Gene Expression Profiling of Human Mast Cell Subtypes

Total Page:16

File Type:pdf, Size:1020Kb

Gene Expression Profiling of Human Mast Cell Subtypes Allergology International. 2006;55:173-179 ORIGINAL ARTICLE Gene Expression Profiling of Human Mast Cell Subtypes: An In Silico Study Hirohisa Saito1,2, Kenji Matsumoto1, Shigeru Okumura2, Jun-ichi Kashiwakura2, Keisuke Oboki2, Hidenori Yokoi2, Naotomo Kambe3, Ken Ohta4 and Yoshimichi Okayama2 ABSTRACT Background: Human mast cells (MCs) were classified into at least two subtypes, i.e., tryptase- and chymase- positive MCs (MCTC) and tryptase-only-positive MCs (MCT). However, differences in global molecular expres- sion between these subtypes are unknown. Methods: We analyzed public microarray data of MC subtypes derived from various tissues and those of pe- ripheral blood granulocytes by using hierarchical clustering methods to understand the global gene expression profiles. Results: All the transcripts subjected to this clustering analysis were classified into two large clusters, i.e., MC- preferential or granulocyte-preferential. In the original works, MCs from tonsil, lung and skin had been cultured for more than several weeks to obtain highly viable and pure cell populations, and these MCs retained their typical profiles such as intensities of chymase protein expression. Most of the transcripts were commonly ex- pressed by these MC subtypes. However, tonsil-derived MCs and skin-derived MCs but not lung-derived MCs expressed high levels of chymase (CMA1) as expected for the properties of MCTC and MCT. These CMA1-high MCs and CMA1-low MCs respectively expressed distinct sets of transcripts as small gene clusters as well as CMA-1 even after being cultured in the absence of a tissue environment. Conclusions: The MC lineage seems to be far from the granulocyte lineages including basophils. CMA1-high MCs (MCTC) and CMA1-low MCs (MCT) can be regarded as differentiated MC subtypes. As such, importance of data analysis studies will be increasing along with the accumulation of global molecular data in the public da- tabase. KEY WORDS carboxypeptidase, chymase, human mast cells, microarray, transcriptome 1,2 INTRODUCTION ered to be the era of “systems biology”, aiming at the comprehension of the total function of a cell, an Due to the complete reading of the genome sequence organ, or the human body using bioinformatics and and rapid technical advances, microarrays are now functional genomics. In most of transcriptome analy- widely used in many laboratories especially for ana- ses for finding novel molecules, mixed populations of lyzing transcriptome, i.e., global gene expression . peripheral blood or tissues have been used as clinical Transcriptome assays may be categorized into two samples . However , these mixed cell populations types depending on the strategy. One is aimed at sometimes make interpretation of the results difficult. finding an important molecule whose function or Contamination by a very small population of different structure has not been fully described. Another is the 0cell types having a certain highly expressed tran- comprehension of the whole system controlling a cell script may cause an artifactual presence of the tran- and the simulation of human disease models in silico, script in the whole population even where the major i.e., in a computer. Indeed, the 21st century is consid- cell type lacks it.3 On the other hand, mRNA is unsta- 1Department of Allergy & Immunology, National Research Institute and Immunology, National Research Institute for Child Health & for Child Health & Development, 4Department of Medicine, Teikyo Development, 2−10−1 Okura, Setagaya-ku, Tokyo 157−8535, Ja- University School of Medicine, Tokyo, 2Research Unit for Allergy pan. Transcriptome, Research Center for Allergy & Immunology , Email: [email protected] RIKEN Yokohama Institute, Kanagawa and 3Department of Der- Received 6 September 2005. Accepted for publication 1 Decem- matology, Kyoto University Graduate School of Medicine, Kyoto, ber 2005. Japan. !2006 Japanese Society of Allergology Correspondence: Hirohisa Saito, MD, PhD, Department of Allergy