Selecting and Applying Error Distributions in Uncertainty Analysis1
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
2.1 Introduction Civil Engineering Systems Deal with Variable Quantities, Which Are Described in Terms of Random Variables and Random Processes
2.1 Introduction Civil Engineering systems deal with variable quantities, which are described in terms of random variables and random processes. Once the system design such as a design of building is identified in terms of providing a safe and economical building, variable resistances for different members such as columns, beams and foundations which can sustain variable loads can be analyzed within the framework of probability theory. The probabilistic description of variable phenomena needs the use of appropriate measures. In this module, various measures of description of variability are presented. 2. HISTOGRAM AND FREQUENCY DIAGRAM Five graphical methods for analyzing variability are: 1. Histograms, 2. Frequency plots, 3. Frequency density plots, 4. Cumulative frequency plots and 5. Scatter plots. 2.1. Histograms A histogram is obtained by dividing the data range into bins, and then counting the number of values in each bin. The unit weight data are divided into 4- kg/m3 wide intervals from to 2082 in Table 1. For example, there are zero values between 1441.66 and 1505 Kg / m3 (Table 1), two values between 1505.74 kg/m3 and 1569.81 kg /m3 etc. A bar-chart plot of the number of occurrences in each interval is called a histogram. The histogram for unit weight is shown on fig.1. Table 1 Total Unit Weight Data from Offshore Boring Total unit Total unit 2 3 Depth weight (x-βx) (x-βx) Depth weight Number (m) (Kg / m3) (Kg / m3)2 (Kg / m3)3 (m) (Kg / m3) 1 0.15 1681.94 115.33 -310.76 52.43 1521.75 2 0.30 1906.20 2050.36 23189.92 2.29 1537.77 -
Stat 345 - Homework 3 Chapter 4 -Continuous Random Variables
STAT 345 - HOMEWORK 3 CHAPTER 4 -CONTINUOUS RANDOM VARIABLES Problem One - Trapezoidal Distribution Consider the following probability density function f(x). 8 > x+1 ; −1 ≤ x < 0 > 5 > <> 1 ; 0 ≤ x < 4 f(x) = 5 > 5−x ; 4 ≤ x ≤ 5 > 5 > :>0; otherwise a) Sketch the PDF. b) Show that the area under the curve is equal to 1 using geometry. c) Show that the area under the curve is equal to 1 by integrating. (You will have to split the integral into pieces). d) Find P (X < 3) using geometry. e) Find P (X < 3) with integration. Problem Two - Probability Density Function Consider the following function f(x), where θ > 0. 8 < c (θ − x); 0 < x < θ f(x) = θ2 :0; otherwise a) Find the value of c so that f(x) is a valid PDF. Sketch the PDF. b) Find the mean and standard deviation of X. p c) If nd , 2 and . θ = 2 P (X > 1) P (X > 3 ) P (X > 2 − 2) c) Compute θ 3θ . P ( 10 < X < 5 ) Problem Three - Cumulative Distribution Functions For each of the following probability density functions, nd the CDF. The Median (M) of a distribution is dened by the property: 1 . Use the CDF to nd the Median of each distribution. F (M) = P (X ≤ M) = 2 a) (Special case of the Beta Distribution) 8 p <1:5 x; 0 < x < 1 f(x) = :0; otherwise b) (Special case of the Pareto Distribution) 8 < 1 ; x > 1 f(x) = x2 :0; otherwise c) Take the derivative of your CDF for part b) and show that you can get back the PDF. -
Measurement, Uncertainty, and Uncertainty Propagation 205
Measurement, Uncertainty, and Uncertainty Propagation 205 Name _____________________ Date __________ Partners ________________ TA ________________ Section _______ ________________ Measurement, Uncertainty, and Uncertainty Propagation Objective: To understand the importance of reporting both a measurement and its uncertainty and to address how to properly treat uncertainties in the lab. Equipment: meter stick, 2-meter stick DISCUSSION Understanding nature requires measuring things, be it distance, time, acidity, or social status. However, measurements cannot be “exact”. Rather, all measurements have some uncertainty associated with them.1 Thus all measurements consist of two numbers: the value of the measured quantity and its uncertainty2. The uncertainty reflects the reliability of the measurement. The range of measurement uncertainties varies widely. Some quantities, such as the mass of the electron me = (9.1093897 ± 0.0000054) ×10-31 kg, are known to better than one part per million. Other quantities are only loosely bounded: there are 100 to 400 billion stars in the Milky Way. Note that we not talking about “human error”! We are not talking about mistakes! Rather, uncertainty is inherent in the instruments and methods that we use even when perfectly applied. The goddess Athena cannot not read a digital scale any better than you. Significant Figures The electron mass above has eight significant figures (or digits). However, the measured number of stars in the Milky Way has barely one significant figure, and it would be misleading to write it with more than one figure of precision. The number of significant figures reported should be consistent with the uncertainty of the measurement. In general, uncertainties are usually quoted with no more significant figures than the measured result; and the last significant figure of a result should match that of the uncertainty. -
