research papers Crystal structures of Aspergillus oryzae Rib2 IUCrJ deaminase: the functional mechanism involved in ISSN 2052-2525 riboflavin biosynthesis BIOLOGYjMEDICINE Sheng-Chia Chen,a,b‡ Li-Ci Ye,a‡ Te-Ming Yen,c Ruei-Xin Zhu,a Cheng-Yu Li,d San-Chi Chang,b Shwu-Huey Liawa,e* and Chun-Hua Hsub,f,g* Received 15 January 2021 aDepartment of Life Sciences and Institute of Genome Sciences, National Yang-Ming University, Taipei 11221, Taiwan, Accepted 15 March 2021 bDepartment of Agricultural Chemistry, National Taiwan University, Taipei 10617, Taiwan, cInstitute of Biochemistry and Molecular Biology, National Yang-Ming University, Taipei 11217, Taiwan, dDepartment of Chemistry, National Taiwan University, Taipei 10617, Taiwan, eDepartment of Medical Research and Education, Taipei Veterans General Hospital, Edited by Z.-J. Liu, Chinese Academy of Taipei 11217, Taiwan, fInstitute of Biochemical Sciences, National Taiwan University, Taipei 10617, Taiwan, and Sciences, China gGenome and Systems Biology Degree Program, National Taiwan University and Academia Sinica, Taipei 10617, Taiwan. *Correspondence e-mail:
[email protected],
[email protected] ‡ These authors contributed equally to this work. Riboflavin serves as the direct precursor of the FAD/FMN coenzymes and is biosynthesized in most prokaryotes, fungi and plants. Fungal Rib2 possesses a Keywords: riboflavin biosynthesis; Rib2; deaminases; substrate binding; crystal structure. deaminase domain for deamination of pyrimidine in the third step of riboflavin biosynthesis. Here, four high-resolution crystal structures of a Rib2 deaminase PDB references: Rib2, 7dry; Rib2 (1–188, pH from Aspergillus oryzae (AoRib2) are reported which display three distinct 4.6), 7drz; Rib2 (1–188, pH 6.5), 7ds0; Rib2 occluded, open and complex forms that are involved in substrate binding and (1–188, pH 6.5), complex with DARIPP, 7ds1 catalysis.