Allergology International Vol 55, No2, 2006 www.jsaweb.jp! 173 Saito H et al. ble so that complicated procedures for purification of Genome U133A probe array (GeneChip, Affymetrix, a certain cell type should be avoided. In this context, Santa Clara, CA, USA), which contains the oligonu- computational identification of cell-type specificity of cleotide probe set for approximately 22,283 full-length a certain key role molecule found in crude tissues genes and expressed sequence tags (ESTs). Total may be preferable. For this purpose, we have estab- cellular RNA was immediately isolated from fresh hu- lished the cell-type specific transcriptome database. man MCs or other inflammatory cells with RNeasy This cell-type specific transcriptome database is also Mini Kits (Qiagen, Valencia, CA, USA) containing expected to be necessary for understanding the sys- DNase-treatment. These samples had been obtained tems biology. from volunteers and patients with written informed Mast cells (MCs) are known to play versatile roles consent using an explanatory document which was such as in evoking allergic reaction and in controlling approved by the Ethical Review Board in each hospi- physiological reactions such as innate immunity . 4 tal. The purity of RNA was assessed on the basis of Furthermore , MCs are classified into two distinct the A260!A280 ratio, and the integrity of RNA was subtypes in rodent tissues: connective tissue MCs verified by agarose gel electrophoresis. Total RNA preferentially located in tissues, such as skin, and ( 50 ! 100 ng) was extracted from approximately mucosal MCs dominantly found in mucosa, such as 5 × 105 cells. Double-stranded cDNA was synthesized the intestine. They are distinct in staining characteris- from DNase-treated total RNA, and the cDNA was tics , T-cell dependency , responses toward secre- subjected to in vitro transcription in the presence of tagogues or stabilizing drugs, and cytokine require- biotinylated nucleoside triphosphates, according to ment for development.5-8 For human MCs, two sub- the small sample protocol ( two-cycle in vitro tran- types have been recognized by the distribution of scription method). The biotinylated cRNA was hy- granular neutral proteases: MCs positive for tryptase bridized with a probe array for 16 hours at 45", and together with chymase, cathepsin G, and carboxypep- the hybridized biotinylated cRNA was stained with tidase (MCTC) and MCs positive for tryptase only streptavidin-phycoerythrin (PE), then scanned with a (MCT). MCT were found in nasal mucosal tissues and Hewlett-Packard Gene Array Scanner (Palo Alto, CA, lung, while MCTC were located in skin or tonsillar tis- USA). The fluorescence intensity of each probe was sues.9,10 Several functional and morphological proper- quantified using a computer program , GeneChip ties are proposed regarding differences between MC Analysis Suite 5.0 (Affymetrix). The expression level TC and MCT. Toru et al., 11 observed that IL-4 pro- of a single mRNA was determined as the average moted cell maturation with the expression of both fluorescence intensity among the intensities obtained tryptase and a high amount of chymase from by 11 paired (perfect-matched and single nucleotide- tryptase-single positive human cord blood-derived mismatched) probes consisting of 25-mer oligonu- MCs. On the other hand, it was recently shown that cleotides . If the intensities of mismatched probes skin-derived , 12 tonsil-derived 13 and lung-derived were very high, gene expression was judged to be ab- MCs 13,14 can retain their phonotypical characters sent even if a higher-than-average fluorescence was such as the intensity of chymase staining and respon- obtained with the GeneChip Analysis Suite 5.0 pro- siveness to substance P for more than several weeks gram. The level of gene expression was determined even in the absence of a tissue-specific environment as the average difference (AD) using the GeneChip or T cell cytokines . Nevertheless , differences in software. global molecular expression between the human MC subtypes are totally unknown. DATA ANALYSIS We have reported the results of several genome- All the