Uncertainty 2: Combining Uncertainty
Introduction to Mobile Robots 1 Uncertainty 2: Combining Uncertainty Alonzo Kelly Fall 1996 Introduction to Mobile Robots Uncertainty 2: 2 1.1Variance of a Sum of Random Variables 1 Combining Uncertainties • The basic theory behind everything to do with the Kalman Filter can be obtained from two sources: • 1) Uncertainty transformation with the Jacobian matrix • 2) The Central Limit Theorem 1.1 Variance of a Sum of Random Variables • We can use our uncertainty transformation rules to compute the variance of a sum of random variables. Let there be n random variables - each of which are normally distributed with the same distribution: ∼()µσ, , xi N ,i=1n • Let us define the new random variabley as the sum of all of these. n yx=∑i i=1 • By our transformation rules: σ2 σ2T y=JxJ • where the Jacobian is simplyn ones: J=1…1 • Hence: Alonzo Kelly Fall 1996 Introduction to Mobile Robots Uncertainty 2: 3 1.2Variance of A Continuous Sum σ2 σ2 y = n x • Thus the variance of a sum of identical random variables grows linearly with the number of elements in the sum. 1.2 Variance of A Continuous Sum • Consider a problem where an integral is being computed from noisy measurements. This will be important later in dead reckoning models. • In such a case where a new random variable is added at a regular frequency, the expression gives the development of the standard deviation versus time because: t n = ----- ∆t in a discrete time system. • In this simple model, uncertainty expressed as standard deviation grows with the square root of time. -
STAT 345 Spring 2018 Homework 5 - Continuous Random Variables Name
STAT 345 Spring 2018 Homework 5 - Continuous Random Variables Name: Please adhere to the homework rules as given in the Syllabus. 1. Trapezoidal Distribution. Consider the following probability density function. 8 x+1 ; −1 ≤ x < 0 > 5 > 1 < 5 ; 0 ≤ x < 4 f(x) = 5−x > ; 4 ≤ x ≤ 5 > 5 :>0; otherwise a) Sketch the PDF. b) Show that the area under the curve is equal to 1 using geometry. c) Show that the area under the curve is equal to 1 by integrating. (You will have to split the integral into peices). d) Find P (X < 3) using geometry. e) Find P (X < 3) with integration. 2. Let X have the following PDF, for θ > 0. ( c (θ − x); 0 < x < θ f(x) = θ2 0; otherwise a) Find the value of c which makes f(x) a valid PDF. Sketch the PDF. b) Find the mean and standard deviation of X. θ 3θ c) Find P 10 < X < 5 . 3. PDF to CDF. For each of the following PDFs, find and sketch the CDF. The Median (M) of a continuous distribution is defined by the property F (M) = 0:5. Use the CDF to find the Median of each distribution. a) (Special case of Beta Distribution) p f(x) = 1:5 x; 0 < x < 1 b) (Special case of Pareto Distribution) 1 f(x) = ; x > 1 x2 4. CDF to PDF. For each of the following CDFs, find the PDF. a) 8 0; x < 0 <> F (x) = 1 − (1 − x2)2; 0 ≤ x < 1 :>1; x ≥ 1 b) ( 0; x < 0 F (x) = 1 − e−x2 ; x ≥ 0 5. -
Measurements and Uncertainty Analysis
Measurements & Uncertainty Analysis Measurement and Uncertainty Analysis Guide “It is better to be roughly right than precisely wrong.” – Alan Greenspan Table of Contents THE UNCERTAINTY OF MEASUREMENTS .............................................................................................................. 2 TYPES OF UNCERTAINTY .......................................................................................................................................... 6 ESTIMATING EXPERIMENTAL UNCERTAINTY FOR A SINGLE MEASUREMENT ................................................ 9 ESTIMATING UNCERTAINTY IN REPEATED MEASUREMENTS ........................................................................... 9 STANDARD DEVIATION .......................................................................................................................................... 12 STANDARD DEVIATION OF THE MEAN (STANDARD ERROR) ......................................................................... 14 WHEN TO USE STANDARD DEVIATION VS STANDARD ERROR ...................................................................... 14 ANOMALOUS DATA ................................................................................................................................................. 15 FRACTIONAL UNCERTAINTY ................................................................................................................................. 15 BIASES AND THE FACTOR OF N–1 ...................................................................................................................... -
Estimating and Combining Uncertainties 8Th Annual ITEA Instrumentation Workshop Park Plaza Hotel and Conference Center, Lancaster Ca
