Determining the 95% Confidence Interval of Arbitrary Non-Gaussian Probability Distributions

Total Page:16

File Type:pdf, Size:1020Kb

Determining the 95% Confidence Interval of Arbitrary Non-Gaussian Probability Distributions XIX IMEKO World Congress Fundamental and Applied Metrology September 6−11, 2009, Lisbon, Portugal DETERMINING THE 95% CONFIDENCE INTERVAL OF ARBITRARY NON-GAUSSIAN PROBABILITY DISTRIBUTIONS France Pavlovčič, Janez Nastran, David Nedeljković University of Ljubljana, Faculty of Electrical Engineering, Ljubljana, Slovenia E-mail: [email protected], [email protected], [email protected] Abstract − Measurements are nowadays permanent at- drift, the time drift, and the resolution, all have the rectan- tendants of scientific research, health, medical care and gular distribution. Sometimes also the A-type uncertainties treatment, industrial development, safety and even global do not match with the normal distribution as they are result economy. All of them depend on accurate measurements of regulated quantities, or are affected by the resolution of and tests, and many of these fields are under the legal me- measuring device. In the latter case the probability distribu- trology because of their severity. How the measurement is tion consists of two Dirac functions, one at the lower meas- accurate, is expressed by uncertainty, which is obtained by urement reading and the other at the upper measurement multiplication of standard deviations by coverage factors to reading regarding the resolution. If the distribution is un- increase trustfulness in the measured results. These coverage known the coverage factor is calculated from Chebyshev's factors depend on degree of freedom, which is the function inequality [2] and is 4.472 for the 95% confidence interval. of the number of implied repetitions of measurements, and The uncertainty, the extended or the standard one, does not therefore the reliability of the results is increased. The stan- stand by itself, but contributes its portion to a combined un- dard coverage factor is 1.96 for normal (Gaussian) distribu- certainty. The probability distribution, which corresponds to tions or near-Gaussian distributions, and the obtained ex- the combined uncertainty, is the convolution of the contrib- panded uncertainty has the 95% statistical probability. In uting probability distributions. The convolution of two rec- general, it is not possible to achieve the 95% confidence in- tangular distributions gives the trapezoidal distribution, or in terval by using the standard coverage factor 1.96, neverthe- some cases the triangular distribution, and the next rectan- less of the degree of freedom. The present paper describes gular distribution convoluted to the trapezoidal or to the tri- the method of estimating the expanded uncertainty by an al- angular distribution results in the distribution with the gorithm of this model based on the 95% confidence interval square dependent tails, and the further rectangular distribu- of any probability distribution of any shape, dealing with the tions lead to the distribution with the polynomial dependent A-type or the B-type uncertainty. Furthermore the coverage tails – an arrow-point shape, as defined in this paper. By factor is determined due to the 95% confidence interval of further convolutions, the resulted distribution tends toward the actual probability distribution. The algorithm success- the normal distribution. Nevertheless, there are some not fully copes with adding two or more uncertainties with "well-behaved probability distributions" as quoted by the mathematical properties of sums, and is established in ac- standard [1] to cause the coverage probability of less than cordance with the standards and guides. The model is intro- 95% by using standard coverage factor. Hence, very often duced in procedures carried out in the calibration laboratory. we are to deal with distributions with the large probability around the mean values of measured quantity with some ex- Keywords: coverage factor, distribution shape coeffi- cessive, but still reliable values. The tails of such distribu- cient, uncertainty. tions are fatter than the tails of the normal distribution and the coverage factor must be greater than 1.96 to achieve the 1. BASIC INFORMATION 95% confidence interval. There are several sources of uncertainties with the rec- The expanded uncertainty is calculated according to the tangular probability distributions, and when combined the standard EA-4/02 [1] as the multiplication of the standard resulted probability is either trapezoidal, triangular. The coverage factor 1.96 with the standard uncertainty when the rectangular, trapezoidal and triangular probability are dis- degree of freedom is approaching to infinite value. This cussed in the standard EA-4/02 [1], and further on U-shaped standard also points out the necessity to determine the con- distribution is dealt in NIS3003 [3] used with sinus wave fidence interval of the 95% coverage probability of any dis- measuring signal, but the other distributions and further tribution although it is not normal or Gaussian