data that had been treated with small sample wide gene expression (transcriptome) studies4,13,15-18 protocol 3 were downloaded from our website at using human mast cells and other allergic inflamma- http:!!www.nch.go.jp!imal!GeneChip!public.htm. tory cells. According to the microarray guideline,19 From the “human leukocytes” file, two basophil sam- we have opened the gene expression data in our web- ple, two eosinophil samples and two neutrophil sam- site. In the present paper, we collected these tran- ples were chosen for this study. Three lung-derived scriptome data including various types of MCs and MC samples, three tonsil-derived MC sample, three other cell types, and performed a hierarchical cluster- peripheral blood progenitor-derived MC samples and ing analysis to understand the comprehensive gene a cord blood-derived MC sample, were collected from expression profiles of human MC subtypes. “Human Mast Cells” No. 5 file and were normalized METHODS with the median value of 22,283 transcripts of every array sample. It should be noted that these MCs de- GENECHIP EXPRESSION ANALYSIS rived from several tissues were cultured for more All in vitro experiments were performed in the previ- than several weeks in the absence of the specific tis- ous studies15-18 but not in the present study. There- sue environment. 15-18 This is because it was neces- fore, only the method of genome-wide gene expres- sary to obtain highly viable and purified MC samples sion is briefly described . We used the Human for GeneChip analysis. We merged these 16 sample 174 Allergology International Vol 55, No2, 2006 www.jsaweb.jp! In Silico Study of Human Mast Cell Subtypes Bas2 Bas1 Eos2 Eos1 Neu2 Neu1 CMC PMC2 TMC1 TMC3 TMC2 PMC3 PMC1 LMC2 LMC1 LMC3 1 ADRB2 CPA3 1000 TPSB2 CMA1 HEY1 GPR43 2000 C5R1 GPR44 MS4A3 2639 Fig. 1 Gene Expression Profiles of 16 Sample Data of Mast Cell Subtypes, Basophils, Eosinophils and Neutrophils. Affymetrix GeneChip U133A microarray data regarding MCs and other inflammatory cells were collected from the website at http://www.
Recommended publications
  • Ige-Mediated Mast Cell Activation Promotes Inflammation And
    RESEARCH COMMUNICATION IgE-mediated mast cell activation promotes inflammation and cartilage destruction in osteoarthritis Qian Wang1,2†, Christin M Lepus1,2†, Harini Raghu1,2†, Laurent L Reber3‡, Mindy M Tsai3, Heidi H Wong1,2, Ericka von Kaeppler1,2, Nithya Lingampalli1,2, Michelle S Bloom1,2, Nick Hu1,2, Eileen E Elliott1,2, Francesca Oliviero4, Leonardo Punzi4, Nicholas J Giori1,5, Stuart B Goodman5, Constance R Chu1,5, Jeremy Sokolove1,2, Yoshihiro Fukuoka6, Lawrence B Schwartz6, Stephen J Galli3,7, William H Robinson1,2* 1GRECC, VA Palo Alto Health Care System, Palo Alto, United States; 2Division of Immunology and Rheumatology, Stanford University School of Medicine, Stanford, United States; 3Department of Pathology, Stanford University School of Medicine, Stanford, United States; 4Rheumatology Unit, Department of Medicine, University of Padova, Padova, Italy; 5Department of Orthopedic Surgery, Stanford University School of Medicine, Stanford, United States; 6Department of Internal Medicine, Virginia Commonwealth University School of Medicine, Richmond, United States; 7Department of Microbiology and Immunology, Stanford University School of Medicine, Stanford, United States *For correspondence: [email protected] Abstract Osteoarthritis is characterized by articular cartilage breakdown, and emerging †These authors contributed evidence suggests that dysregulated innate immunity is likely involved. Here, we performed equally to this work proteomic, transcriptomic, and electron microscopic analyses to demonstrate that mast cells are Present address: ‡Center for aberrantly activated in human and murine osteoarthritic joint tissues. Using genetic models of mast Physiopathology of Toulouse- cell deficiency, we demonstrate that lack of mast cells attenuates osteoarthritis in mice. Using Purpan (CPTP), UMR 1043, genetic and pharmacologic approaches, we show that the IgE/FceRI/Syk signaling axis is critical for University of Toulouse, INSERM, the development of osteoarthritis.
