Thresholds for Laser-Induced Thermal Injury of Ex-Vivo Bovine Retina Explant
Total Page:16
File Type:pdf, Size:1020Kb
Die approbierte Originalversion dieser Dissertation ist an der Hauptbibliothek der Technischen Universität Wien aufgestellt (http://www.ub.tuwien.ac.at). The approved original version of this thesis is available at the main library of the Vienna University of Technology (http://www.ub.tuwien.ac.at/englweb/). DISSERTATION Thresholds for Laser-Induced Thermal Injury of Ex-vivo Bovine Retina Explant Ausgeführt zum Zwecke der Erlangung des akademischen Grades eines Doktors der Technischen Wissenschaften unter der Leitung von (Betreuung) Ao.Univ.Prof. Dipl.-Ing. Dr.techn. Wolfgang Husinsky E134 – Institute of Applied Physics Wiedner Hauptstrasse 8, A-1040, Wien, Austria Eingereicht an der Technischen Universität Wien Fakultät für Physik von (VerfasserInn) Rahat Ullah 0827843 Kölblgasse 35/1, 1030, Wien Wien, 11 November 2010 eigenhändige Unterschrift Kurzfassung Die besonderen Eigenschaften wie geringe Divergenz und die Fähigkeit extrem hohe Leistungsdichte zu erreichen, machen Laserstrahlung attraktiv für viele Anwendungen, sind aber zugleich der Grund dafür, dass schwere Augen- und Hautschäden auftreten können. Der menschliche Körper, vor allem Organe wie das Auge, ist besonders anfällig für Verletzungen von kommerziell verfügbaren oder experimentellen Lasern. Forschung über das Schädigungspotential des menschlichen Auges und der Haut ist seit der Erfindung des Lasers laufend, um die Gefahren von Laserstrahlung zu verstehen. Die Mehrheit der Daten werden experimentell von Laser-Induzierte Schädigung der Netzhaut an nicht-menschlichen Primaten (Rhesusaffen) und anderen Tieren gewonnen, jedoch einige an Freiwillige Daten oder Unfälle (meist aus den ersten Jahren des Laser- Operationen) sind ebenfalls erhältlich. Basiert auf diesen Ergebnissen sind Grenzwerte, als Maximum Zulässige Bestrahlung (MZB) bekannt, von der Internationalen Kommission zum Schutz vor nichtionisierender Strahlung (ICNIRP) festgelegt und für Normen von der Internationalen Elektrotechnischen Kommission (IEC 60825-1) sowie als American National Standards Institute (ANSI Z-136,1) übergenommen. Diese Schädigungsschwellwerte ziehen eine Grenze zwischen gefährliche und eher sichere Bestrahlungen. In dieser Studie sind ex-vivo Rinderaugen als experimentelles Modell für die Bestimmung der laserinduzierten thermischen Schädigungen der Netzhaut unter verschiedenen definierten Prüfbedingungen verwendet. Insgesamt sind 9360 Bestrahlungen auf 388 Augenproben durchgeführt worden. Schädigungsschwellen, durch Fluoreszenz-Mikroskopie bewertet, zeigen gute Übereinstimmung mit Ergebnissen eines von Mathieu Jean in der Seibersdorf Labor GmbH entwickelt erweiterten Computer-Modells. Beide Modelle untermauern gut die bereits publizierten Daten von In-vivo-Rhesusaffen. Die Abhängigkeit der Schwellenwerte auf Pulsdauern in den Millisekunden- und Sekundenbereiche und auf verschiedenen Spotgröße wurde für die Wellenlänge von 1090 nm zum ersten Mal ermittelt. Der Zweck dieser Studie war: (1) thermische Schädigungsschwellenwerte der Netzhaut in ex-vivo Rinderaugen als Modell zu untersuchen, (2) das Computer-Modell mit dem Arrhenius Kriterium zu validieren, und (3) diese beiden Modelle mit in-vivo Rhesusaffen Daten in Verbindung zu setzen. Letztlich, nach der Validierung dieses Computer-Modells wird es Grundlage für Sicherheitsanalyse komplizierter Szenarien anbieten. Dedication I dedicate this research work to my wife for her full support and cooperation throughout my PhD studies and to my mother for her endless efforts throughout my academic career. ii Acknowledgment My first and most earnest acknowledgment must go to my co-supervisor Dr. Karl Schulmeister. I can not forget his very kind response when i was looking for my PhD supervisor. His cooperation and support, both financial and moral, gave me the courage to complete my higher studies at the Technical University Vienna (TU Wien). Having difficulty in appropriate words selection for him I can only say that he has been instrumental in ensuring my academic, professional, personal and moral well being ever since. In every sense, none of this work would have been possible without his relentless and continuous help. I would also like to thank my academic supervisor Prof. Wolfgang Husinsky at Technical University Vienna for his relentless and continuous help and for providing me the opportunity to register at the Technical University Vienna under his supervision. In Seibersdorf Laboratories GmbH, (Previously known ARC), i started my experimental work in the group of Laser and Optical Radiation Safety. I cannot forget the valuable scientific discussions with my group mates, particularly with Weber Marko and Reinhard Gilber throughout my research work during my PhD studies. They