and further- convolutions of these distributions are rarely described in more it can be far from being normal that is being non- literature. There is an algorithm of combining the normal Gaussian. To see the problem, we must be aware of dealing distributions and the rectangular distributions only, de- with several kinds of distributions not only with the normal scribed in the literature [4]. The symmetrical impulse meas- distribution. Namely, the distributions of the B-type uncer- uring signal is very common in measuring systems, for in- tainties are mostly not normal, for instance the temperature stance the measurement of the contact resistance, the tem- perature measurement of the resistance temperature sensors with the DC current and several measurements where the in- 5.0 fluence of hysteresis is being avoided. This measuring signal A gives the symmetrical Dirac shaped distribution. 4.0 Gaussian 2. THE CONTRIBUTING DISTRIBUTIONS 3.0 95%<P <100% P =100% C B The measured signal is continuous function depended on 2.0 Gaussian one independent variable, such as time or a counter. Its range has the supremum and the infimum, which are the 1.0 P <95% EA-4/02 NIS 3003 trapezium bounds of the domain of definition of the corresponding shaped U shaped Coverage factor (1.96×C) over standard deviation standard over (1.96×C) factor Coverage distribution. The upper and the lower bounds are finite val- 0.0 012345678unknown arrow triangular rectangular V shaped U shaped Dirac shaped shaped ues. Amplitude A is defined as the maximum of the absolute Distributions values of the difference between the mean value of the measured signal throughout its whole definition interval and Fig. 1: The cover factors of several distributions and statistical the lower and the upper bounds respectively. The corre- confidence of the acquired data interval with the following legend: sponding kind of distributions follows by the following A ... the cover factors of the 100% confidence level deter- equation: mined by (1) and (4), B ... the cover factors of the 95% confidence level using the +∞ + A presented model and so far calculated by (9), ∫∫p(X ) ⋅ dX = p(X ) ⋅ dX =1 (1) C ... the cover factors of the 95% confidence level calcu- −∞ − A lated by integration (2). We are looking for the coverage factor ˆ of any distribu- K There is no problem to determine the coverage factor of tion, applied to the standard deviation, which gives the 95% the probability distribution defined by the probability den- confidence interval as follows: sity p(X) described by the analytic function, by the tabled +Kˆ ⋅σ values or by the geometrical definition. But, determining the p(X ) ⋅ dX ≥ 0.95 (2) coverage factor out of statistically acquired data, we have to ∫ establish the model, which solution gives results within the −Kˆ ⋅σ mentioned area with the probability levels from 95% up to at the infinite degree of freedom. 100%. The solution given by the presented model is one of There are upper limits of this coverage factor as follows: many possible solutions, and it is shown in Fig. 1 as the • any, even unknown distribution corresponds to Cheby- function (B). shev's inequality [2], therefore: 3. THE KURTOSIS AND MODELLING THE 1 COVERAGE FACTOR Kˆ ≤ = 20 (3) 1− P P=0.95 The kurtosis is the parameter of the descriptive statistics, which gives information about the probability distributions • any, even unknown distribution with the finite upper and of acquired data that are created by our measurements. It is lower bounds corresponds to (1), therefore according to the classical measure of non-gaussianity, and it expresses (1) and (2), the upper limit of the coverage factor is: the similarity to the normal or Gaussian distribution. The A distribution shape is quantified by it, but the mapping of the Kˆ ≤ (4) set of the shapes to the set of their kurtosis numerical values σ is surjection. There is no rule to get the distribution shape where the equality is present only, when the cover factor of out of the kurtosis. From the kurtosis, it can be concluded the 100% confidence level is considered. only that: The coverage factor of each known distribution is cal- • a certain distribution is peaked around its mean and have culated by using the (2). The results of the calculation for the fat tails – leptokurtic distributions; the dealt distributions are presented in Fig. 1 as two func- • it is flat (could be the rectangular distribution) or even tions: the first one is the function (C), which is calculated concave (could be the U-shaped distribution) with the for the 95% probability level by (2), and the second one is thin tails or without them – platykurtic distributions; the function (A) for the 100% probability level calculated by • it could be very similar to the normal distribution – (1) and (4). The upper limits are also shown in this figure: mesokurtic distributions. the maximum of the function (C) for the 95% probability The kurtosis is the fourth standardized moment k about level of an unknown distribution due to Chebyshev's ine- 4 the mean, and is defined as the quotient of the fourth mo- quality due to (3).
