Thesis Reference
Total Page:16
File Type:pdf, Size:1020Kb
Thesis Influence of Hydrogen-bonding on dynamical properties of ionic liquids MORA CARDOZO, Juan Francisco Abstract Ionic liquids (ILs) are liquids composed entirely of ions, therefore they screen every charged perturbation and present ionic conductivity. Recent studies focus in particular on the so-called room temperature ionic liquids (RTILs), that are organic/inorganic salts with melting point or glass transition below 100 C, whose chemical-physics properties are greatly affected by their ionic character. The dissociation of molecules into ions gives origin to an interplay between multiple interactions such as Coulomb forces, dispersion forces and hydrogen bonding (HB). The latter is crucial for the structural organisation of the liquids, which furthermore is intertwined with proton conduction, a key feature for applications in electrochemical energy conversion devices. In this thesis we show how HB influences the structure, dynamics and proton conduction of prototypical ILs. Reference MORA CARDOZO, Juan Francisco. Influence of Hydrogen-bonding on dynamical properties of ionic liquids. Thèse de doctorat : Univ. Genève, 2019, no. Sc. 5365 DOI : 10.13097/archive-ouverte/unige:121811 URN : urn:nbn:ch:unige-1218113 Available at: http://archive-ouverte.unige.ch/unige:121811 Disclaimer: layout of this document may differ from the published version. 1 / 1 UNIVERSITÉ DE GENÈVE FACULTÉ DES SCIENCES Section de Physique Department of Quantum Matter Physics Prof. Christian Rüegg PAUL SCHERRER INSTITUTE Laboratory for Neutron Scattering and Imaging Dr. Jan Embs Influence of Hydrogen-bonding on dynamical properties of ionic liquids THÈSE présentée à la Faculté des Sciences de l’Université de Genève pour obtenir le grade de Docteur ès Sciences, mention Physique par Juan Francisco Mora Cardozo de Bogota (Colombie) Thèse No. 5365 GENÈVE Atelier de reproduction de la Section de Physique 2019 UNIVERSITÉ DE GENÈVE FACULTÉ DES SCIENCES Section de Physique Department of Quantum Matter Physics Prof. Christian Rüegg PAUL SCHERRER INSTITUTE Laboratory for Neutron Scattering and Imaging Dr. Jan Embs Influence of Hydrogen-bonding on dynamical properties of ionic liquids THÈSE présentée à la Faculté des Sciences de l’Université de Genève pour obtenir le grade de Docteur ès Sciences, mention Physique par Juan Francisco Mora Cardozo de Bogota (Colombie) Thèse No. 5365 GENÈVE Atelier de reproduction de la Section de Physique 2019 ii He who knows nothing, fears nothing. — Hermes Ortiz To my parents: Gerardo Mora Torres and Gloria Inés Cardozo Gómez Abstract Ionic liquids (ILs) are liquids composed entirely of ions, therefore they screen every charged perturbation and present ionic conductivity. Recent studies focus in particular on the so-called room temperature ionic liquids (RTILs), that are organic/inorganic salts with melting point or glass transition below 100 ±C, whose chemical-physics properties are greatly affected by their ionic character. The dissociation of molecules into ions gives origin to an interplay be- tween multiple interactions such as Coulomb forces, dispersion forces and hydrogen bonding (HB). The latter is crucial for the structural organisation of the liquids, which furthermore is intertwined with proton conduction, a key feature for applications in electrochemical energy conversion devices. In this thesis we show how HB influences the structure, dynamics and proton conduction of prototypical ILs. Because of their their labile (acidic) proton, most of the efforts in this thesis were devoted to ammonium based ILs. However, methylation of imidazolium-based ILs also has a strong impact on the HB formation ability of these liquids. This is reflected in an increment of viscosity and in a decrement of electrical conductivity of methylated species. Our study relies on the combination of two complementary methods: Computer simula- tions and neutron scattering experiments. By means of density functional computations we optimized the structure of single ions, neutral ion pairs, small ionic clusters, calculated cohesion energies, characterized the HB’s geometry and computed the frequency of their stretching modes. This information was used to optimize rigid-ion, fixed-topology empirical force fields, which, in a second step, were used to perform classical molecular dynamics simulations. Using the generated trajectories, we calculated macroscopic properties of the liquids such as self-diffusion coefficients, electric conductivity, we estimated the H-bond life time, we computed radial distribution functions, dynamical structure factors and several correlation functions. When possible, we compared the latter with experimentally obtained neutron scattering spectra of the ILs. The neutron scattering part of our