those of metallic, yellow, malleable and so on. Locke argued that whatever was the real essence, and he thought it would be some kind of characteristic microstructure, could not be known with any degree of certainty. Contemporary science has restored the faith of many philosophers in natural kinds and essences because our understanding of the chemical elements in terms of the periodic table seems to give us knowledge of the microstructure responsible for their sensible properties? Gold is characterised precisely as that atom that has 79 protons in its nucleus (an atomic number of 79). It is not only elements but also compounds that are often thought to have essences revealed by science. For example, it is widely said among philosophers that the essence of water is H2O. Clearly, if contemporary science gives us knowledge of the essences of natural kinds it does so by empirical rather than a priori means. W. v. O. Quine argued that appeal to the notion of natural kinds can dissolve two famous paradoxes of confirmation: (i) Carl Hempel’s raven paradox: Intuitively a generalisation like ‘all ravens are black’ is confirmed by observation of its instances, in other words, by the observation of black ravens. Yet this generalisation is logically equivalent to ‘all non-black things are non-ravens’ which is confirmed by observation of, say, a green leaf. But how can observing a green leaf confirm ‘all ravens are black’? (ii) Nelson Goodman’s grue problem: Suppose that observation of the instances of green emeralds confirms the generalisation ‘all emeralds are green’; they are also instances of the generalisation ‘all emeralds are grue’, where ‘grue’ means ‘green before 2030 and blue afterwards’. Why do we take the one generalisation to be confirmed and not the other? It seems that there are some predicates, such as ‘green’, that we are prepared to use to make projections about unobserved objects and others, such as ‘grue’, that are not projectible. We make judgements of similarity in terms of projectible pred- icates. Goodman argued that projectible predicates are those that are entrenched in our epistemic community, and denied that similarity judgements among objects are objective. Quine argued that appeal to natural kinds allows Goodman’s problem to be avoided, because not all predicates are projectible and those that are will be those 306 James Ladyman that are true of all and only the things of a kind. Similarly, the Ravens paradox is avoided if predicates like ‘is non-black’ are ruled out of consideration because they do not refer to natural properties. Clearly the notions of kind and similarity are closely related. The question of whether there are natural kinds is the question of whether there are objective similarities between things, which is the question of whether there are some properties that are natural and in virtue of which similarity and kind membership is definable. But Quine is troubled by this since he thinks that the notion of a kind and the related notion of similarity are of dubious scientific standing. Quine would like to be able to do away with any metaphysical commitments other than to sets of concrete individual things. However, natural properties seem to be intensional while sets are extensional.
Recommended publications
  • Optimistic Realism About Scientific Progress
    Optimistic Realism about Scientific Progress Ilkka Niiniluoto ABSTRACT: Scientific realists use the “no miracle argument” to show that the empirical and pragmatic success of science is an indicator of the ability of scientific theories to give true or truthlike representations of unobservable reality. While antirealists define scientific progress in terms of empirical success or practical problem-solving, realists characterize progress by using some truth-related criteria. This paper defends the definition of scientific progress as increasing truthlikeness or verisimilitude. Antirealists have tried to rebut realism with the “pessimistic metainduction”, but critical realists turn this argument into an optimistic view about progressive science. KEYWORDS: conceptual pluralism, fallibilism, no miracle argument, pessimistic metainduction, scientific realism, truthlikeness 1. Varieties of Scientific Realism Scientific realism as a philosophical position has (i) ontological, (ii) semantical, (iii) epistemological, (iv) theoretical, and (v) methodological aspects (see Niiniluoto 1999a; Psillos 1999). It holds that (i) at least part of reality is ontologically independent of human mind and culture. It takes (ii) truth to involve a non-epistemic relation between language and reality. It claims that (iii) knowledge about mind-independent (as well as mind-dependent) reality is possible, and that (iv) the best and deepest part of such knowledge is provided by empirically testable scientific theories. An important aim of science is (v) to find true and informative theories which postulate non-observable entities and laws to explain observable phenomena. Scientific realism became a tenable stance in the philosophy of science in the 1950s as an alternative to empiricist views which reduced theories to the observational language (Ernst Mach’s positivism) or restricted scientific knowledge to the level of observational statements by denying that theoretical statements have truth values (Pierre Duhem’s instrumentalism).