Recommended publications
  • 2.1 Introduction Civil Engineering Systems Deal with Variable Quantities, Which Are Described in Terms of Random Variables and Random Processes
    2.1 Introduction Civil Engineering systems deal with variable quantities, which are described in terms of random variables and random processes. Once the system design such as a design of building is identified in terms of providing a safe and economical building, variable resistances for different members such as columns, beams and foundations which can sustain variable loads can be analyzed within the framework of probability theory. The probabilistic description of variable phenomena needs the use of appropriate measures. In this module, various measures of description of variability are presented. 2. HISTOGRAM AND FREQUENCY DIAGRAM Five graphical methods for analyzing variability are: 1. Histograms, 2. Frequency plots, 3. Frequency density plots, 4. Cumulative frequency plots and 5. Scatter plots. 2.1. Histograms A histogram is obtained by dividing the data range into bins, and then counting the number of values in each bin. The unit weight data are divided into 4- kg/m3 wide intervals from to 2082 in Table 1. For example, there are zero values between 1441.66 and 1505 Kg / m3 (Table 1), two values between 1505.74 kg/m3 and 1569.81 kg /m3 etc. A bar-chart plot of the number of occurrences in each interval is called a histogram. The histogram for unit weight is shown on fig.1. Table 1 Total Unit Weight Data from Offshore Boring Total unit Total unit 2 3 Depth weight (x-βx) (x-βx) Depth weight Number (m) (Kg / m3) (Kg / m3)2 (Kg / m3)3 (m) (Kg / m3) 1 0.15 1681.94 115.33 -310.76 52.43 1521.75 2 0.30 1906.20 2050.36 23189.92 2.29 1537.77
    [Show full text]
  • Stat 345 - Homework 3 Chapter 4 -Continuous Random Variables
    STAT 345 - HOMEWORK 3 CHAPTER 4 -CONTINUOUS RANDOM VARIABLES Problem One - Trapezoidal Distribution Consider the following probability density function f(x). 8 > x+1 ; −1 ≤ x < 0 > 5 > <> 1 ; 0 ≤ x < 4 f(x) = 5 > 5−x ; 4 ≤ x ≤ 5 > 5 > :>0; otherwise a) Sketch the PDF. b) Show that the area under the curve is equal to 1 using geometry. c) Show that the area under the curve is equal to 1 by integrating. (You will have to split the integral into pieces). d) Find P (X < 3) using geometry. e) Find P (X < 3) with integration. Problem Two - Probability Density Function Consider the following function f(x), where θ > 0. 8 < c (θ − x); 0 < x < θ f(x) = θ2 :0; otherwise a) Find the value of c so that f(x) is a valid PDF. Sketch the PDF. b) Find the mean and standard deviation of X. p c) If nd , 2 and . θ = 2 P (X > 1) P (X > 3 ) P (X > 2 − 2) c) Compute θ 3θ . P ( 10 < X < 5 ) Problem Three - Cumulative Distribution Functions For each of the following probability density functions, nd the CDF. The Median (M) of a distribution is dened by the property: 1 . Use the CDF to nd the Median of each distribution. F (M) = P (X ≤ M) = 2 a) (Special case of the Beta Distribution) 8 p <1:5 x; 0 < x < 1 f(x) = :0; otherwise b) (Special case of the Pareto Distribution) 8 < 1 ; x > 1 f(x) = x2 :0; otherwise c) Take the derivative of your CDF for part b) and show that you can get back the PDF.
