A Very Stable Relationship: Oil Intensity and the Timing of Peak Oil

Total Page:16

File Type:pdf, Size:1020Kb

A Very Stable Relationship: Oil Intensity and the Timing of Peak Oil A Very Stable Relationship: Oil Intensity and the Timing of Peak Oil By Christof Rühl and Tit Erker I. Introduction Discussions of peak oil are not new. Historically, they have focussed on the supply side. Fear of “running out” has been a faithful companion to the 160-year history of oil markets and, for that matter, to the history of coal preceding it.1 Humankind, however, has never exhausted a primary energy resource. Just the opposite. Since the dawn of the industrial revolution, every primary fuel has been growing. Fuel shares have shifted but global energy demand was strong enough to entice absolute growth in all of its components. That such an outcome was possible, without “running out”, is testament to the power of price incentives and the human capacity to innovate. The credit for having predicted it accurately goes to economic reasoning. Over the last decade or so, this debate has tilted toward peak energy demand. Partially, this reflects the historic record: Coal consumption, for example, has started to come down recently. This may or may not be permanent. But even if it were, it would not have been triggered by a lack of supplies.2 For the most part, however, the new focus on demand appears to be motivated by the ‘Energy Transition’, i.e. the need to explore the consequences of transforming the world’s fossil energy system into one that minimizes greenhouse gas (GHG) emissions. To conceptualize peak fuel demand in the context of the Energy Transition is not complicated: It means to accept the proposition that the binding constraint on fossil fuel consumption need not be the human ability to find, process and burn hydrocarbons. Rather, the constraint now becomes the limited (and unpriced) capacity of the atmosphere to absorb the resulting emissions. This constraint is most popularly expressed in terms of the available ’carbon budget’. From this perspective, fossil fuel consumption needs to be reined in before the carbon budget is exhausted. Absent a price for greenhouse gas emissions (actually, even to install one), limitations have to be superimposed by political fiat; inevitably, the boundary between positive analysis and normative ends becomes blurred in this strand of literature. Oil exemplifies the two poles of this debate. 1 William Jevon’s (of “Jevon’s paradox” fame) warned that the UK would lose its competitive advantage in industry because of peak coal (1865) just around the time when the first commercial oil well (1859) in the US was about to take the world in an entirely different direction. 2 Nuclear energy is the only other primary fuel where we observe a tendency for absolute growth to peter out – but again, not because of supply constraints. On the supply side, it has just come through the so-called ‘shale revolution’. There is near universal acknowledgement that technological prowess has shifted the frontiers of finding oil yet again, and so decisively that no one expects (geological) constraints over the foreseeable future. On the demand side, the transport sector, responsible for almost 60% of annual oil consumption, is attracting large attention in the decarbonisation debate.3 A flurry of studies, estimates and scenarios are available to detail how electrification and other modifications in transport may impact future oil demand. In addition to these structural aspects, the Covid-19 pandemic has provided renewed impetus to revisiting the peak oil debate. It has hit oil demand hard. Initially, the pandemic was conceived as a one-off, a transitory shock that would give rise to a rapid cyclical adjustment. The longer it lasts and the clearer its impact on the economy, the more obvious it becomes that the consequences of this shock may be far from transitory. The pandemic will cause permanent economic losses; it may even alter human behaviour, both with consequences for future oil demand growth. This paper assesses the prospects for oil demand to peak in the foreseeable future. It falls outside the two big boxes just established because it does not assume binding supply side constraints; and likewise, it makes no attempt at forecasting regulatory change in the wake of the Energy Transition. Instead, it extrapolates a broad efficiency measure, the rate of decline in oil intensity; and asks what the combination of long-term efficiency improvements with standard economic growth forecasts can tell us about the future of oil demand. In a second step we integrate the permanent damage the pandemic is estimated to inflict on global economic performance, and hence oil demand (alas, without speculating about longer term behavioural changes). Combining historic improvements in oil intensity with the not-so-transitory economic shock of the pandemic yields, ceteris paribus, a surprising result: If matching the extrapolation of regular, pre-pandemic efficiency improvements with current expectations of post-pandemic economic growth is any guide, oil demand has peaked in 2019; although economic and oil consumption growth will return after that date, it would take implausibly high economic growth rates to shift the peak further into the future. Questions about the timing of peak oil are not an esoteric exercise. It may not be widely recognized at present but a durable demand plateau or peak will have formidable consequences, including beyond oil markets. We conclude by outlining two of them, namely the impact on the structure of the global oil market and on the strategy of international oil companies (IOCs). II. A very stable relationship (a) Peak demand Oil is the largest of all primary fuels. It has been the world’s dominant fuel for almost sixty years; and although its market share has been declining from 50% in 1973 to about 33% currently, in absolute terms global oil consumption has continued to grow smoothly ever since records exist – on average 1.3% per annum since the turn of the millennium, and 1.6% over the last ten years. Oil consumption growth (and its composition) varies widely across regions.4 3 The transport sector is both highly visible and a large contributor to global GHG emissions. It accounts for 16% of total global GHG emissions and 23% of energy related GHG emissions, not counting indirect emissions (in the production of cars etc.). IPCC (2018) 4 In this note, ‘oil’ is defined as per the data source (BP 2020), and essentially as ‘all liquids’: Inland demand plus international aviation and marine bunkers and refinery fuel and loss. Consumption of biofuels is excluded; derivatives of coal and natural gas are included. 1 Figure 1: Global oil demand Global oil demand actuals 1965-2019 (Million barrels per day, Mb/d) 100 90 80 70 60 50 40 30 1965 1969 1973 1977 1981 1985 1989 1993 1997 2001 2005 2009 2013 2017 Source: BP Statistical Review of World Energy June 2020 Analytically, oil consumption growth is a function of price changes and a society’s income growth (which can be further disaggregated to incorporate population growth). In the long term they are hard to disentangle but econometric studies emphasize the role of the economy.5 For oil demand to peak or plateau in a growing economy, economic and oil consumption growth need to decouple. And for this to happen, like for any other input factor, the rate of growth of oil productivity has to exceed the rate of growth of GDP. Many of the world’s advanced economies have demonstrated that such a decoupling is indeed possible. It does, however, appear to be the result of regular efficiency gains and long term changes in the structure of the economy, rather than of deliberate policies, including policies to foster the Energy Transition. Oil consumption has peaked in a number of jurisdictions (mature economies all of them), lending further credence to the prospect of a global demand peak. OECD consumption reached its highest point so far in 2005. Within the geographic space of today’s European Union, oil consumption last year has been 18% below its 1979(!) peak – despite its economy having more than doubled in size since then. Other large economies are in a similar place. One corollary is that the sources of global demand growth have become more concentrated: two thirds of incremental consumption today originate in Asia; and, leaving aside the US in the years after the shale revolution, demand growth has for years been dominated by China, India and the Middle East. All told, oil consumption since the turn of the millennium has grown on average 3.3% p.a. outside the OECD, but declined -0.3% in the OECD, -0.7% in the EU and -2% p.a. in Japan. The decline rates are changing only slowly and over long time periods – it is a demand plateau rather than a peak.6 Figure 2: Peak oil demand (a) OECD oil demand (Mb/d) (b) EU oil demand (Mb/d) (c) Japan oil demand (Mb/d) 50 16 6.0 2005 1979 1996 15 5.5 45 14 5.0 40 13 4.5 12 4.0 35 11 3.5 30 10 3.0 9 2.5 25 8 2.0 20 7 1.5 1965 1968 1971 1974 1977 1980 1983 1986 1989 1992 1995 1998 2001 2004 2007 2010 2013 2016 2019 1965 1968 1971 1974 1977 1980 1983 1986 1989 1992 1995 1998 2001 2004 2007 2010 2013 2016 2019 1968 1971 1974 1977 1980 1983 1986 1989 1992 1995 1998 2001 2004 2007 2010 2013 2016 2019 1965 5 Literature (Krugman debate) 6 For the past ten years, average growth p.a. has been +3.0% in the Non-OECD, +0.1% in the OECD, -0.6% in the EU and -1.4% in Japan.