    [Show full text]
  • The Anti-Essentialism Paper
    The New Pragmatism, Anti-essentialism, and What is Universal: It’s The Situation All The Way Down C. F. Abel Stephen F. Austin State University [email protected] The New Pragmatism, Anti-essentialism, and What is Universal: It’s The Situation All The Way Down C. F. Abel Stephen F. Austin State University [email protected] A well-known scientist once gave a public lecture on astronomy. He described how the Earth orbits around the sun and how the sun, in turn, orbits around the center of a vast collection of stars called our galaxy. At the end of the lecture, a little old lady at the back of the room got up and said: "What you have told us is rubbish. The world is really a flat plate supported on the back of a giant tortoise." The scientist gave a superior smile before replying, "What is the tortoise standing on?" "You're very clever, young man," said the old lady. "But it's turtles all the way down!" Introduction “New Pragmatism” attacks the very foundation of pragmatic thought by denying that we may ever have any definitive experience. As what we are experiencing is up for grabs, we can never know any situation that we may encounter, and we are left to ground both our knowledge and our values in our language games alone. This paper argues that this set of claims is founded on two errors, one regarding the nature of language games and the other regarding the nature of deconstruction. The “Old Pragmatism,” by way of contrast, is non-essentialist but not anti- essentialist, and it resolves the problem of how we might know “the situation,” given the subjectivity of our observations and the contingencies of our language games, by suggesting that our experiences can be understood as existing in, and constituted by, the totality of their particular instances or modes at the time of inquiry.
    [Show full text]
  • On Moral Understanding
    COMMENTTHE COLLEGE NEWSLETTER ISSUE NO 147 | MAY 2003 TOM WHIPPS On Moral Understanding DNA pioneers: The surviving members of the King’s team, who worked on the discovery of the structure of DNA 50 years ago, withDavid James Watson, K Levytheir Cambridge ‘rival’ at the time. From left Ray Gosling, Herbert Wilson, DNA at King’s: DepartmentJames Watson and of Maurice Philosophy Wilkins King’s College the continuing story University of London Prize for his contribution – and A day of celebrations their teams, but also to subse- quent generations of scientists at ver 600 guests attended a cant scientific discovery of the King’s. unique day of events celeb- 20th century,’ in the words of Four Nobel Laureates – Mau- Orating King’s role in the 50th Principal Professor Arthur Lucas, rice Wilkins, James Watson, Sid- anniversary of the discovery of the ‘and their research changed ney Altman and Tim Hunt – double helix structure of DNA on the world’. attended the event which was so 22 April. The day paid tribute not only to oversubscribed that the proceed- Scientists at King’s played a King’s DNA pioneers Rosalind ings were relayed by video link to fundamental role in this momen- Franklin and Maurice Wilkins – tous discovery – ‘the most signifi- who went onto win the Nobel continued on page 2 2 Funding news | 3 Peace Operations Review | 5 Widening participation | 8 25 years of Anglo-French law | 11 Margaret Atwood at King’s | 12 Susan Gibson wins Rosalind Franklin Award | 15 Focus: School of Law | 16 Research news | 18 Books | 19 KCLSU election results | 20 Arts abcdef U N I V E R S I T Y O F L O N D O N A C C O M M O D A T I O N O F F I C E ACCOMMODATION INFORMATION - FINDING SOMEWHERE TO LIVE IN THE PRIVATE SECTOR Thesis submitted for the degree of Doctor of Philosophy WARNING: Under no circumstances inshould the this University document be of taken London as providing legal advice.
    [Show full text]
  • Putnam's Theory of Natural Kinds and Their Names Is Not The
    PUTNAM’S THEORY OF NATURAL KINDS AND THEIR NAMES IS NOT THE SAME AS KRIPKE’S IAN HACKING Collège de France Abstract Philosophers have been referring to the “Kripke–Putnam” theory of natural- kind terms for over 30 years. Although there is one common starting point, the two philosophers began with different motivations and presuppositions, and developed in different ways. Putnam’s publications on the topic evolved over the decades, certainly clarifying and probably modifying his analysis, while Kripke published nothing after 1980. The result is two very different theories about natural kinds and their names. Both accept that the meaning of a natural- kind term is not given by a description or defining properties, but is specified by its referents. From then on, Putnam rejected even the label, causal theory of reference, preferring to say historical, or collective. He called his own approach indexical. His account of substance identity stops short a number of objections that were later raised, such as what is called the qua problem. He came to reject the thought that water is necessarily H2O, and to denounce the idea of metaphysical necessity that goes beyond physical necessity. Essences never had a role in his analysis; there is no sense in which he was an essentialist. He thought of hidden structures as the usual determinant of natural kinds, but always insisted that what counts as a natural kind is relative to interests. “Natural kind” itself is itself an importantly theoretical concept, he argued. The paper also notes that Putnam says a great deal about what natural kinds are, while Kripke did not.