    [Show full text]
  • STAT 345 Spring 2018 Homework 5 - Continuous Random Variables Name
    STAT 345 Spring 2018 Homework 5 - Continuous Random Variables Name: Please adhere to the homework rules as given in the Syllabus. 1. Trapezoidal Distribution. Consider the following probability density function. 8 x+1 ; −1 ≤ x < 0 > 5 > 1 < 5 ; 0 ≤ x < 4 f(x) = 5−x > ; 4 ≤ x ≤ 5 > 5 :>0; otherwise a) Sketch the PDF. b) Show that the area under the curve is equal to 1 using geometry. c) Show that the area under the curve is equal to 1 by integrating. (You will have to split the integral into peices). d) Find P (X < 3) using geometry. e) Find P (X < 3) with integration. 2. Let X have the following PDF, for θ > 0. ( c (θ − x); 0 < x < θ f(x) = θ2 0; otherwise a) Find the value of c which makes f(x) a valid PDF. Sketch the PDF. b) Find the mean and standard deviation of X. θ 3θ c) Find P 10 < X < 5 . 3. PDF to CDF. For each of the following PDFs, find and sketch the CDF. The Median (M) of a continuous distribution is defined by the property F (M) = 0:5. Use the CDF to find the Median of each distribution. a) (Special case of Beta Distribution) p f(x) = 1:5 x; 0 < x < 1 b) (Special case of Pareto Distribution) 1 f(x) = ; x > 1 x2 4. CDF to PDF. For each of the following CDFs, find the PDF. a) 8 0; x < 0 <> F (x) = 1 − (1 − x2)2; 0 ≤ x < 1 :>1; x ≥ 1 b) ( 0; x < 0 F (x) = 1 − e−x2 ; x ≥ 0 5.
    [Show full text]
  • Hand-Book on STATISTICAL DISTRIBUTIONS for Experimentalists
    Internal Report SUF–PFY/96–01 Stockholm, 11 December 1996 1st revision, 31 October 1998 last modification 10 September 2007 Hand-book on STATISTICAL DISTRIBUTIONS for experimentalists by Christian Walck Particle Physics Group Fysikum University of Stockholm (e-mail: [email protected]) Contents 1 Introduction 1 1.1 Random Number Generation .............................. 1 2 Probability Density Functions 3 2.1 Introduction ........................................ 3 2.2 Moments ......................................... 3 2.2.1 Errors of Moments ................................ 4 2.3 Characteristic Function ................................. 4 2.4 Probability Generating Function ............................ 5 2.5 Cumulants ......................................... 6 2.6 Random Number Generation .............................. 7 2.6.1 Cumulative Technique .............................. 7 2.6.2 Accept-Reject technique ............................. 7 2.6.3 Composition Techniques ............................. 8 2.7 Multivariate Distributions ................................ 9 2.7.1 Multivariate Moments .............................. 9 2.7.2 Errors of Bivariate Moments .......................... 9 2.7.3 Joint Characteristic Function .......................... 10 2.7.4 Random Number Generation .......................... 11 3 Bernoulli Distribution 12 3.1 Introduction ........................................ 12 3.2 Relation to Other Distributions ............................. 12 4 Beta distribution 13 4.1 Introduction .......................................