Estimating and Combining Uncertainties 8th Annual ITEA Instrumentation Workshop Park Plaza Hotel and Conference Center, Lancaster Ca. 5 May 2004 Howard Castrup, Ph.D. President, Integrated Sciences Group www.isgmax.com [email protected] Abstract. A general measurement uncertainty model we treat these variations as statistical quantities and say is presented that can be applied to measurements in that they follow statistical distributions. which the value of an attribute is measured directly, and to multivariate measurements in which the value of an We also acknowledge that the measurement reference attribute is obtained by measuring various component we are using has some unknown bias. All we may quantities. In the course of the development of the know of this quantity is that it comes from some model, axioms are developed that are useful to population of biases that also follow a statistical uncertainty analysis [1]. Measurement uncertainty is distribution. What knowledge we have of this defined statistically and expressions are derived for distribution may derive from periodic calibration of the estimating measurement uncertainty and combining reference or from manufacturer data. uncertainties from several sources. In addition, guidelines are given for obtaining the degrees of We are likewise cognizant of the fact that the finite freedom for both Type A and Type B uncertainty resolution of our measuring system introduces another estimates. source of measurement error whose sign and magnitude are unknown and, therefore, can only be described Background statistically. Suppose that we are making a measurement of some These observations lead us to a key axiom in quantity such as mass, flow, voltage, length, etc., and uncertainty analysis: that we represent our measured values by the variable x. -
Measurement and Uncertainty Analysis Guide
Measurements & Uncertainty Analysis Measurement and Uncertainty Analysis Guide “It is better to be roughly right than precisely wrong.” – Alan Greenspan Table of Contents THE UNCERTAINTY OF MEASUREMENTS .............................................................................................................. 2 RELATIVE (FRACTIONAL) UNCERTAINTY ............................................................................................................. 4 RELATIVE ERROR ....................................................................................................................................................... 5 TYPES OF UNCERTAINTY .......................................................................................................................................... 6 ESTIMATING EXPERIMENTAL UNCERTAINTY FOR A SINGLE MEASUREMENT ................................................ 9 ESTIMATING UNCERTAINTY IN REPEATED MEASUREMENTS ........................................................................... 9 STANDARD DEVIATION .......................................................................................................................................... 12 STANDARD DEVIATION OF THE MEAN (STANDARD ERROR) ......................................................................... 14 WHEN TO USE STANDARD DEVIATION VS STANDARD ERROR ...................................................................... 14 ANOMALOUS DATA ................................................................................................................................................ -
Estimation of Measurement Uncertainty in Chemical Analysis (Analytical Chemistry) Course
MOOC: Estimation of measurement uncertainty in chemical analysis (analytical chemistry) course This is an introductory course on measurement uncertainty estimation, specifically related to chemical analysis. Ivo Leito, Lauri Jalukse, Irja Helm Table of contents 1. The concept of measurement uncertainty (MU) 2. The origin of measurement uncertainty 3. The basic concepts and tools 3.1. The Normal distribution 3.2. Mean, standard deviation and standard uncertainty 3.3. A and B type uncertainty estimates 3.4. Standard deviation of the mean 3.5. Rectangular and triangular distribution 3.6. The Student distribution 4. The first uncertainty quantification 4.1. Quantifying uncertainty components 4.2. Calculating the combined standard uncertainty 4.3. Looking at the obtained uncertainty 4.4. Expanded uncertainty 4.5. Presenting measurement results 4.6. Practical example 5. Principles of measurement uncertainty estimation 5.1. Measurand definition 5.2. Measurement procedure 5.3. Sources of measurement uncertainty 5.4. Treatment of random and systematic effects 6. Random and systematic effects revisited 7. Precision, trueness, accuracy 8. Overview of measurement uncertainty estimation approaches 9. The ISO GUM Modeling approach 9.1. Step 1– Measurand definition 9.2. Step 2 – Model equation 9.3. Step 3 – Uncertainty sources 9.4. Step 4 – Values of the input quantities 9.5. Step 5 – Standard uncertainties of the input quantities 9.6. Step 6 – Value of the output quantity 9.7. Step 7 – Combined standard uncertainty 9.8. Step 8 – Expanded uncertainty 9.9. Step 9 – Looking at the obtained uncertainty 10. The single-lab validation approach 10.1. Principles 10.2. Uncertainty component accounting for random effects 10.3. -
Comparison of GUM and Monte Carlo Methods for the Uncertainty Estimation in Hardness Measurements