Recommended publications
  • Peak Oil, Peak Energy Mother Nature Bats Last
    Peak Oil, Peak Energy Mother Nature Bats Last Martin Sereno 1 Feb 2011 (orig. talk: Nov 2004) Oil is the Lifeblood of Industrial Civilization • 80 million barrels/day, 1000 barrels/sec, 1 cubic mile/year • highly energy-dense • easy to transport, store • moves goods and people • allows us to fly (there will never be a battery-operated jet plane) • digs huge holes and puts up huge buildings • ballooned our food supply (fertilize, cultivate, irrigate, transport) • our 'stuff' is made from it (iPods to the roads themselves) • we're not "addicted to oil" -- that's like saying a person has an "addiction to blood" Where Oil Comes From • raw organic material for oil (e.g., from plankton) is present in low concentrations in ‘all’ sedimentary rocks, but esp. from two warm periods 90 million and 140 million years ago • temperature rises with depth (radioactivity, Kelvin’s mistake) • oil is generated in rocks heated to 60-120 deg Celsius • rocks at this temp. occur at different depths in different places (N.B.: water depth doesn't count) • oil is ‘cracked’ to natural gas at higher temps (deeper) • abiotic oil from “crystalline basement” is negligible, if it exists • exhausted oil fields do not refill Recoverable Oil • oil must collect in a “trap” to be practically recoverable • a trap is a permeable layer capped by an impermeable one • obvious traps: anticlines, domes (“oil in those hills”) • less obvious traps found by seismic imaging: turned up edges of salt domes, near buried meteorite crater (Mexico) • harder-to-get-at traps: shallow continental shelf (GOM) • even-harder-to-get-at traps: edge continental slope (Macondo, resevoir pressure: 12,000 pounds [6 tons] per sq inch) • essentially no oil in basaltic ocean floor or granitic basement (Used to be!) Second Largest Oilfield Cantarell used to supply 2% of world oil (water) Guzman, A.E.
    [Show full text]
  • A Comparative History of Oil and Gas Markets and Prices: Is 2020 Just an Extreme Cyclical Event Or an Acceleration of the Energy Transition?
    April 2020 A Comparative History of Oil and Gas Markets and Prices: is 2020 just an extreme cyclical event or an acceleration of the energy transition? Introduction Natural gas markets have gone through an unprecedented transformation. Demand growth for this relatively clean, plentiful, versatile and now relatively cheap fuel has been increasing faster than for other fossil fuels.1 Historically a `poor relation’ of oil, gas is now taking centre stage. New markets, pricing mechanisms and benchmarks are being developed, and it is only natural to be curious about the direction these developments are taking. The oil industry has had a particularly rich and well recorded history, making it potentially useful for comparison. However, oil and gas are very different fuels and compete in different markets. Their paths of evolution will very much depend on what happens in the markets for energy sources with which they compete. Their history is rich with dominant companies, government intervention and cycles of boom and bust. A common denominator of virtually all energy industries is a tendency towards natural monopoly because they have characteristics that make such monopolies common. 2 Energy projects tend to require multibillion – often tens of billions of - investments with long gestation periods, with assets that can only be used for very specific purposes and usually, for very long-time periods. Natural monopolies are generally resolved either by new entrants breaking their integrated market structures or by government regulation. Historically, both have occurred in oil and gas markets.3 As we shall show, new entrants into the oil market in the 1960s led to increased supply at lower prices, and higher royalties, resulting in the collapse of control by the major oil companies.
