Optimisation De Jets Photoniques Pour L'augmentation De La Résolution
Total Page:16
File Type:pdf, Size:1020Kb
Optimisation de jets photoniques pour l’augmentation de la résolution spatiale de la gravure directe par laser Andri Abdurrochman To cite this version: Andri Abdurrochman. Optimisation de jets photoniques pour l’augmentation de la résolution spatiale de la gravure directe par laser. Optics / Photonic. Université de Strasbourg, 2015. English. NNT : 2015STRAD028. tel-01330747 HAL Id: tel-01330747 https://tel.archives-ouvertes.fr/tel-01330747 Submitted on 13 Jun 2016 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. N° d’ordre: Ecole Doctorale Mathématiques, Sciences de l’Information et de l’Ingénieur UNISTRA – INSA – ENGEES THESE Présentée pour obtenir le grade de Docteur de l’Université de Strasbourg Discipline : Electronique, Electrotechnique, Automatique Spécialité Photonique Par Andri ABDURROCHMAN Photonic jet for spatial resolution improvement in direct pulse near-IR laser micro-etching Soutenue publiquement le 15 septembre 2015 Membres du jury : Rapporteurs externe : Philippe DELAPORTE, DR CNRS, Université d’Aix-Marseille Bruno SAUVIAC, Professeur, Université Jean Monnet Examinateurs : Patrick MEYRUEIS, Professeur, Université de Strasbourg Bernard TUMBELAKA, Professeur, Université Padjadjaran, Indonésie Directeurs de thèse : Joël FONTAINE, Professeur, INSA de Strasbourg Sylvain LECLER, MCF HDR, Université de Strasbourg i TABLE OF CONTENTS TABLE OF CONTENTS ………………………………………………………………………….. ii TABLE OF FIGURES ……………………………………………………………………………… v INTRODUCTION …………………………………..…………………………………………… 0 - 1 1. Context of the research ………………..……………………………………………… 0 - 2 2. Thesis content ………………..…………………………………………..……………… 0 - 2 References ………………..…………………………………………………………………… 0 - 4 I. DIRECT LASER MICRO-ETCHING ....................................................................... 1 - 1 1. Introduction ................................................................................................................. 1 - 2 A. Microfabrication: Laser vs. other techniques .......................................................... 1 - 2 B. Existing power laser................................................................................................ 1 - 3 2. Laser-material interaction ........................................................................................... 1 - 4 A. Fundamentals of laser energy absorption by material ............................................ 1 - 4 B. Laser fluence versus melting threshold of material ................................................. 1 - 8 C. Laser fluence versus ablation threshold fluence of material .................................. 1- 10 3. Infrared lasers............................................................................................................ 1- 12 A. Neodymium-doped Yttrium Aluminum Garnet Lasers (Nd:YAG) ........................... 1- 12 B. Yttribium-doped fiber laser ..................................................................................... 1- 15 C. Nanosecond IR laser application for micro-etching ............................................... 1- 16 References ...………………………………………………………………………………………1- 17 II. PHOTONIC JET: THEORY, EXPERIMENTAL OBSERVATIONS AND APPLICATIONS ........................................................................................................ 2 - 1 1. Introduction ................................................................................................................ 2 - 2 2. Field enhancement and diffraction limit ..................................................................... 2 - 2 3. From near-field optics to photonic jet ......................................................................... 2 - 4 A. Mie theory .............................................................................................................. 2 - 6 B. Finite elements method ......................................................................................... 2 - 9 4. Experimental validation of photonic jet .. ...................................................... ……… 2 - 11 ii iii A. Photonic jet capturing and measurement ............................................................ 2 - 11 B. Photonic jet marks on sample materials .............................................................. 2 - 12 5. Other potential applications of photonic jet .............................................................. 2 - 17 A. Photonic jet microscopy ....................................................................................... 2 - 17 B. Small propagation losses waveguide .................................................................. 2 - 17 C. Photonic jet laser surgery .................................................................................... 2 - 18 D. Fluorescence enhancement ................................................................................ 2 - 18 E. Nanoparticle detector for location, sizing, counting and velocity measurement ... 2 - 18 F. Optical tweezers using photonic jets ................................................................... 2 - 19 G. Photonic jet for optical data storage .................................................................... 2 - 20 References ...................................................................................................................... 2 - 20 III. PJ’S ETCHING USING MICROSPHERES ...................................................... 3 - 1 1. Introduction ................................................................................................................ 3 - 2 2. Electromagnetic simulations of PJs ........................................................................... 3 - 2 3. Experimental setup .................................................................................................... 3 - 5 A. Laser sources and characterization ....................................................................... 3 - 6 B. Samples and microspheres ................................................................................. 3 - 10 C. Micro-localization and repeatability ..................................................................... 3 - 10 D. Laser setting scheme for PJ etching experiments ............................................... 3 - 12 E. Experimental protocol .......................................................................................... 3 - 12 4. PJ etching on silicon wafer using glass microspheres ............................................. 3 - 13 A. PJ etching on silicon wafer using 28ns Nd:YAG laser ......................................... 3 - 14 B. Comparison with the 160 ns YLIA laser ............................................................... 3 - 16 5. PJ etching on glass using glass microspheres ........................................................ 3 - 18 A. PJ etching on glass plates using the Nd:YAG laser ............................................. 3 - 18 B. PJ etching on glass plates using YLIA laser ........................................................ 3 - 19 6. Discussion on PJ using glass microspheres: experiments to simulations ............... 3 - 20 A. Laser induced damage threshold: case of silicon ................................................ 3 - 20 B. Correspondence between etchings and electric field maps ................................. 3 - 21 7. PJ etching using BaTiO3 microspheres on silicon wafer and glass plate ................. 3 - 23 8. Synthesis and limitations ......................................................................................... 3 - 24 References ...................................................................................................................... 3 - 25 IV. PJ’S ETCHING BY OPTICAL FIBER ................................................................ 4 - 1 1. Waveguide driven PJ ................................................................................................. 4 - 2 2. Electromagnetic simulations of PJ generated by a dielectric waveguide with a spheroid tip .............................................................................................................................. 4 - 3 A. Basics of optical fiber for simulation ...................................................................... 4 - 4 B. Mathematical description of the shape of optical fiber tip for simulation ................ 4 - 6 C. Physics of PJ coming out of spheroid-tipped optical fiber ...................................... 4 - 6 D. Justification of the chosen tip shape ..................................................................... 4 - 13 3. Experiment setup ...................................................................................................... 4 - 15 A. Laser beam characterization ................................................................................ 4 - 16 B. Laser injection ...................................................................................................... 4 - 16 C. PJ etching characterization ................................................................................... 4