Differential Diagnosis of Deep Vein Thrombosis by Vascular Ultrasound Jornal Vascular Brasileiro, Vol
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Lower Extremity Deep Venous Thrombosis
SECTION 5 Vascular System CHAPTER 34 Lower Extremity Deep Venous Thrombosis Ariel L. Shiloh KEY POINTS • Providers can accurately detect lower extremity deep venous thrombosis with point-of- care ultrasound after limited training. • Compression ultrasound exams are as accurate as traditional duplex and triplex vascular ultrasound exams. • Compression ultrasound exam at only two sites, the common femoral vein and popliteal vein, permits rapid and accurate assessment of deep venous thrombosis. Background care providers can perform lower extremity compression ultrasonography exams rapidly Venous thromboembolic disease (VTE) is a and with high diagnostic accuracy to detect common cause of morbidity and mortality in DVT. 7–13 A meta-analysis of 16 studies showed hospitalized patients and is especially preva- that point-of-care ultrasound can accurately lent in critically ill patients.1–3 Approximately diagnose lower extremity DVTs with a pooled 70% to 90% of patients with an identified source sensitivity of 96% and specificity of 97%.14 of pulmonary embolism (PE) have a proxi- Traditional vascular studies, the duplex mal lower extremity deep venous thrombosis and triplex exams, use a combination of (DVT). Conversely, 40% to 50% of patients two-dimensional (2D) imaging with compres- with a proximal DVT have a concurrent pul- sion along with the use of color and/or spectral monary embolism at presentation, and simi- Doppler ultrasound. More recent studies have larly, in only 50% of patients presenting with a demonstrated that 2D compression ultrasound PE can a DVT be found.4–6 exams alone yield similar accuracy as tradi- Point-of-care ultrasound is readily available tional duplex or triplex vascular studies.9,11,15–17 as a diagnostic tool for VTE. -
Reconstructive
RECONSTRUCTIVE Angiosomes of the Foot and Ankle and Clinical Implications for Limb Salvage: Reconstruction, Incisions, and Revascularization Christopher E. Attinger, Background: Ian Taylor introduced the angiosome concept, separating the M.D. body into distinct three-dimensional blocks of tissue fed by source arteries. Karen Kim Evans, M.D. Understanding the angiosomes of the foot and ankle and the interaction among Erwin Bulan, M.D. their source arteries is clinically useful in surgery of the foot and ankle, especially Peter Blume, D.P.M. in the presence of peripheral vascular disease. Paul Cooper, M.D. Methods: In 50 cadaver dissections of the lower extremity, arteries were injected Washington, D.C.; New Haven, with methyl methacrylate in different colors and dissected. Preoperatively, each Conn.; and Millburn, N.J. reconstructive patient’s vascular anatomy was routinely analyzed using a Dopp- ler instrument and the results were evaluated. Results: There are six angiosomes of the foot and ankle originating from the three main arteries and their branches to the foot and ankle. The three branches of the posterior tibial artery each supply distinct portions of the plantar foot. The two branches of the peroneal artery supply the anterolateral portion of the ankle and rear foot. The anterior tibial artery supplies the anterior ankle, and its continuation, the dorsalis pedis artery, supplies the dorsum of the foot. Blood flow to the foot and ankle is redundant, because the three major arteries feeding the foot have multiple arterial-arterial connections. By selectively performing a Doppler examination of these connections, it is possible to quickly map the existing vascular tree and the direction of flow. -
Lower Limb Venous Drainage