    [Show full text]
  • Biological Function of Mast Cell Chymase
    Biological Function of Mast Cell Chymase In vitro and in vivo studies: a thorny pathway Elena Chugunova Department of Molecular Biosciences Uppsala Doctoral thesis Swedish University of Agricultural Sciences Uppsala 2004 Acta Universitatis Agriculturae Sueciae Veterinaria 181 ISSN 1401-6257 ISBN 91-576-6680-6 © 2004 Elena Chugunova, Uppsala Tryck: SLU Service/Repro, Uppsala 2004 Abstract Chugunova, E., 2004. Biological function of mast cell chymase mMCP-4. In vitro and in vivo studies: a thorny pathway. Doctor's dissertation. ISSN 1401-6257, ISBN 91-576-6680-6 Mast cells (MCs) are key effector cells in various types of inflammatory conditions. The MC secretory granules contain inflammatory mediators such as histamine, heparin proteoglycan (PG), cytokines and various heparin-binding proteases, including tryptases, chymases and carboxypeptidase A. Previously, a mouse strain with a defect in its heparin biosynthesis was produced by targeting the gene for NDST-2 (N-deacetylase/N-sulfotransferase-2). These mice showed reduced levels of MC inflammatory mediators such as histamine and various heparin- binding proteases, including chymases, tryptases, and carboxypeptidase A. By using this mouse strain, we found that chymase in complex with heparin PG degraded fibronectin, suggesting a role for chymase in the regulation of connective tissue composition. Further, we found that chymase/heparin PG complexes degraded and thereby inactivated both thrombin and plasmin, suggesting an additional role for chymase in regulation of extravascular coagulation and fibrinolysis. However, although our findings implicated chymase in these processes, it was not possible to exclude the contribution to the observed activities by other MC components that are influenced by the knockout of NDST-2.
    [Show full text]
  • Association Between Chymase Gene Polymorphisms and Atrial Fibrillation
    Zhou et al. BMC Cardiovascular Disorders (2019) 19:321 https://doi.org/10.1186/s12872-019-01300-7 RESEARCH ARTICLE Open Access Association between chymase gene polymorphisms and atrial fibrillation in Chinese Han population Dongchen Zhou, Yuewei Chen, Jiaxin Wu, Jiabo Shen, Yushan Shang, Liangrong Zheng and Xudong Xie* Abstract Background: Chymase is the major angiotensin II (Ang II)-forming enzyme in cardiovascular tissue, with an important role in atrial remodeling. This study aimed to examine the association between chymase 1 gene (CMA1) polymorphisms and atrial fibrillation (AF) in a Chinese Han population. Methods: This case-control study enrolled 126 patients with lone AF and 120 age- and sex-matched healthy controls, all from a Chinese Han population. Five CMA1 polymorphisms were genotyped. Results: The CMA1 polymorphism rs1800875 (G-1903A) was associated with AF. The frequency of the GG genotype was significantly higher in AF patients compared with controls (p = 0.009). Haplotype analysis further demonstrated an increased risk of AF associated with the rs1800875-G haplotype (Hap8 TGTTG, odds ratio (OR) = 1.668, 95% CI 1.132–2.458, p = 0.009), and a decreased risk for the rs1800875-A haplotype (Hap5 TATTG, OR = 0.178, 95% CI 0.042– 0.749, p = 0.008). Conclusions: CMA1 polymorphisms may be associated with AF, and the rs1800875 GG genotype might be a susceptibility factor for AF in the Chinese Han population. Keywords: Atrial fibrillation, CMA1, Chymase, Single nucleotide polymorphism, Angiotensin II Background ‘lone AF’, occur in the absence of identifiable underlying Atrial fibrillation (AF) is the most common type of sus- cardiovascular or other comorbid diseases [4].