Int. J. Metrol. Qual. Eng. 8, 14 (2017) International Journal of © G.M. Mahmoud and R.S. Hegazy, published by EDP Sciences, 2017 Metrology and Quality Engineering DOI: 10.1051/ijmqe/2017014 Available online at: www.metrology-journal.org RESEARCH ARTICLE Comparison of GUM and Monte Carlo methods for the uncertainty estimation in hardness measurements Gouda M. Mahmoud* and Riham S. Hegazy National Institute of Standards, Tersa St, El-Haram, Box 136 Code 12211, Giza, Egypt Received: 7 January 2017 / Accepted: 2 May 2017 Abstract. Monte Carlo Simulation (MCS) and Expression of Uncertainty in Measurement (GUM) are the most common approaches for uncertainty estimation. In this work MCS and GUM were used to estimate the uncertainty of hardness measurements. It was observed that the resultant uncertainties obtained with the GUM and MCS without correlated inputs for Brinell hardness (HB) were ±0.69 HB, ±0.67 HB and for Vickers hardness (HV) were ±6.7 HV, ±6.5 HV, respectively. The estimated uncertainties with correlated inputs by GUM and MCS were ±0.6 HB, ±0.59 HB and ±6 HV, ±5.8 HV, respectively. GUM overestimate a little bit the MCS estimated uncertainty. This difference is due to the approximation used by the GUM in estimating the uncertainty of the calibration curve obtained by least squares regression. Also the correlations between inputs have significant effects on the estimated uncertainties. Thus the correlation between inputs decreases the contribution of these inputs in the budget uncertainty and hence decreases the resultant uncertainty by about 10%. It was observed that MCS has features to avoid the limitations of GUM. -
Hand-Book on STATISTICAL DISTRIBUTIONS for Experimentalists
Internal Report SUF–PFY/96–01 Stockholm, 11 December 1996 1st revision, 31 October 1998 last modification 10 September 2007 Hand-book on STATISTICAL DISTRIBUTIONS for experimentalists by Christian Walck Particle Physics Group Fysikum University of Stockholm (e-mail: [email protected]) Contents 1 Introduction 1 1.1 Random Number Generation .............................. 1 2 Probability Density Functions 3 2.1 Introduction ........................................ 3 2.2 Moments ......................................... 3 2.2.1 Errors of Moments ................................ 4 2.3 Characteristic Function ................................. 4 2.4 Probability Generating Function ............................ 5 2.5 Cumulants ......................................... 6 2.6 Random Number Generation .............................. 7 2.6.1 Cumulative Technique .............................. 7 2.6.2 Accept-Reject technique ............................. 7 2.6.3 Composition Techniques ............................. 8 2.7 Multivariate Distributions ................................ 9 2.7.1 Multivariate Moments .............................. 9 2.7.2 Errors of Bivariate Moments .......................... 9 2.7.3 Joint Characteristic Function .......................... 10 2.7.4 Random Number Generation .......................... 11 3 Bernoulli Distribution 12 3.1 Introduction ........................................ 12 3.2 Relation to Other Distributions ............................. 12 4 Beta distribution 13 4.1 Introduction ....................................... -
Measurement Uncertainty: Areintroduction
Antonio Possolo &Juris Meija Measurement Uncertainty: AReintroduction sistema interamericano de metrologia — sim Published by sistema interamericano de metrologia — sim Montevideo, Uruguay: September 2020 A contribution of the National Institute of Standards and Technology (U.S.A.) and of the National Research Council Canada (Crown copyright © 2020) isbn 978-0-660-36124-6 doi 10.4224/40001835 Licensed under the cc by-sa (Creative Commons Attribution-ShareAlike 4.0 International) license. This work may be used only in compliance with the License. A copy of the License is available at https://creativecommons.org/licenses/by-sa/4.0/legalcode. This license allows reusers to distribute, remix, adapt, and build upon the material in any medium or format, so long as attribution is given to the creator. The license allows for commercial use. If the reuser remixes, adapts, or builds upon the material, then the reuser must license the modified material under identical terms. The computer codes included in this work are offered without warranties or guarantees of correctness or fitness for purpose of any kind, either expressed or implied. Cover design by Neeko Paluzzi, including original, personal artwork © 2016 Juris Meija. Front matter, body, and end matter composed with LATEX as implemented in the 2020 TeX Live distribution from the TeX Users Group, using the tufte-book class (© 2007-2015 Bil Kleb, Bill Wood, and Kevin Godby), with Palatino, Helvetica, and Bera Mono typefaces. 4 Knowledge would be fatal. It is the uncertainty that charms one. A mist makes things wonderful. — Oscar Wilde (1890, The Picture of Dorian Gray) 5 Preface Our original aim was to write an introduction to the evaluation and expression of mea- surement uncertainty as accessible and succinct as Stephanie Bell’s little jewel of A Be- ginner’s Guide to Uncertainty of Measurement [Bell, 1999], only showing a greater variety of examples to illustrate how measurement science has grown and widened in scope in the course of the intervening twenty years.