Vascular Anatomy of Lower Limb Dr. Gitanjali Khorwal Arteries of Lower Limb Medial and Lateral malleolar arteries Lower Limb Venous Drainage Superficial veins : Great Saphenous Vein and Short Saphenous Vein Deep veins: Tibial, Peroneal, Popliteal, Femoral veins Perforators: Blood flow deep veins in the sole superficial veins in the dorsum But In leg and thigh from superficial to deep veins. Factors helping venous return • Negative intra-thoracic pressure. • Transmitted pulsations from adjacent arteries. • Valves maintain uni-directional flow. • Valves in perforating veins prevent reflux into low pressure superficial veins. • Calf Pump—Peripheral Heart. • Vis-a –tergo produced by contraction of heart. • Suction action of diaphragm during inspiration. Dorsal venous arch of Foot • It lies in the subcutaneous tissue over the heads of metatarsals with convexity directed distally. • It is formed by union of 4 dorsal metatarsal veins. Each dorsal metatarsal vein recieves blood in the clefts from • dorsal digital veins. • and proximal and distal perforating veins conveying blood from plantar surface of sole. Great saphenous Vein Begins from the medial side of dorsal venous arch. Supplemented by medial marginal vein Ascends 2.5 cm anterior to medial malleolus. Passes posterior to medial border of patella. Ascends along medial thigh. Penetrates deep fascia of femoral triangle: Pierces the Cribriform fascia. Saphenous opening. Drains into femoral vein. superficial epigastric v. superficial circumflex iliac v. superficial ext. pudendal v. posteromedial vein anterolateral vein GREAT SAPHENOUS VEIN anterior leg vein posterior arch vein dorsal venous arch medial marginal vein Thoraco-epigastric vein Deep external pudendal v. Tributaries of Great Saphenous vein Tributaries of Great Saphenous vein saphenous opening superficial epigastric superficial circumflex iliac superficial external pudendal posteromedial vein anterolateral vein adductor c. -
The Hemodynamic Characteristic of the Popliteal Vein Is Assessed
Central Annals of Vascular Medicine & Research Mini Review *Corresponding author Cestmir Recek, Department of Surgery, University Hospital Hradec Kralove, Czech Republic, Mantlergasse The Hemodynamic 24A-1130 Vienna, Austria, Email: [email protected] Submitted: 25 March 2021 Accepted: 20 April 2021 Characteristic of the Popliteal Published: 21 April 2021 ISSN: 2378-9344 Copyright Vein © 2021 Recek C Cestmir Recek* OPEN ACCESS Department of Surgery, University Hospital Hradec Kralove, Czech Republic, Austria Keywords • Pressure changes in the popliteal vein, popliteal vein incompetence, small saphenous vein Abstract incompetence, calf pump activity, venous pressure. The hemodynamic characteristic of the popliteal vein is assessed. The hydrostatic pressure in the popliteal vein amounts to about 60 mm Hg at the knee level. Pressure changes are produced by the calf pump activity; they are much mitigated and short-lived in the popliteal vein, which contrasts distinctly with the situation in deep lower leg veins, where the pressure excursions are pronounced. The systolic pressure in the popliteal vein increases by about 25 mm Hg above the hydrostatic pressure during the first calf muscle contraction; the diastolic pressure decreases by about 8 mm Hg below the hydrostatic pressure. The incompetence of the popliteal vein is hemodynamically not relevant; this statement is in contrast with the prevailing opinion. The state of affairs has been documented by plethysmographic examinations. Small saphenous vein incompetence is regularly accompanied by the incompetence of the femoropopliteal venous axis. Abolition of small saphenous vein reflux eliminates the hemodynamic disorders and restores physiological plethysmographic values in spite of the persistent popliteal vein incompetence. The refluxing flow in the popliteal vein disappears after interruption or abolition of small saphenous vein reflux. -
Clinical Anatomy of the Lower Extremity
Государственное бюджетное образовательное учреждение высшего профессионального образования «Иркутский государственный медицинский университет» Министерства здравоохранения Российской Федерации Department of Operative Surgery and Topographic Anatomy Clinical anatomy of the lower extremity Teaching aid Иркутск ИГМУ 2016 УДК [617.58 + 611.728](075.8) ББК 54.578.4я73. К 49 Recommended by faculty methodological council of medical department of SBEI HE ISMU The Ministry of Health of The Russian Federation as a training manual for independent work of foreign students from medical faculty, faculty of pediatrics, faculty of dentistry, protocol № 01.02.2016. Authors: G.I. Songolov - associate professor, Head of Department of Operative Surgery and Topographic Anatomy, PhD, MD SBEI HE ISMU The Ministry of Health of The Russian Federation. O. P.Galeeva - associate professor of Department of Operative Surgery and Topographic