    [Show full text]
  • CMA1 Rabbit Polyclonal Antibody – TA342809 | Origene
    OriGene Technologies, Inc. 9620 Medical Center Drive, Ste 200 Rockville, MD 20850, US Phone: +1-888-267-4436 [email protected] EU: [email protected] CN: [email protected] Product datasheet for TA342809 CMA1 Rabbit Polyclonal Antibody Product data: Product Type: Primary Antibodies Applications: WB Recommended Dilution: WB Reactivity: Human Host: Rabbit Isotype: IgG Clonality: Polyclonal Immunogen: The immunogen for anti-CMA1 antibody: synthetic peptide directed towards the C terminal of human CMA1. Synthetic peptide located within the following region: EVKLRLMDPQACSHFRDFDHNLQLCVGNPRKTKSAFKGDSGGPLLCAGVA Formulation: Liquid. Purified antibody supplied in 1x PBS buffer with 0.09% (w/v) sodium azide and 2% sucrose. Note that this product is shipped as lyophilized powder to China customers. Conjugation: Unconjugated Storage: Store at -20°C as received. Stability: Stable for 12 months from date of receipt. Predicted Protein Size: 27 kDa Gene Name: chymase 1 Database Link: NP_001827 Entrez Gene 1215 Human P23946 Background: CMA1 is a chymotryptic serine proteinase that belongs to the peptidase family S1. It is expressed in mast cells and thought to function in the degradation of the extracellular matrix, the regulation of submucosal gland secretion, and the generation of vasoactive peptides. In the heart and blood vessels, this protein, rather than angiotensin converting enzyme, is largely responsible for converting angiotensin I to the vasoactive peptide angiotensin II. Angiotensin II has been implicated in blood pressure control and in the pathogenesis of hypertension, cardiac hypertrophy, and heart failure. Thus, this gene product is a target for cardiovascular disease therapies. This product is to be used for laboratory only. Not for diagnostic or therapeutic use.
    [Show full text]
  • Extended Cleavage Specificities of Two Mast Cell Chymase-Related
    International Journal of Molecular Sciences Article Extended Cleavage Specificities of Two Mast Cell Chymase-Related Proteases and One Granzyme B-Like Protease from the Platypus, a Monotreme Zhirong Fu, Srinivas Akula , Michael Thorpe and Lars Hellman * Department of Cell and Molecular Biology, Uppsala University, Uppsala, The Biomedical Center, Box 596, SE-751 24 Uppsala, Sweden; [email protected] (Z.F.); [email protected] (S.A.); [email protected] (M.T.) * Correspondence: [email protected]; Tel.: +46-(0)18-471-4532; Fax: +46-(0)18-471-4862 Received: 20 November 2019; Accepted: 31 December 2019; Published: 2 January 2020 Abstract: Mast cells (MCs) are inflammatory cells primarily found in tissues in close contact with the external environment, such as the skin and the intestinal mucosa. They store large amounts of active components in cytoplasmic granules, ready for rapid release. The major protein content of these granules is proteases, which can account for up to 35 % of the total cellular protein. Depending on their primary cleavage specificity, they can generally be subdivided into chymases and tryptases. Here we present the extended cleavage specificities of two such proteases from the platypus. Both of them show an extended chymotrypsin-like specificity almost identical to other mammalian MC chymases. This suggests that MC chymotryptic enzymes have been conserved, both in structure and extended cleavage specificity, for more than 200 million years, indicating major functions in MC-dependent physiological processes. We have also studied a third closely related protease, originating from the same chymase locus whose cleavage specificity is closely related to the apoptosis-inducing protease from cytotoxic T cells, granzyme B.
    [Show full text]
  • Based on Network Pharmacology Tools to Investigate the Molecular Mechanism of Cordyceps Sinensis on the Treatment of Diabetic Nephropathy
    Hindawi Journal of Diabetes Research Volume 2021, Article ID 8891093, 12 pages https://doi.org/10.1155/2021/8891093 Research Article Based on Network Pharmacology Tools to Investigate the Molecular Mechanism of Cordyceps sinensis on the Treatment of Diabetic Nephropathy Yan Li,1 Lei Wang,2 Bojun Xu,1 Liangbin Zhao,1 Li Li,1 Keyang Xu,3 Anqi Tang,1 Shasha Zhou,1 Lu Song,1 Xiao Zhang,1 and Huakui Zhan 1 1Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, 610072 Sichuan, China 2Key Laboratory of Chinese Internal Medicine of Ministry of Education and Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing 100700, China 3Zhejiang Chinese Medical University, Hangzhou, 310053 Zhejiang, China Correspondence should be addressed to Huakui Zhan; [email protected] Received 27 August 2020; Revised 17 January 2021; Accepted 24 January 2021; Published 8 February 2021 Academic Editor: Michaelangela Barbieri Copyright © 2021 Yan Li et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. Background. Diabetic nephropathy (DN) is one of the most common complications of diabetes mellitus and is a major cause of end- stage kidney disease. Cordyceps sinensis (Cordyceps, Dong Chong Xia Cao) is a widely applied ingredient for treating patients with DN in China, while the molecular mechanisms remain unclear. This study is aimed at revealing the therapeutic mechanisms of Cordyceps in DN by undertaking a network pharmacology analysis. Materials and Methods. In this study, active ingredients and associated target proteins of Cordyceps sinensis were obtained via Traditional Chinese Medicine Systems Pharmacology Database (TCMSP) and Swiss Target Prediction platform, then reconfirmed by using PubChem databases.