    [Show full text]
  • MARLAP Manual Volume III: Chapter 19, Measurement Uncertainty
    19 MEASUREMENT UNCERTAINTY 19.1 Overview This chapter discusses the evaluation and reporting of measurement uncertainty. Laboratory measurements always involve uncertainty, which must be considered when analytical results are used as part of a basis for making decisions.1 Every measured result reported by a laboratory should be accompanied by an explicit uncertainty estimate. One purpose of this chapter is to give users of radioanalytical data an understanding of the causes of measurement uncertainty and of the meaning of uncertainty statements in laboratory reports. The chapter also describes proce- dures which laboratory personnel use to estimate uncertainties. This chapter has more than one intended audience. Not all readers are expected to have the mathematical skills necessary to read and completely understand the entire chapter. For this reason the material is arranged so that general information is presented first and the more tech- nical information, which is intended primarily for laboratory personnel with the required mathe- matical skills, is presented last. The general discussion in Sections 19.2 and 19.3 requires little previous knowledge of statistical metrology on the part of the reader and involves no mathe- matical formulas; however, if the reader is unfamiliar with the fundamental concepts and terms of probability and statistics, he or she should read Attachment 19A before starting Section 19.3. The technical discussion in Sections 19.4 and 19.5 requires an understanding of basic algebra and at least some familiarity with the fundamental concepts of probability and statistics. The discus- sion of uncertainty propagation requires knowledge of differential calculus for a com- Contents plete understanding.
    [Show full text]
  • Generating Random Variates
    CHAPTER 8 Generating Random Variates 8.1 Introduction................................................................................................2 8.2 General Approaches to Generating Random Variates ....................................3 8.2.1 Inverse Transform...............................................................................................................3 8.2.2 Composition.....................................................................................................................11 8.2.3 Convolution......................................................................................................................16 8.2.4 Acceptance-Rejection.......................................................................................................18 8.2.5 Special Properties.............................................................................................................26 8.3 Generating Continuous Random Variates....................................................27 8.4 Generating Discrete Random Variates.........................................................27 8.4.3 Arbitrary Discrete Distribution...........................................................................................28 8.5 Generating Random Vectors, Correlated Random Variates, and Stochastic Processes ........................................................................................................34 8.5.1 Using Conditional Distributions ..........................................................................................35
    [Show full text]
  • Tumor Detection Using Trapezoidal Function and Rayleigh Distribution
    IOSR Journal of Electronics and Communication Engineering (IOSR-JECE) e-ISSN: 2278-2834,p- ISSN: 2278-8735.Volume 12, Issue 3, Ver. IV (May - June 2017), PP 27-32 www.iosrjournals.org Tumor Detection Using Trapezoidal Function and Rayleigh Distribution. *Mohammad Aslam. C1 Satya Narayana. D2 Padma Priya. K3 1 Vaagdevi Institute of Technology and Science, Proddatur, A.P 2 Rajiv Gandhi Memorial College Of Engineering And Technology, Nandyal, A.P 3jntuk College of Engineering, Kakinada, A.P Corresponding Author: Mohammad Aslam. C1 Abstract: Breast cancer is one of the most common cancers worldwide. In developed countries, among one in eight women develop breast cancer at some stage of their life. Early diagnosis of breast cancer plays a very important role in treatment of the disease. With the goal of identifying genes that are more correlated with the prognosis of breast cancer. An algorithm based on Trapezoidal and Rayleigh distributions. Property is used for the detection of the cancer tumors. Fuzzy logic and markov random fields work in real time. We also try to show its performance by comparing it with the existing real time algorithm that uses only markov random fields. This is not only suitable for the detection of the tumors, but also suitable for various general applications like in the detection of object in an image etc. Keywords: Tumors, Rayleigh distribution texture, Segmentation, Fuzzy Logic. --------------------------------------------------------------------------------------------------------------------------------------- Date of Submission: 19-06-2017 Date of acceptance: 26-07-2017 ----------------------------------------------------------------------------------------------------------------------------- ---------- I. Introduction Breast Cancer is one of the main sources of malignancy related passings in ladies. There are accessible distinctive strategies for the discovery of malignancy tumors, these techniques are utilized for the finding of disease in ladies at early stages.