Anatomy, MD, PhD SBEI HE ISMU The Ministry of Health of The Russian Federation. A.A. Yudin - assistant of department of Operative Surgery and Topographic Anatomy SBEI HE ISMU The Ministry of Health of The Russian Federation. S. N. Redkov – assistant of department of Operative Surgery and Topographic Anatomy SBEI HE ISMU THE Ministry of Health of The Russian Federation. Reviewers: E.V. Gvildis - head of department of foreign languages with the course of the Latin and Russian as foreign languages of SBEI HE ISMU The Ministry of Health of The Russian Federation, PhD, L.V. Sorokina - associate Professor of Department of Anesthesiology and Reanimation at ISMU, PhD, MD Songolov G.I K49 Clinical anatomy of lower extremity: teaching aid / Songolov G.I, Galeeva O.P, Redkov S.N, Yudin, A.A.; State budget educational institution of higher education of the Ministry of Health and Social Development of the Russian Federation; "Irkutsk State Medical University" of the Ministry of Health and Social Development of the Russian Federation Irkutsk ISMU, 2016, 45 p. -
Presence of the Dorsalis Pedis Artery in Young and Healthy Individuals
Wilson G. Hunt Russell H. Samson M.D Ravi K. Veeraswamy M.D Financial Disclosures I have no financial disclosures Objective To determine the presence of the dorsalis pedis in young healthy individuals To confirm antegrade flow into the foot Reason The dorsalis pedis artery has been reported absent, ranging from 2-10%, in most reported series (Clinical Method: The History, Physical, and Laboratory Examinations 3rd edition 1990 Dean Hill, Robert Smith III) Clinical relevance of an absent dorsalis pedis pulse Understanding the rates of absent dorsalis pedis provides a baseline for clinical examinations Following arterial trauma, an absent pulse may be mistaken for a congenitally absent pulse An absent dorsalis pedis in elderly patients may be mistaken as a sign of peripheral arterial disease Prior methods to determine presence of the Dorsalis Pedis Palpation(Stephens 1962) 4.5% Absent 40 year old men Issues Unreliable Subjective Prior methods to determine presence of the Dorsalis Pedis Dissection(Rajeshwari et. Al 2013) 9.5% Absent Issues Unhealthy subjects Prior methods to determine presence of the Dorsalis Pedis Doppler (Robertson et. Al 1990) Absent in 2% Age 15-30 Issues: Older technology Cannot determine direction of flow ○ Flow may be retrograde from the PT via the plantar arch Question Impalpable or truly absent? If absent, is it congenital or due to disease or trauma? Hypothesis A younger population along with improved technology should be more reliable to detect the dorsalis pedis artery Methods 100 young -
A Study of the Internal Diameter of Popliteal Artery, Anterior and Posterior Tibial Arteries in Cadavers
Original Research Article A study of the internal diameter of popliteal artery, anterior and posterior tibial arteries in cadavers Anjali Vishwanath Telang1,*, Mangesh Lone2, M Natarajan3 1Assistant Professor, 3Professor, Dept. of Anatomy, Seth GS Medical College, Parel, Mumbai, Maharashtra, 2Assistant Professor, Dept. of Anatomy, LTMMC, Sion, Mumbai, Maharashtra *Corresponding Author: Anjali Vishwanath Telang Assistant Professor, Dept. of Anatomy, Seth GS Medical College, Mumbai, Maharashtra Email: [email protected] Abstract Introduction: Popliteal artery is the continuation of femoral artery at adductor hiatus. It is one of the most common sites for peripheral aneurysms. It is also a common recipient site for above or below knee femoro-popliteal bypass grafts in cases of atherosclerosis. The aim was to study the internal diameter of popliteal artery, anterior tibial and posterior tibial arteries and to compare findings of the current study with previous studies and to find their clinical implications. Methods: Fifty cadavers (100 lower limbs) embalmed with 10% formalin were utilised in this study. Results: Internal diameter of popliteal artery was measured at its origin and at its termination. The diameter of popliteal artery at its origin was found to be (mean in mm ± SD) 4.7±0.9 & at its termination was 4.4±0.7. The diameter of anterior tibial artery at its origin was 3.5±1.1 & that of posterior tibial artery at its origin was 4.1±0.9. These findings were compared with the previous studies. Conclusion: Metric data of internal diameter of popliteal artery, anterior tibial artery & posterior tibial artery from the present study will be of help for vascular surgeons & radiologists. -