    [Show full text]
  • Primepcr™Assay Validation Report
    PrimePCR™Assay Validation Report Gene Information Gene Name chymase 1, mast cell Gene Symbol CMA1 Organism Human Gene Summary This gene product is a chymotryptic serine proteinase that belongs to the peptidase family S1. It is expressed in mast cells and thought to function in the degradation of the extracellular matrix the regulation of submucosal gland secretion and the generation of vasoactive peptides. In the heart and blood vessels this protein rather than angiotensin converting enzyme is largely responsible for converting angiotensin I to the vasoactive peptide angiotensin II. Angiotensin II has been implicated in blood pressure control and in the pathogenesis of hypertension cardiac hypertrophy and heart failure. Thus this gene product is a target for cardiovascular disease therapies. This gene maps to 14q11.2 in a cluster of genes encoding other proteases. Gene Aliases CYH, MCT1, MGC119890, MGC119891, chymase RefSeq Accession No. NC_000014.8, NT_026437.12 UniGene ID Hs.135626 Ensembl Gene ID ENSG00000092009 Entrez Gene ID 1215 Assay Information Unique Assay ID qHsaCED0003486 Assay Type SYBR® Green Detected Coding Transcript(s) ENST00000250378, ENST00000206446 Amplicon Context Sequence CTTTAGTAACATGATATCGTGGTGAAGAGTAGAAGTGTTATATTTTGGATGACGG AATTGCTTTATAACCTCAAGCTTCTGCCATGTGTCTTCTTCCTCTGTTATGTTATG GGCTCC Amplicon Length (bp) 87 Chromosome Location 14:24975675-24975791 Assay Design Exonic Purification Desalted Validation Results Efficiency (%) 99 R2 0.9989 cDNA Cq 27.32 Page 1/5 PrimePCR™Assay Validation Report cDNA Tm (Celsius) 78
    [Show full text]
  • Like Transmembrane Γ Evolved From
    Mast Cell α and β Tryptases Changed Rapidly during Primate Speciation and Evolved from γ-Like Transmembrane Peptidases in Ancestral Vertebrates This information is current as of September 25, 2021. Neil N. Trivedi, Qiao Tong, Kavita Raman, Vikash J. Bhagwandin and George H. Caughey J Immunol 2007; 179:6072-6079; ; doi: 10.4049/jimmunol.179.9.6072 http://www.jimmunol.org/content/179/9/6072 Downloaded from References This article cites 34 articles, 15 of which you can access for free at: http://www.jimmunol.org/content/179/9/6072.full#ref-list-1 http://www.jimmunol.org/ Why The JI? Submit online. • Rapid Reviews! 30 days* from submission to initial decision • No Triage! Every submission reviewed by practicing scientists • Fast Publication! 4 weeks from acceptance to publication by guest on September 25, 2021 *average Subscription Information about subscribing to The Journal of Immunology is online at: http://jimmunol.org/subscription Permissions Submit copyright permission requests at: http://www.aai.org/About/Publications/JI/copyright.html Email Alerts Receive free email-alerts when new articles cite this article. Sign up at: http://jimmunol.org/alerts The Journal of Immunology is published twice each month by The American Association of Immunologists, Inc., 1451 Rockville Pike, Suite 650, Rockville, MD 20852 Copyright © 2007 by The American Association of Immunologists All rights reserved. Print ISSN: 0022-1767 Online ISSN: 1550-6606. The Journal of Immunology Mast Cell ␣ and ␤ Tryptases Changed Rapidly during Primate Speciation and Evolved from ␥-Like Transmembrane Peptidases in Ancestral Vertebrates1 Neil N. Trivedi, Qiao Tong, Kavita Raman, Vikash J. Bhagwandin, and George H.