    [Show full text]
  • Generalized Trapezoidal Distributions
    1 Generalized Trapezoidal Distributions J. René van Dorp, Samuel Kotz Department of Engineering Management & Systems Engineering, The George Washington University, 1776 G Street, N.W., Washington D.C. 20052 (e-mail: [email protected]). Submitted April 24, 2002; Revised, March 2003 Abstract. We present a construction and basic properties of a class of continuous distributions of an arbitrary form defined on a compact (bounded) set by concatenating in a continuous manner three probability density functions with bounded support using a modified mixture technique. These three distributions may represent growth, stability and decline stages of a physical or mental phenomenon. Keywords: Mixtures of Distributions, Risk AnalysisÄ Applied Physics 1. INTRODUCTION Trapezoidal distributions have been advocated in risk analysis problems by Pouliquen (1970) and more recently by Powell and Wilson (1997). They have also found application as membership functions in fuzzy set theory (see, e.g. Chen and Hwang (1992)). Our interest in trapezoidal distributions and their modifications stems mainly from the conviction that many physical processes in nature and human body and mind (over time) reflect the form of the trapezoidal distribution. In this context, trapezoidal distributions have been used in the screening and detection of cancer (see, e.g. Flehinger and Kimmel, (1987) and Brown (1999)). Trapezoidal distributions seem to be appropriate for modeling the duration and the form of a phenomenon which may be represented by three stages. The first stage can be To appear in Metrika, Vol. 58, Issue 1, July 2003 2 viewed as a growth-stage, the second corresponds to a relative stability and the third represents a decline (decay).
    [Show full text]
  • RCEM – Reclamation Consequence Estimating Methodology Interim
    RCEM – Reclamation Consequence Estimating Methodology Interim Examples of Use U.S. Department of the Interior Bureau of Reclamation June 2014 Mission Statements The U.S. Department of the Interior protects America’s natural resources and heritage, honors our cultures and tribal communities, and supplies the energy to power our future. The mission of the Bureau of Reclamation is to manage, develop, and protect water and related resources in an environmentally and economically sound manner in the interest of the American public. Interim RCEM – Reclamation Consequence Estimating Methodology Examples of Use U.S. Department of the Interior Bureau of Reclamation June 2014 RCEM – Examples of Use Interim Table of Contents Introduction ................................................................................................................... 1 General Usage ........................................................................................................... 1 Description of Examples ........................................................................................... 1 Format of Examples .................................................................................................. 3 Graphical Approach ...................................................................................................... 3 Uncertainty and Variability ........................................................................................... 8 Examples ......................................................................................................................
    [Show full text]
  • Selecting and Applying Error Distributions in Uncertainty Analysis1
    SELECTING AND APPLYING ERROR DISTRIBUTIONS 1 IN UNCERTAINTY ANALYSIS Dr. Howard Castrup Integrated Sciences Group 14608 Casitas Canyon Road Bakersfield, CA 93306 1-661-872-1683 [email protected] ABSTRACT Errors or biases from a number of sources may be encountered in performing a measurement. Such sources include random error, measuring parameter bias, measuring parameter resolution, operator bias, environmental factors, etc. Uncertainties due to these errors are estimated either by computing a Type A standard deviation from a sample of measurements or by forming a Type B estimate based on experience. In this paper, guidelines are given for selecting and applying various statistical error distribution that have been found useful for Type A and Type B analyses. Both traditional and Monte Carlo methods are outlined. Also discussed is the estimation of the degrees of freedom for both Type A or Type B estimates. Where appropriate, concepts will be illustrated using spreadsheets, freeware and commercially available software. INTRODUCTION THE GENERAL ERROR MODEL The measurement error model employed in this paper is given in the expression x = xtrue + (1) where x = a value obtained by measurement xtrue = the true value of the measured quantity = the measurement error. With univariate direct measurements, the variable is composed of a linear sum of errors from various measurement error sources. With multivariate measurements consists of a weighted sum of error components, each of which is make up of errors from measurement error sources. More will be said on this later. APPLICABLE AXIOMS In order to use Eq. (1) to estimate measurement uncertainty, we invoke three axioms [HC95a]: Axiom 1 Measurement errors are random variables that follow statistical distributions.