    [Show full text]
  • Models, Perspectives, and Scientific Realism
    MODELS, PERSPECTIVES, AND SCIENTIFIC REALISM: ON RONALD GIERE'S PERSPECTIVAL REALISM A thesis submitted to Kent State University in partial fulfillment of the requirements for the Degree of Master of Arts by Brian R. Huth May, 2014 Thesis written by Brian R. Huth B.A., Kent State University 2012 M.A., Kent State University 2014 Approved by Frank X. Ryan, Advisor Linda Williams, Chair, Department of Philosophy James L. Blank, Dean, College of Arts and Sciences ii TABLE OF CONTENTS ACKNOWLEDGEMENTS................................................................................................. iv INTRODUCTION............................................................................................................... 1 CHAPTER I. FROM THE RECEIVED VIEW TO THE MODEL-THEORETIC VIEW........................................................................................................... 7 Section 1.1.................................................................................................... 9 Section 1.2.................................................................................................... 16 II. RONALD GIERE'S CONSTRUCTIVISM AND PERSPECTIVAL REALISM.................................................................................................... 25 Section 2.1.................................................................................................... 25 Section 2.2.................................................................................................... 31 Section 2.3...................................................................................................
    [Show full text]
  • The Metaphysics of Natural Kinds
    THE METAPHYSICS OF NATURAL KINDS Alexander Bird Abstract Rev.8.2—Thursday 12th August, 2010, 11:20 This paper explores the meta- physics of natural kinds. I consider a range of increasingly ontologically com- mitted views concerning natural kinds and the possible arguments for them. I then ask how these relate to natural kind essentialism, arguing that essentialism requires commitment to kinds as entities. I conclude by examining the homeo- static property cluster view of kinds in the light of the general understanding of kinds developed. 1 Introduction The principal aim of this paper is to examine the various options concerning the metaphysics of natural kinds, in particular as regards their ontology. Initially pro- ceed by posing a series of questions whose positive answers correspond to a se- quence of increasingly metaphysically committed views about natural kinds. In sec- tion 2 these questions concern the naturalness and kindhood of natural kinds. This leads, in section 3 to the question whether natural kinds are themselves genuine en- tities. In section 4 I present an argument for a positive answer to the existence ques- tion, that takes essentialism about natural kinds to imply their existence: (having an) essence implies existence. In section 5 I consider the objection that kind essen- tialism reduces to individual essentialism, which would undermine the import of the essence-implies-existence argument. In sections 6 and 7, I put this machinery to work, asking first what sort of entity a natural kind may be (e.g. a set, an uni- versal, or a sui generis entity), and, finally, how homeostatic property cluster view fares when compared to the general conception of natural kinds developed in the preceding sections.
    [Show full text]
  • The Philosophy of Biology a Companion for Educators Kostas Kampourakis Editor
    History, Philosophy & Theory of the Life Sciences Kostas Kampourakis Editor The Philosophy of Biology A Companion for Educators Kostas Kampourakis Editor The Philosophy of Biology A Companion for Educators Editor Kostas Kampourakis Secretariat of Educational Research and Development Geitonas School Vari Attikis, Greece ISSN 2211-1948 ISSN 2211-1956 (electronic) ISBN 978-94-007-6536-8 ISBN 978-94-007-6537-5 (eBook) DOI 10.1007/978-94-007-6537-5 Springer Dordrecht Heidelberg New York London Library of Congress Control Number: 2013938263 © Springer Science+Business Media Dordrecht 2013 This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or part of the material is concerned, specifi cally the rights of translation, reprinting, reuse of illustrations, recitation, broadcasting, reproduction on microfi lms or in any other physical way, and transmission or information storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar methodology now known or hereafter developed. Exempted from this legal reservation are brief excerpts in connection with reviews or scholarly analysis or material supplied specifi cally for the purpose of being entered and executed on a computer system, for exclusive use by the purchaser of the work. Duplication of this publication or parts thereof is permitted only under the provisions of the Copyright Law of the Publisher’s location, in its current version, and permission for use must always be obtained from Springer. Permissions for use may be obtained through RightsLink at the Copyright Clearance Center. Violations are liable to prosecution under the respective Copyright Law. The use of general descriptive names, registered names, trademarks, service marks, etc.