investigations included backscattering experiments and iv quasi-elastic neutron scattering experiments with and without polarization analysis. The ILs considered in our study are hydrogen-rich materials, a property which makes them suitable for neutron spectroscopy. Neutron scattering on selectively deuterated samples, in particular, allowed us to focus on specific dynamical modes of the samples, such as those involving the labile proton of ammonium based ILs. The different dynamical processes were analyzed by models based on stochastic motion, thus diffusion coefficients, confinement radii, activation energies of each process were obtained. Force fields used in our simulations were optimized for structural properties, not for dy- namical features such as diffusion. The computed properties did not quantitatively coincide with the experimentally determined parameters. However, the temperature dependence of several properties was reproduced. In our search for enhanced conductivity in ILs, we found that our structural optimization approach was very useful to study half-neutralized diamine ILs, which furthermore are rich in hydrogen and therefore suitable for future neutron scatter- ing experiments. In these liquids, non-vehicular proton diffusion was reported and measured by means of pulsed-field gradient-nuclear magnetic resonance (PFG-NMR), but the exact mechanism for the enhanced conductivity is still under debate. In this thesis we present the results of extensive simulations of a family of diamine based ILs, where the idea of ions paths where the proton could jump, overcoming a modest energy barrier, was confirmed. This thesis validates the combination of simulations and neutron experiments as a pow- erful synergetic tool to explore the influence of H-bonding on the microscopical dynamics of ILs and its effects on their macroscopic properties. v Résumé Les liquides ioniques (LI) sont des liquides entièrement composés d’ions, ils masquent donc toute perturbation portant une charge et présentent une conductivitéionique. Des études récentes portent notamment sur les liquides ioniques à température ambiante (LITA), qui sont des sels organiques/inorganiques avec un point de fusion ou une transition vitreuse inférieure à 100 ±C et dont les propriétés physico-chimiques sont grandement affectées par leur caractère ionique. La dissociation des molécules en ions donne lieu à une interaction entre de multiples phénomènes telles que forces de Coulomb, forces de dispersion et liaisons hydrogène (LH). Ces dernières sont cruciales pour l’organisation structurale des liquides, qui est en outre liée à la conduction protonique, une caractéristique essentielle pour les applications dans les dispositifs de conversion d’énergie électrochimique. Dans cette thèse, nous démontrons comment les LH influencent la structure, la dynamique et la conduction protonique de LI prototypiques. En raison de leur proton labile (acide), la plupart des efforts de cette thèse ont été consacrés aux LI à base d’ammonium. Cependant, la méthylation des LI à base d’imidazolium a également un fort impact sur la capacité de formation de LH dans ces liquides. Cela se traduit par une viscosité accrue ainsi qu’une perte de conductivité électrique des espèces méthylées. Notre étude repose sur la combinaison de deux méthodes complémentaires : Simulations sur ordinateur et expériences de diffusion neutronique. Au moyen de la théorie de la fonctionnelle de la densité, nous avons optimisé la structure d’ions simples, de paires d’ions neutres et de petits clusters ioniques, puis calculé les énergies de cohésion, caractérisé la géométrie des LH et calculé la fréquence de leurs modes d’étirement. Ces informations ont été utilisées pour optimiser des champs de force empiriques à ions rigides et de topologie fixe, qui, dans un deuxième temps, ont été utilisés pour des simulations classiques de dynamique moléculaire. En utilisant les trajectoires générées, nous avons calculé les propriétés macroscopiques des liquides telles que les coefficients d’autodiffusion ainsi que la conductivité électrique. Nous avons estimé la durée de vie des LH et avons calculé les fonctions de distribution radiale, les facteurs de structure dynamique et plusieurs fonctions de corrélation. Dans la mesure vi du possible, nous avons comparé ces derniers à des spectres obtenus lors d’expériences de diffusion neutronique sur des LI. La partie de diffusion neutroniques de nos recherches comprenait des expériences de ré- trodiffusion ainsi que des expériences de diffusion quasi-élastique avec et sans analyse de polarisation. Les LI considérés dans notre étude sont des matériaux riches en hydrogène, une propriété qui les rend appropriés pour la spectroscopie neutronique. La diffusion neutronique sur des échantillons sélectivement deutérés