Anatomy and Physiologic Mechanism of the Plantar Venous Plexus
Venous outflow of the leg: Anatomy and physiologic mechanism of the plantar venous plexus John V. White, MD, Mira L. Katz, MA, RVT, Paul Cisek, MD, and Josh Kreithen, BA, Philadelphia, Pa. Purpose: Mechanisms of venous outflow from the leg and foot have not been dearly defined. The purpose of this study was to evaluate the anatomy and physiologic mechanism of the plantar venous plexus and its impact on venous drainage from the tibial veins. Methods: Fifty phlebograms that contained complete foot and calf films were reviewed. On lateral films, the number of veins in the plantar venous plexus and its tibial outflow tract were cotmted. The length and diameter of the longest vein in the plantar venous system and the length of the foot arch were measured. The ratio of the length of the plantar venous plexus to the arch length was calculated. The presence or absence of valves within the plexus was recorded. Plantar venous plexus outflow was evaluated by an duplex ultrasonographic scan of the posterior tibial, anterior tibial, and peroneal veins during intermittent external pneumatic compression of the plantar surface of the foot. Results: The plantar venous plexus was composed of one to four large veins (mean, 2.7 veins) within the plantar aspect of the foot. The diameter of these veins was 4.0 + 1.2 nun. The veins coursed diagonally from a lateral position in the forefoot to a medial position at the level of the ankle, spanning 75% of the foot arch. Prominent valves were recognized within the plantar veins in 22 of 50 patients. -
Veins of the Lower Extremity USMLE, Limited Edition > Gross Anatomy > Gross Anatomy
Veins of the Lower Extremity USMLE, Limited Edition > Gross Anatomy > Gross Anatomy KEY POINTS: Superficial veins • Cephalic vein, laterally • Basilic vein, medially • Often visible through the skin Deep veins • Typically travel with, and share the names of, the major arteries. • Often paired, meaning that, for example, two brachial veins travel side by side within the arm. BRANCH DETAILS: Deep veins • Deep plantar venous arch Drains into the posterior tibial vein • Posterior tibial vein Arises in the leg between the deep and superficial posterior muscular compartments. • Fibular (aka, peroneal) vein Arises laterally and rises to drain into the posterior tibial vein • Dorsal pedal venous arch Drains into the anterior tibial vein • Anterior tibial vein Ascends within the anterior compartment of the leg and wraps laterally around the proximal leg • Popliteal vein Formed by merger of anterior and posterior tibial veins in the posterior knee Ascends superficial to the popliteus muscle to become the femoral vein 1 / 2 • Femoral vein Travels through the adductor hiatus, through antero-medial thigh to become external iliac vein after passing under inguinal ligament. Tributaries include: - Circumflex veins - Deep femoral vein • External iliac vein Converges with the internal iliac vein to form the common iliac vein • Common iliac veins Right and left sides merge to form inferior vena cava, which returns blood to the heart Superficial Veins • Dorsal venous arch Drains the superficial tissues of the foot • Great saphenous vein Ascends along the -
The Anatomy of the Plantar Arterial Arch
Int. J. Morphol., 33(1):36-42, 2015. The Anatomy of the Plantar Arterial Arch Anatomía del Arco Plantar Arterial A. Kalicharan*; P. Pillay*; C. Rennie* & M. R. Haffajee* KALICHARAN, A.; PILLAY, P.; RENNIE, C. & HAFFAJEE, M. R. The anatomy of the plantar arterial arch. Int. J. Morphol., 33(1):36-42, 2015. SUMMARY: The plantar arterial arch provides the dominant vascular supply to the digits of the foot, with variability in length, shape, and dominant blood supply from the contributing arteries. According to the standard definition, the plantar arterial arch is formed from the continuation of the lateral plantar artery and the anastomoses between the deep branch of dorsalis pedis artery. In this study, 40 adult feet were dissected and the plantar arch with variations in shape and arterial supply was observed. The standard description of the