    [Show full text]
  • The American Philosophical Association PACIFIC DIVISION EIGHTY-EIGHTH ANNUAL MEETING PROGRAM
    The American Philosophical Association PACIFIC DIVISION EIGHTY-EIGHTH ANNUAL MEETING PROGRAM WESTIN GASLAMP QUARTER AND U.S. GRANT HOTEL SAN DIEGO, CALIFORNIA APRIL 16 – 20, 2014 : new books for spring HUMOR AND THE GOOD LIFE REPRODUCTION, RACE, IN MODERN PHILOSOPHY AND GENDER IN PHILOSOPHY Shaftesbury, Hamann, Kierkegaard AND THE EARLY LIFE SCIENCES Lydia B. Amir Susanne Lettow, editor (February) (March) PHILOSOPHIZING AD INFINITUM LEO STRAUSS AND THE CRISIS infinite Nature, infinite Philosophy OF RATIONALISM Marcel Conche Another Reason, Another Enlightenment Laurent Ledoux and Corine Pelluchon Herman G. Bonne, translators Robert Howse, translator Foreword by J. Baird Callicott (February) (June) NIHILISM AND METAPHYSICS HABITATIONS OF THE VEIL The Third Voyage Metaphor and the Poetics of Black Being Vittorio Possenti in African American Literature Daniel B. Gallagher, translator Rebecka Rutledge Fisher Foreword by Brian Schroeder (May) (April) THE LAWS OF THE SPIRIT LACan’s etHics and nietzscHe’s A Hegelian Theory of Justice CRITIQUE OF PLATONISM Shannon Hoff Tim Themi (April) (May) AFTER LEO STRAUSS EMPLOTTING VIRTUE New Directions in Platonic A Narrative Approach Political Philosophy to Environmental Virtue Ethics Tucker Landy Brian Treanor (June) (June) LIVING ALTERITIES FEMINIST PHENOMENOLOGY Phenomenology, Embodiment, and Race AND MEDICINE Emily S. Lee, editor Kristin Zeiler and (April) Lisa Folkmarson Käll, editors (April) LUCE IRIGARAY’s PHenomenoLOGY OF FEMININE BEING Please visit our website for information Virpi Lehtinen on our philosophy journals. (June) SPECIAL EVENTS Only registrants are entitled to attend the reception on April 17 at no additional charge. Non-registrants, such as spouses, partners, or family members of meeting attendees, who wish to accompany a registrant to this reception must purchase a $10 guest ticket; guest tickets are available at the reception door as well as in advance at the registration desk.
    [Show full text]
  • July, and October
    ISSN 0739-4934 NEWSLETTER I {!STORY OF SCIENCE _iu_'i_i_u~-~-~-o~_9_N_u_M_B_E_R_3__________ S00ETY AAASREPORT HSSEXECUTIVE A Larger Role for History of Science COMMITTEE PRESIDENT in Undergraduate Education STEPHEN G. BRUSH, University of Maryland NORRISS S. HETHERINGTON VICE-PRESIDENT Office for the History of Science and Technology, SALLY GREGORY KOHLSTEDT, University of California, Berkeley University of Minnesota EXECU11VESECRETARY HISTORIANS OF SCIENCE have often been called to contribute to under­ MICHAEL M. SOKAL, Worcester graduate education. As HSS President Stephen G. Brush notes jNewsletter, Polytechnic Institute January 1990, pp. 1, 8-10), historically oriented science courses could be­ TREASURER come a valuable part of the core curriculum at many institutions, and fac­ MARY LOUISE GLEASON, New York City ulty at many colleges-especially science professors-have expressed strong EDITDR interest in using materials and perspectives from history of science. RONALD L. NUMBERS, University of We are now called again, this time by the American Association for the Wisconsin-Madison Advancement of Science. The Liberal Art of Science: Agenda for Action, published by the AAAS in May 1990, argues that science is one of the liberal The Newsletter of the History of Science arts and that it should be taught as such, as integrated into the totality of Society is published in January, April, July, and October. Regular issues are sent to individual human experience. This argument and advice may seem obvious to histori­ members of the Society who reside in North ans of science, but it is a revolutionary departure from tradition for many America. Airmail copies are sent to those scientists, and one that could transform both undergraduate education and members overseas who pay $5 yearly to cover postal costs: The Newsletter is available to the role of our discipline.