    [Show full text]
  • The Politics of Oil
    SYLLABUS PS 399 (CRN 58533): The Politics of Oil Oregon State University, School of Public Policy Spring 2012 (4 credits) Tue & Thur 4-5:50pm, Gilkey 113 Instructor: Tamas Golya Office: Gilkey 300C Office Hours: Tue & Thur 10-11am Phone (during office hours): 541-737-1352 Email: [email protected] “The American Way of Life is not negotiable.” Dick Cheney, Former US Vice President “The species Homo sapiens is not going to become extinct. But the subspecies Petroleum Man most certainly is.” Colin Campbell, Founder of the Association for the Study of Peak Oil Course Description The world’s economic and political developments of the last century played out against the backdrop of a steadily rising supply of energy, especially oil. There are signs that this period of “easy energy” is coming to an end, turning energy into a major economic and political issue in its own right. Peak Oil is a term used by geologists to describe the point in time at which the world’s annual conventional oil production reaches a maximum after which it inevitably declines. Recent evidence suggests that we may pass this peak in this decade. In a broader sense, Peak Oil also stands for the economic, political, and societal effects of a dramatically changing energy supply. These effects will create unprecedented problems, risks and opportunities for policy makers as well as for consumers and businesses. In part due to higher oil prices, the US has begun to catch up to this issue, as evidenced by the founding of a Peak Oil Caucus in the House of Representatives in 2005 and by the demand of former President Bush to find ways to cure “America’s addiction to oil”.
    [Show full text]
  • The Impact of the Decline in Oil Prices on the Economics, Politics and Oil Industry of Venezuela
    THE IMPACT OF THE DECLINE IN OIL PRICES ON THE ECONOMICS, POLITICS AND OIL INDUSTRY OF VENEZUELA By Francisco Monaldi SEPTEMBER 2015 B | CHAPTER NAME ABOUT THE CENTER ON GLOBAL ENERGY POLICY The Center on Global Energy Policy provides independent, balanced, data-driven analysis to help policymakers navigate the complex world of energy. We approach energy as an economic, security, and environmental concern. And we draw on the resources of a world-class institution, faculty with real-world experience, and a location in the world’s finance and media capital. Visit us atenergypolicy. columbia.edu facebook.com/ColumbiaUEnergy twitter.com/ColumbiaUEnergy ABOUT THE SCHOOL OF INTERNATIONAL AND PUBLIC AFFAIRS SIPA’s mission is to empower people to serve the global public interest. Our goal is to foster economic growth, sustainable development, social progress, and democratic governance by educating public policy professionals, producing policy-related research, and conveying the results to the world. Based in New York City, with a student body that is 50 percent international and educational partners in cities around the world, SIPA is the most global of public policy schools. For more information, please visit www.sipa.columbia.edu THE IMPACT OF THE DECLINE IN OIL PRICES ON THE ECONOMICS, POLITICS AND OIL INDUSTRY OF VENEZUELA By Francisco Monaldi* SEPTEMBER 2015 *Francisco Monaldi is Baker Institute Fellow in Latin American Energy Policy and Adjunct Professor of Energy Economics at Rice University, Belfer Center Associate in Geopolitics of Energy at the Harvard Kennedy School, Professor at the Instituto de Estudios Superiores de Administracion (IESA) in Caracas, Venezuela, and Founding Director of IESA’s Center on Energy and the Environment.
    [Show full text]
  • The Current Peak Oil Crisis
    PEAK ENERGY, CLIMATE CHANGE, AND THE COLLAPSE OF GLOBAL CIVILIZATION _______________________________________________________ The Current Peak Oil Crisis TARIEL MÓRRÍGAN PEAK E NERGY, C LIMATE C HANGE, AND THE COLLAPSE OF G LOBAL C IVILIZATION The Current Peak Oil Crisis TARIEL MÓRRÍGAN Global Climate Change, Human Security & Democracy Orfalea Center for Global & International Studies University of California, Santa Barbara www.global.ucsb.edu/climateproject ~ October 2010 Contact the author and editor of this publication at the following address: Tariel Mórrígan Global Climate Change, Human Security & Democracy Orfalea Center for Global & International Studies Department of Global & International Studies University of California, Santa Barbara Social Sciences & Media Studies Building, Room 2006 Mail Code 7068 Santa Barbara, CA 93106-7065 USA http://www.global.ucsb.edu/climateproject/ Suggested Citation: Mórrígan, Tariel (2010). Peak Energy, Climate Change, and the Collapse of Global Civilization: The Current Peak Oil Crisis . Global Climate Change, Human Security & Democracy, Orfalea Center for Global & International Studies, University of California, Santa Barbara. Tariel Mórrígan, October 2010 version 1.3 This publication is protected under the Creative Commons (CC) "Attribution-NonCommercial-ShareAlike 3.0 Unported" copyright. People are free to share (i.e, to copy, distribute and transmit this work) and to build upon and adapt this work – under the following conditions of attribution, non-commercial use, and share alike: Attribution (BY) : You must attribute the work in the manner specified by the author or licensor (but not in any way that suggests that they endorse you or your use of the work). Non-Commercial (NC) : You may not use this work for commercial purposes.