plantar arch was observed in 55% of the specimens with variations present in 45%. Variations in terms of shape were classified into three types: Type A (10%): plantar arterial arch formed a sharp irregular curve; type B (60%): obtuse curve; type C (3%): spiral curve. Variation in the dominant contributing artery was classified into six types: type A (25%), predominance in the deep branch of dorsalis pedis artery supplying all digits; type B (5%), predominance in the lateral plantar artery supplying digits 3 and 4; and type C (20%), predominance in the deep branch of dorsalis pedis artery supplying digits 2 to 4; type D (24%), equal dominance showed; type E (10%), predominance in the lateral plantar artery supplying digits 3 to 5; and type F (21%), predominance of all digits supplied by lateral plantar artery. -
Vascular Anatomy of the Lower Limb Musculoskeletal Block - Lecture 18
Vascular anatomy of the lower limb Musculoskeletal Block - Lecture 18 Objective: ✓List the main arteries of the lower limb. ✓Describe their origin, course distribution & branches ✓List the main arterial anastomosis. ✓List the sites where you feel the arterial pulse. ✓Differentiate the veins of LL into superficial & deep Describe their origin, course & termination andtributaries Color index: Important In male’s slides only In female’s slides only Extra information, explanation Editing file Contact us: [email protected] Arteries of the lower limb: Helpful video Helpful video ● Femoral artery ➔ Is the main arterial supply to the lower limb. ➔ It is the continuation of the External Iliac artery. Beginning Relations Termination Branches *In girls slide It enters the thigh Anterior:In the femoral terminates by supplies: Lower triangle the artery is behind the passing through abdominal wall, Thigh & superficial covered only External Genitalia inguinal ligament by Skin & fascia(Upper the Adductor Canal part) (deep to sartorius) at the Mid Lower part: passes Inguinal Point behind the Sartorius. (Midway between Posterior: through the following the anterior Hip joint , separated branches: superior iliac from it by Psoas muscle, Pectineus & spine and the Adductor longus. 1.Superficial Epigastric. symphysis pubis) 2.Superficial Circumflex Medial: It exits the canal Iliac. Femoral vein. by passing through 3.Superficial External Pudendal. the Adductor Lateral: 4.Deep External Femoral nerve and its Hiatus and Pudendal. Branches becomes the 5.Profunda Femoris Popliteal artery. (Deep Artery of Thigh) Femoral A. & At the inguinal At the apex of the At the opening in the ligament: femoral triangle: Femoral V. adductor magnus: The vein lies medial to The vein lies posterior The vein lies lateral to *in boys slides the artery. -
Arteries of the Lower Limb
BLOOD SUPPLY OF LOWER LIMB Ali Fırat Esmer, MD Ankara University Faculty of Medicine Department of Anatomy Abdominal aorta Aortic bifurcation Right common iliac artery Left common iliac artery Right external Left external iliac artery iliac artery Rigt and left internal iliac arteries GLUTEAL REGION Structures passing through the suprapriform foramen Superior gluteal artery and vein Superior gluteal nerve Structures passing through the infrapriform foramen Inferior gluteal artery and vein Inferior gluteal nerve Sciatic nerve Posterior femoral cutaneous nerve Internal pudendal artery and vein Pudendal nerve • Femoral artery is the principal artery of the lower limb • Femoral artery is the continuation of the external iliac artery • External iliac artery becomes the femoral artery as it passes posterior to the inguinal ligament • Femoral artery, first enters the femoral triangle. Leaving the tirangle it passes through the adductor canal and then adductor hiatus and reaches to the popliteal fossa, where it becomes the popliteal artery Contents of the femoral triangle (from lateral to medial) • Femoral nerve (and its branches) • Saphenous nerve (sensory branch of the femoral nerve) • Femoral artery (and its several branches) • Deep femoral artery (deep artery of the thigh) and its branches in this region; medial and lateral circumflex femoral arteries and perforating branches • Femoral vein (and veins draining to its proximal part such as the great saphenous vein and deep femoral vein) • Deep inguinal lymph nodes MUSCULAR AND VASCULAR COMPARTMENTS