    [Show full text]
  • Hans Reichenbach
    Coming to America: Carnap, Reichenbach and the Great Intellectual Migration Part II: Hans Reichenbach Sander Verhaegh Tilburg University Ich habe das Gefühl, dass gerade Amerika mit seinem Sinn für das konkrete und technische mehr Verständnis haben müsste für meine naturwissenschaftliche Philosophie als Europa, wo noch immer die mystisch-metaphysischen Spekulationen als die wahre Philosophie angesehen werden. ⎯ Reichenbach to Sidney Hook, January 31, 1935 II.1. Introduction In the late-1930s, Rudolf Carnap and Hans Reichenbach, arguably the two most prominent scientific philosophers of their time, emigrated to the United States, escaping the increasingly perilous situation on the continent. Once in the U.S., the two significantly changed the American philosophical landscape. In this two-part paper, I reconstruct Carnap’s and Reichenbach’s surprisingly numerous interactions with American scholars throughout the 1920s and 1930s in order to better explain the transformation of analytic philosophy in the years before and after the Second World War. In the first part of this paper, I reconstructed Carnap’s contacts with American philosophers throughout the 1920s and 1930s. In this second part, I focus on Reichenbach’s interactions with the American philosophical community before he moved to the United States. I argue that some of Reichenbach’s work from the mid-1930s⎯ in particular Experience and Prediction (1938)⎯ can be better understood if we take into account the context in which it was written. This paper is structured as follows. After an overview of Reichenbach’s ignorance about Anglophone philosophy in the first stages of his academic career (§II.2), I reconstruct his ‘American turn’ in the early 1930s, focusing especially on the reception of his philosophy by a group of New York philosophers (§II.3).
    [Show full text]
  • This Volume on the Vienna Circle's Influence in the Nordic Countries
    Vol. 8, no. 1 (2013) Category: Review essay Written by Carlo Penco This volume on the Vienna Circle’s influence in the Nordic countries gives a very interesting presentation of an almost forgotten landmark. In the years preceding the Second World War, European philosophy was at the high point of its intellectual vitality. Everywhere philosophical societies promoted a dense network of connections among scholars, with international meetings and strong links among individuals and associations. In this context, the Vienna Circle emerges as one of the many, also if probably the most well-known, centres of diffusion of a new style of philosophy, closely linked to the new logic and with a strongly empiricist attitude. At the same time, empiricism, formal logic and psychology constituted (and still constitute) the common background of most of the Nordic philosophers, a background which permitted them to develop connections with Vienna’s cultural environment (well known also for the work of psychologists such as Sigmund Freud, but also Charlotte and Karl Bühler). This piece of history, although limited to the connection between Nordic philosophy and Vienna Circle, helps to clarify the history of European philosophy, and the sharp difference of Nordic philosophy in respect of the development of philosophy in Southern and Central Europe in the half a century following the Second World War. The editors say in the introduction: . one of the least known networks of the Vienna Circle is the “Nordic connection”. This connection had a continuing influence for many of the coming decades, beginning with the earliest phase of the Vienna Circle and continuing with a number of adaptations and innovations well into contemporary times.
    [Show full text]
  • What Would It Mean to Directly Observe Electrons?
    WHAT WOULD IT MEAN TO DIRECTLY OBSERVE ELECTRONS? DAVID MITSUO NIXON University of Washington Abstract In this paper it is argued that a proper understanding of the justification of perceptual beliefs leaves open the possibility that normal humans, unaided by microscopes, could genuinely know, by direct observation, of the existence of a theoretical entity like an electron. A particular theory of justification called perceptual responsibilism is presented. If successful, this kind of view would undercut one line of argument that has been given (for example, by Bas van Fraassen) in support of scientific anti-realism. Various objections to the idea that electrons can be directly observed are also considered. Scientific anti-realism is, roughly, the view that we are not justified in believing in the existence of theoretical entities—of which I take elec- trons to be a paradigm example. Such a view obviously relies on the distinction between things that are directly observable and things that are not, where theoretical entities would fall into the latter category. In this paper I will argue against this distinction—at least in the sense in which it is required by scientific anti-realism. I will argue that (so- called) theoretical entities like electrons can be observed by normal humans. In taking aim at scientific anti-realism, I will primarily have in mind its leading proponent, Bas van Fraassen. But it is important to keep in mind that while my narrow concern in this paper is the issue of the justification of observational beliefs, van Fraassen’s constructive em- piricism encompasses much more than that.
    [Show full text]