    [Show full text]
  • Oil Depletion and the Energy Efficiency of Oil Production
    Sustainability 2011, 3, 1833-1854; doi:10.3390/su3101833 OPEN ACCESS sustainability ISSN 2071-1050 www.mdpi.com/journal/sustainability Article Oil Depletion and the Energy Efficiency of Oil Production: The Case of California Adam R. Brandt Department of Energy Resources Engineering, Green Earth Sciences 065, 367 Panama St., Stanford University, Stanford, CA 94305-2220, USA; E-Mail: [email protected]; Fax: +1-650-724-8251 Received: 10 June 2011; in revised form: 1 August 2011 / Accepted: 5 August 2011 / Published: 12 October 2011 Abstract: This study explores the impact of oil depletion on the energetic efficiency of oil extraction and refining in California. These changes are measured using energy return ratios (such as the energy return on investment, or EROI). I construct a time-varying first-order process model of energy inputs and outputs of oil extraction. The model includes factors such as oil quality, reservoir depth, enhanced recovery techniques, and water cut. This model is populated with historical data for 306 California oil fields over a 50 year period. The model focuses on the effects of resource quality decline, while technical efficiencies are modeled simply. Results indicate that the energy intensity of oil extraction in California increased significantly from 1955 to 2005. This resulted in a decline in the life-cycle EROI from ≈6.5 to ≈3.5 (measured as megajoules (MJ) delivered to final consumers per MJ primary energy invested in energy extraction, transport, and refining). Most of this decline in energy returns is due to increasing need for steam-based thermal enhanced oil recovery, with secondary effects due to conventional resource depletion (e.g., increased water cut).
    [Show full text]
  • Peak Oil: the Future of Oil and How to Prepare for It Norbert Steinbock Regis University
    Regis University ePublications at Regis University All Regis University Theses Spring 2009 Peak Oil: the Future of Oil and How to Prepare for It Norbert Steinbock Regis University Follow this and additional works at: https://epublications.regis.edu/theses Recommended Citation Steinbock, Norbert, "Peak Oil: the Future of Oil and How to Prepare for It" (2009). All Regis University Theses. 552. https://epublications.regis.edu/theses/552 This Thesis - Open Access is brought to you for free and open access by ePublications at Regis University. It has been accepted for inclusion in All Regis University Theses by an authorized administrator of ePublications at Regis University. For more information, please contact [email protected]. Regis University Regis College Honors Theses Disclaimer Use of the materials available in the Regis University Thesis Collection (“Collection”) is limited and restricted to those users who agree to comply with the following terms of use. Regis University reserves the right to deny access to the Collection to any person who violates these terms of use or who seeks to or does alter, avoid or supersede the functional conditions, restrictions and limitations of the Collection. The site may be used only for lawful purposes. The user is solely responsible for knowing and adhering to any and all applicable laws, rules, and regulations relating or pertaining to use of the Collection. All content in this Collection is owned by and subject to the exclusive control of Regis University and the authors of the materials. It is available only for research purposes and may not be used in violation of copyright laws or for unlawful purposes.