all have my sincere gratitude. I am also deeply grateful to our secretary Kaman Martina who remained very helpful and kind throughout my stay here in Seibersdorf. I am also very deeply grateful of my brothers and relatives back in my country that remained in continuous touch with my professional as well as my personal activities. In Particular, I would like to thank my brother Mr Rahmat Khan, for his support and endless care of my family in Pakistan during my first year studies. He always remain helpful and spar his precious time for my personal works and activities. I always received an unexpected and generous support from him whenever he was called. Last, but far from least, I want to express my deep appreciations for my wife who has suffered more for this dissertation than anyone. Particularly, when she was in Pakistan, far away from me, and takes care of my lovely son Raza Ullah Khalil and my chubby daughter Maleeha Khalil. After joining me here in Vienna two years back, she saved my lot of time by providing me well prepared food and help when ever I needed. She took well care of me and my children. Her full support made my life easy in the duration of my PhD research. iii Table of Content ABSTRACT.....................................................................................................................1 1 ANATOMY OF THE EYE ....................................................................................4 1.1 STRUCTURE OF THE EYE .................................................................................... 4 1.2 RETINA OF THE EYE ........................................................................................... 6 1.3 THE RETINAL PIGMENT EPITHELIUM (RPE) ...................................................... 8 1.4 COMPOSITION AND FUNCTION OF MELANIN/MELANOSOMES .......................... 10 2 BASICS OF LASER-TISSUE INTERACTION................................................13 2.1 PHYSICAL PRINCIPLES GOVERNING LIGHT TISSUE INTERACTION .................... 13 2.1.1 Absorption of Laser Radiation................................................................ 13 2.1.2 Optical Properties of the Tissue.............................................................. 14 2.1.3 Concept of Energy Confinement ............................................................ 16 2.1.4 Light Propagation in the Eye .................................................................. 18 2.2 PHOTOCHEMICAL INTERACTION....................................................................... 21 2.2.1 Photo-Oxidative Effects.......................................................................... 21 2.2.2 Photosensitized Reactions....................................................................... 22 2.3 THERMAL INTERACTION .................................................................................. 24 2.3.1 Rise in Tissue Temperature .................................................................... 24 2.3.2 The Protein Denaturation........................................................................ 26 2.3.3 Thermal Confinement Time.................................................................... 27 2.3.4 Damage Criterion to the Eye .................................................................. 28 2.4 PHOTOABLATION ............................................................................................. 29 2.5 PLASMA-INDUCED ABLATION .......................................................................... 31 2.6 PHOTODISRUPTION........................................................................................... 33 3 EXPOSURE LIMITS ...........................................................................................37 3.1 THE CONCEPT OF THRESHOLD AND SAFETY FACTOR ...................................... 37 3.2 DOSE-RESPONSE CURVE.................................................................................. 39 3.3 LOG-NORMAL DISTRIBUTION .......................................................................... 41 3.4 PROBIT ANALYSIS............................................................................................ 44 3.5 FIDUCIAL LIMITS ............................................................................................. 46 3.6 CORNEAL AND RETINAL SPACE ....................................................................... 48 3.7 DEPENDENCE ON ANGULAR SUBTENSE............................................................ 49 3.8 COMPUTER MODEL USED FOR RETINAL THERMAL DAMAGE THRESHOLDS..... 51 iv 3.8.1 Overview................................................................................................. 51 3.8.2 Optical Model......................................................................................... 51 3.8.3 Thermal Model......................................................................................