    [Show full text]
  • Mast Cell Chymase and Kidney Disease
    International Journal of Molecular Sciences Review Mast Cell Chymase and Kidney Disease Shamila Vibhushan 1,2, Manuela Bratti 1,2 , Juan Eduardo Montero-Hernández 1,2 , Alaa El Ghoneimi 1,2,3, Marc Benhamou 1,2, Nicolas Charles 1,2 , Eric Daugas 1,2,4 and Ulrich Blank 1,2,* 1 Centre de Recherche sur l’inflammation, CNRS ERL8252, Faculté de Médecine site Bichat, Université de Paris, Inserm UMR1149, 16 rue Henri Huchard, F-75018 Paris, France; [email protected] (S.V.); [email protected] (M.B.); [email protected] (J.E.M.-H.); [email protected] (A.E.G.); [email protected] (M.B.); [email protected] (N.C.); [email protected] (E.D.) 2 Laboratoire d’Excellence Inflamex, Université de Paris, F-75018 Paris, France 3 Department of Pediatric Surgery and Urology, Hôpital Universitaire Robert Debré, Assistance Publique—Hôpitaux de Paris (APHP), F-75019 Paris, France 4 Service de Néphrologie, Groupe Hospitalier Universitaire Bichat-Claude Bernard, Assistance Publique—Hôpitaux de Paris (APHP), F-75019 Paris, France * Correspondence: [email protected] Abstract: A sizable part (~2%) of the human genome encodes for proteases. They are involved in many physiological processes, such as development, reproduction and inflammation, but also play a role in pathology. Mast cells (MC) contain a variety of MC specific proteases, the expression of which may differ between various MC subtypes. Amongst these proteases, chymase represents up to 25% of the total proteins in the MC and is released from cytoplasmic granules upon activation.
    [Show full text]
  • Gene Expression Profiling of Lymph Node Sub-Capsular Sinus Macrophages in Cancer
    ORIGINAL RESEARCH published: 08 June 2021 doi: 10.3389/fimmu.2021.672123 Gene Expression Profiling of Lymph Node Sub-Capsular Sinus Macrophages in Cancer † † Danilo Pellin 1 , Natalie Claudio 2,3 , Zihan Guo 2,4, Tahereh Ziglari 2 and Ferdinando Pucci 2,3* 1 Gene Therapy Program, Dana-Farber/Boston Children’s Cancer and Blood Disorders Center, Harvard Medical School, Boston, MA, United States, 2 Department of Otolaryngology – Head and Neck Surgery, Oregon Health and Science University, Portland, OR, United States, 3 Department of Cell, Developmental & Cancer Biology, Oregon Health and Science University, Portland, OR, United States, 4 Program in Cancer Biology, Oregon Health and Science University, Portland, OR, United States Lymph nodes are key lymphoid organs collecting lymph fluid and migratory cells from the tissue area they survey. When cancerous cells arise within a tissue, the sentinel lymph node is the first immunological organ to mount an immune response. Sub-capsular sinus Edited by: Karine Rachel Prudent Breckpot, macrophages (SSMs) are specialized macrophages residing in the lymph nodes that play Vrije University Brussel, Belgium important roles as gatekeepers against particulate antigenic material. In the context of Reviewed by: cancer, SSMs capture tumor-derived extracellular vesicles (tEVs), a form of particulate Ioannis S. Pateras, National and Kapodistrian University of antigen released in high amounts by tumor cells. We and others have recently Athens, Greece demonstrated that SSMs possess anti-tumor activity because in their absence tumors Antonio Giovanni Solimando, progress faster. A comprehensive profiling of SSMs represents an important first step to University of Bari Aldo Moro, Italy Rohit Singh, identify the cellular and molecular mechanisms responsible for SSM anti-tumor activity.