    [Show full text]
  • Urban Aquaculture
    Urban Aquaculture Water-sensitive transformation of cityscapes via blue-green infrastructures vorgelegt von Dipl.-Ing. Grit Bürgow geb. in Berlin von der Fakultät VI Planen Bauen Umwelt der Technischen Universität Berlin zur Erlangung des akademischen Grades Doktor der Ingenieurwissenschaften - Dr.-Ing. - genehmigte Dissertation Promotionsausschuss: Vorsitzende: Prof. Undine Gisecke Gutachter: Prof. Dr.-Ing. Stefan Heiland Gutachterin: Prof. Dr.-Ing. Angela Million (Uttke) Gutachterin: Prof. Dr. Ranka Junge Tag der wissenschaftlichen Aussprache: 25. November 2013 Berlin 2014 Schriftenreihe der Reiner Lemoine-Stiftung Grit Bürgow Urban Aquaculture Water-sensitive transformation of cityscapes via blue-green infrastructures D 83 (Diss. TU Berlin) Shaker Verlag Aachen 2014 Bibliographic information published by the Deutsche Nationalbibliothek The Deutsche Nationalbibliothek lists this publication in the Deutsche Nationalbibliografie; detailed bibliographic data are available in the Internet at http://dnb.d-nb.de. Zugl.: Berlin, Techn. Univ., Diss., 2013 Titelfoto: (c) Rayko Huß Copyright Shaker Verlag 2014 All rights reserved. No part of this publication may be reproduced, stored in a retrieval system, or transmitted, in any form or by any means, electronic, mechanical, photocopying, recording or otherwise, without the prior permission of the publishers. Printed in Germany. ISBN 978-3-8440-3262-8 ISSN 2193-7575 Shaker Verlag GmbH • P.O. BOX 101818 • D-52018 Aachen Phone: 0049/2407/9596-0 • Telefax: 0049/2407/9596-9 Internet: www.shaker.de
    [Show full text]
  • 01 Front–054
    Energy Myths and Realities Energy Myths and Realities: Bringing Science to the Energy Policy Debate Vaclav Smil The AEI Press Publisher for the American Enterprise Institute WASHINGTON, D.C. Distributed by arrangement with the Rowman & Littlefield Publishing Group, 4501 Forbes Boulevard, Suite 200, Lanham, Maryland 20706. To order call toll free 1-800-462-6420 or 1-717-794-3800. For all other inquiries please contact AEI Press, 1150 Seventeenth Street, N.W. Washington, D.C. 20036 or call 1-800-862-5801. Library of Congress Cataloging-in-Publication Data Smil, Vaclav. Energy myths and realities : bringing science to the energy policy debate / Vaclav Smil. p. cm. Includes bibliographical references and index. ISBN-13: 978-0-8447-4328-8 ISBN-10: 0-8447-4328-3 1. Renewable energy sources. 2. Energy policy. I. Title. TJ808.S639 2010 333.79'4—dc22 2010009437 14 13 12 11 10 1 2 3 4 5 6 7 © 2010 by the American Enterprise Institute for Public Policy Research, Wash- ington, D.C. All rights reserved. No part of this publication may be used or repro- duced in any manner whatsoever without permission in writing from the American Enterprise Institute except in the case of brief quotations embodied in news articles, critical articles, or reviews. The views expressed in the publications of the American Enterprise Institute are those of the authors and do not neces- sarily reflect the views of the staff, advisory panels, officers, or trustees of AEI. Printed in the United States of America Homines libenter quod volunt credunt Men believe what they want to —Publius Terentius v Contents LIST OF FIGURES xi KEY TO UNITS OF MEASURE xiii INTRODUCTION 1 Lost Opportunities 2 Persistent Myths 6 Challenging the Myths 11 PART I: LESSONS FROM THE PAST 15 1.