    [Show full text]
  • Uncertainty-Aware Principal Component Analysis
    Uncertainty-Aware Principal Component Analysis Jochen Gortler,¨ Thilo Spinner, Dirk Streeb, Daniel Weiskopf, and Oliver Deussen 0 0 0 0 0 0 0 0 0 0 0 0 (a) Regular PCA (b) s = 0.5 (c) s = 0.8 (d) s = 1.0 Fig. 1. Data uncertainty can have a significant influence on the outcome of dimensionality reduction techniques. We propose a generalization of principal component analysis (PCA) that takes into account the uncertainty in the input. The top row shows the dataset with varying degrees of uncertainty and the corresponding principal components, whereas the bottom row shows the projection of the dataset, using our method, onto the first principal component. In Figures (a) and (b), with relatively low uncertainty, the blue and the orange distributions are comprised by the red and the green distributions. In Figures (c) and (d), with a larger amount of uncertainty, the projection changes drastically: now the orange and blue distributions encompass the red and the green distributions. Abstract—We present a technique to perform dimensionality reduction on data that is subject to uncertainty. Our method is a generalization of traditional principal component analysis (PCA) to multivariate probability distributions. In comparison to non-linear methods, linear dimensionality reduction techniques have the advantage that the characteristics of such probability distributions remain intact after projection. We derive a representation of the PCA sample covariance matrix that respects potential uncertainty in each of the inputs, building the mathematical foundation of our new method: uncertainty-aware PCA. In addition to the accuracy and performance gained by our approach over sampling-based strategies, our formulation allows us to perform sensitivity analysis with regard to the uncertainty in the data.
    [Show full text]
  • Trapezoidal and Triangular Distributions for Type B Evaluation of Standard Uncertainty
    IOP PUBLISHING METROLOGIA Metrologia 44 (2007) 117–127 doi:10.1088/0026-1394/44/2/003 Trapezoidal and triangular distributions for Type B evaluation of standard uncertainty Raghu N Kacker1 and James F Lawrence1,2 1 Mathematical and Computational Science Division, National Institute of Standards and Technology, Gaithersburg, MD 20899, USA 2 Department of Mathematical Sciences, George Mason University, Fairfax, VA 22030, USA E-mail: [email protected] Received 6 September 2006 Published 26 February 2007 Online at stacks.iop.org/Met/44/117 Abstract The Guide to the Expression of Uncertainty in Measurement (GUM), published by the International Organization for Standardization (ISO), recognizes Type B state-of-knowledge probability distributions specified by scientific judgment as valid means to quantify uncertainty. The ISO-GUM discusses symmetric probability distributions only. Sometimes an asymmetric distribution is needed. We describe a trapezoidal distribution which may be asymmetric depending on the settings of its parameters. We describe the probability density function, cumulative distribution function (cdf), inverse function of the cdf, moment generating function, moments about origin (zero), expected value and variance of a trapezoidal distribution. We show that triangular and rectangular distributions are special cases of the trapezoidal distribution. Then we derive the moment generating functions, moments, expected values and variances of various special cases of the trapezoidal distribution. Finally, we illustrate through a real life example how a Type B asymmetric trapezoidal distribution may be useful in quantifying a correction for bias (systematic error) in a result of measurement and in quantifying the standard uncertainty associated with the correction. 1. Introduction trapezoidal distribution, which may be asymmetric depending on the settings of its parameters.
    [Show full text]