    [Show full text]
  • Correlation of Serpin–Protease Expression by Comparative Analysis of Real-Time PCR Profiling Data
    View metadata, citation and similar papers at core.ac.uk brought to you by CORE provided by Elsevier - Publisher Connector Genomics 88 (2006) 173–184 www.elsevier.com/locate/ygeno Correlation of serpin–protease expression by comparative analysis of real-time PCR profiling data Sunita Badola a, Heidi Spurling a, Keith Robison a, Eric R. Fedyk a, Gary A. Silverman b, ⁎ Jochen Strayle c, Rosana Kapeller a,1, Christopher A. Tsu a, a Millennium Pharmaceuticals, Inc., 40 Landsdowne Street, Cambridge, MA 02139, USA b Department of Pediatrics, University of Pittsburgh School of Medicine, Magee-Women’s Hospital, 300 Halket Street, Pittsburgh, PA 15213, USA c Bayer HealthCare AG, 42096 Wuppertal, Germany Received 2 December 2005; accepted 27 March 2006 Available online 18 May 2006 Abstract Imbalanced protease activity has long been recognized in the progression of disease states such as cancer and inflammation. Serpins, the largest family of endogenous protease inhibitors, target a wide variety of serine and cysteine proteases and play a role in a number of physiological and pathological states. The expression profiles of 20 serpins and 105 serine and cysteine proteases were determined across a panel of normal and diseased human tissues. In general, expression of serpins was highly restricted in both normal and diseased tissues, suggesting defined physiological roles for these protease inhibitors. A high correlation in expression for a particular serpin–protease pair in healthy tissues was often predictive of a biological interaction. The most striking finding was the dramatic change observed in the regulation of expression between proteases and their cognate inhibitors in diseased tissues.
    [Show full text]
  • TPSAB1 Monoclonal Antibody (AA1)
    Website: thermofisher.com Lot Number: SB2348992 Customer Service(US): 1 800 955 6288 ext. 1 Technical Support (US): 1 800 955 6288 ext. 441 thermofisher.com/contactus TPSAB1 Monoclonal Antibody (AA1) Catalog Number:MA5-11711 Product Data Sheet Details Species Reactivity Size 500 µL Canine, Feline, Human, Tested species reactivity Non-human primate Host / Isotype Mouse / IgG1 Published Species Reactivity Human, Mouse, Rat Class Monoclonal Type Antibody Tested Applications Dilution * Clone AA1 Western Blot (WB) 1:50 Human mast cell tryptase Immunohistochemistry (Paraffin) Immunogen 1:2000 purified from human lung tissues (IHC (P)) Form Liquid Published Applications Concentration 50µg/ml Immunocytochemistry (ICC) See 1 publications below Purification Protein G Immunohistochemistry (IHC) See 16 publications below Storage Buffer PBS, pH 7.4, with 0.2% BSA * Suggested working dilutions are given as a guide only. It is recommended that the user titrate the product for use in their own experiment using appropriate negative and positive controls. Contains 0.09% sodium azide Storage Conditions 4° C Product Specific Information MA5-11711 targets Mast Cell Tryptase in IHC (P) and WB applications and shows reactivity with Canine, Feline, Human, and Non-human primate samples. The MA5-11711 immunogen is human mast cell tryptase purified from human lung tissues. Background/Target Information Mast cells contain a number of preformed chemical mediators such as histamine, chymase, carboxypeptidase and proteolytic tryptase. A substantial quantity of tryptase is estimated to be found in mast cells of skin and lung and suggestes this enzyme plays a major role in mast cell mediated events. In vitro studies indicate tryptase can cleave C3 to form C3a anaphylatoxin, inactivate fibrinogen as a coaguable substrate for thrombin and activate latent collagenase.
    [Show full text]