    [Show full text]
  • Impact of U.S. Shale Oil Revolution on the Global Oil Market, the Price of Oil & Peak Oil by Mamdouh G
    International Association for Energy Economics | 27 Impact of U.S. Shale Oil Revolution on the Global Oil Market, the Price of Oil & Peak Oil By Mamdouh G. Salameh* Introduction Much has been written about the United States shale oil revolution. Some sources like the Internation- al Energy Agency (IEA) went as far as to predict that the United States will overtake Saudi Arabia and Russia to become the world’s biggest oil producer by 2020 and energy self-sufficient by 2030.1 Others called it a game changer with a new emerging balance of power in the global oil market. Yet others were in such a state of euphoria about the success of American shale oil production to say that it may deny OPEC the power to set global oil prices and that the world oil industry won’t be the same in the wake of shale. Some also claimed that the idea of peak oil had gone in flames. The above claims aside, given recent increases in U.S. shale oil and gas production, it is now clear that these resources might play some role in non-OPEC supply prospects. However, it begs the questions: what is the potential contribution of shale oil to future global oil sup- ply? Will the high development costs, and environmental impacts and challenges affect this potential? And will it be possible to replicate the U.S. success story globally? U.S. shale oil production is projected to increase from about 1 million barrels a day (mbd) in 2012 to 2 mbd in 2020 possibly reaching 3 mbd by 2025.2 However, this increase would hardly offset the normal annual depletion rate of 3%-5% in U.S.
    [Show full text]
  • CARBON CAPITALISM and the PROBLEM of ENERGY* John Urry
    CARBON CAPITALISM AND THE PROBLEM OF ENERGY* John Urry This paper examines how contemporary mobile societies are built upon the energy resource of oil. This dependence sets up many difficulties and con- flicts. And it is especially highlighted in the new century as oil supplies would appear to be getting more uncertain and expensive. Capitalist societies face many problems because of their dependence upon a single and limited energy resource. Keywords: oil energy, cars, infrastructure, systems taxation. Places of high carbon excess have mushroomed in the past 30 or so neo-liberal years. The speculative development of places like Dubai was made possible by large infra- structural projects involving celebrity architects. The associated new transport systems are typically paid for out of public money. Building such places often involves the prof- ligate consumption of water, power and building materials in order to build on re- claimed land (Macao, Dubai) or in deserts (Las Vegas, Abu Dhabi). Such sites are highly commercialized with many simulated environments, more ‘real’ than the original from which they are copied. Gates, often digitized, prevent the entry and exit of local people and those visitors who do not have signs of good credit. Norms of behavior are unregulated by family/neighborhood. They are beyond neighborhood with liminal modes of consumption and only pleasure and no guilt unless insufficient consumption occurs. Moreover, many such places lie on or near beaches (and/or deserts). In Dubai mas- sive construction projects have enlarged the ‘beach’ through many ‘artificial’ islands. On occasions whole islands provide secure sites for such excess consumption.
    [Show full text]
  • Development of Hubbert's Peak Oil Theory and Analysis of Its
    Development of Hubbert’s Peak Oil Theory and Analysis of its Continued Validity for U.S. Crude Oil Production Torren Peebles Professor Jay Ague & Professor Michael Oristaglio 5 May, 2017 A Senior Essay presented to the faculty of the Department of Geology and Geophysics, Yale University, in partial fulfillment of the Bachelor's Degree. In presenting this essay in partial fulfillment of the Bachelor’s Degree from the Department of Geology and Geophysics, Yale University, I agree that the department may make copies or post it on the departmental website so that others may better understand the undergraduate research of the department. I further agree that extensive copying of this thesis is allowable only for scholarly purposes. It is understood, however, that any copying or publication of this thesis for commercial purposes or financial gain is not allowed without my written consent. Torren Peebles, 5 May, 2017 ABSTRACT In this paper we review the development of M. King Hubbert’s basic petroleum resource depletion model, the Hubbert curve, that became the foundation for the variety of curve fitting techniques that are still widely used today. We then draw on current literature to assess the strengths and weaknesses of such models, before assessing their validity for continued use in the United States and analyzing whether or not U.S. crude oil production still follows the curve that Hubbert gained infamy for. Specifically, we focus on the impact that advances in petroleum production technology such as hydraulic fracturing and Enhanced Oil Recovery (EOR) techniques have had on the U.S. production cycle and test derivations of Hubbert’s original model that might better approximate the impacts these advances have had.
    [Show full text]