Chaperones in Hepatitis C Virus Infection

Total Page:16

File Type:pdf, Size:1020Kb

Chaperones in Hepatitis C Virus Infection Submit a Manuscript: http://www.wjgnet.com/esps/ World J Hepatol 2016 January 8; 8(1): 9-35 Help Desk: http://www.wjgnet.com/esps/helpdesk.aspx ISSN 1948-5182 (online) DOI: 10.4254/wjh.v8.i1.9 © 2016 Baishideng Publishing Group Inc. All rights reserved. TOPIC HIGHLIGHT 2016 Advances in Hepatitis C Virus Chaperones in hepatitis C virus infection Ronik Khachatoorian, Samuel W French Ronik Khachatoorian, Samuel W French, Department of First decision: September 8, 2015 Pathology and Laboratory Medicine, David Geffen School of Revised: October 1, 2015 Medicine at University of California, Los Angeles, CA 90095, Accepted: December 17, 2015 United States Article in press: December 18, 2015 Published online: January 8, 2016 Samuel W French, Jonsson Comprehensive Cancer Center, David Geffen School of Medicine at University of California, Los Angeles, CA 90095, United States Samuel W French, UCLA AIDS Institute, David Geffen School Abstract of Medicine at University of California, Los Angeles, CA 90024, The hepatitis C virus (HCV) infects approximately 3% of United States the world population or more than 185 million people worldwide. Each year, an estimated 350000-500000 Author contributions: Khachatoorian R conducted an extensive deaths occur worldwide due to HCV-associated diseases article search, identified all relevant articles, developed the including cirrhosis and hepatocellular carcinoma. HCV is outline of the review article, prepared all the drafts, revised the accepted manuscript, and approved the article to be published; the most common indication for liver transplantation in French SW contributed to the design and writing of the manu­ patients with cirrhosis worldwide. HCV is an enveloped script, reviewed and edited the drafts, revised the accepted manu­ RNA virus classified in the genus Hepacivirus in the script, and approved the article to be published. Flaviviridae family. The HCV viral life cycle in a cell can be divided into six phases: (1) binding and inter- Supported by NIH R01DK090794, SWF. nalization; (2) cytoplasmic release and uncoating; (3) viral polyprotein translation and processing; (4) RNA Conflict-of-interest statement: The authors declare no conflict genome replication; (5) encapsidation (packaging) and of interest. assembly; and (6) virus morphogenesis (maturation) and secretion. Many host factors are involved in the Open-Access: This article is an open­access article which was HCV life cycle. Chaperones are an important group of selected by an in­house editor and fully peer­reviewed by external reviewers. It is distributed in accordance with the Creative host cytoprotective molecules that coordinate numerous Commons Attribution Non Commercial (CC BY­NC 4.0) license, cellular processes including protein folding, multimeric which permits others to distribute, remix, adapt, build upon this protein assembly, protein trafficking, and protein work non­commercially, and license their derivative works on degradation. All phases of the viral life cycle require different terms, provided the original work is properly cited and chaperone activity and the interaction of viral proteins the use is non­commercial. See: http://creativecommons.org/ with chaperones. This review will present our current licenses/by­nc/4.0/ knowledge and understanding of the role of chaperones in the HCV life cycle. Analysis of chaperones in HCV Correspondence to: Samuel W French, MD, PhD, Associate infection will provide further insights into viral/host Professor, Department of Pathology and Laboratory Medicine, interactions and potential therapeutic targets for both David Geffen School of Medicine at University of California, HCV and other viruses. 10833 Le Conte Avenue, Los Angeles, CA 90095, United States. [email protected] Telephone: +1­310­2672795 Key words: Hepatitis C; Hepatitis C virus; Chaperones; Fax: +1­310­2672058 Heat shock proteins; Viral life cycle Received: April 29, 2015 © The Author(s) 2016. Published by Baishideng Publishing Peer-review started: May 7, 2015 Group Inc. All rights reserved. WJH|www.wjgnet.com 9 January 8, 2016|Volume 8|Issue 1| Khachatoorian R et al . Chaperones and HCV frameshift near the beginning of the core protein coding Core tip: Interaction of viral proteins with host cha- sequence. The F protein has been implicated in the perones is critical for the hepatitis C viral (HCV) life regulation of protein degradation, inhibition of apoptosis, cycle. Some of these chaperones, such as cyclophilins and immunoregulation[24-31]. have been studied in detail recently and have led to The 5’ non-coding region (NCR) of the viral genome the advent of new therapies for HCV infection with high success rates. Further investigation of the role of possesses an IRES, a cis-acting element found in chaperones in the viral life cycle may allow for deve- some host RNA transcripts as well as in viruses that lopment of novel therapies both for HCV and related allows ribosomal translation initiation to occur internally viruses. within a transcript in lieu of 5’ 7-methylguanylate cap- dependent translation[12,32]. The HCV viral life cycle in a cell can be divided into six phases: (1) binding and Khachatoorian R, French SW. Chaperones in hepatitis C virus internalization; (2) cytoplasmic release and uncoating; infection. World J Hepatol 2016; 8(1): 9­35 Available from: (3) viral polyprotein translation and processing; (4) RNA URL: http://www.wjgnet.com/1948­5182/full/v8/i1/9.htm DOI: genome replication; (5) encapsidation (packaging) and http://dx.doi.org/10.4254/wjh.v8.i1.9 assembly; and (6) virus morphogenesis (maturation) and secretion[33] (Figure 1). The viral life cycle begins with the attachment of the enveloped virion to the cell followed by entry, INTRODUCTION which is mediated by interaction of the E1 and E2 glycoproteins in the viral membrane with a number of The hepatitis C virus (HCV) infects approximately hepatocyte cell surface receptors and proteins which 3% of the world population or more than 185 million include the low-density lipoprotein receptor (LDLR), people worldwide[1,2]. While infection is less prevalent glycosaminoglycans (GAGs), CD81, scavenger receptor in developed countries including North America, other [1] B1 (SR-B1), claudin 1, occludin, and the cholesterol areas face prevalence rates as high as 3.5% or more . [34] absorption receptor Niemann-Pick C1-like 1 . Sub- Each year, an estimated 350000-500000 deaths occur sequently, the viral particle is internalized through worldwide due to HCV-associated diseases[1-3]. HCV is clathrin-mediated endocytosis or an alternative clathrin- mainly responsible for liver transplantation in patients [4-6] independent pathway after which, the viral and cellular with cirrhosis worldwide . Furthermore, HCV is the membranes fuse through acidification of the endosomal most common chronic bloodborne pathogen in the compartment, and the core-encapsidated viral genome United States affecting 1.5% of the population and is is released into the cytosol, uncoated, and subsequently the major etiologic factor responsible for the recent [35,36] [5,7-9] translated . The resulting polyprotein is cleaved with doubling of hepatocellular carcinoma . the help of the cellular proteases signalase and signal HCV is an enveloped RNA virus classified in the peptide peptidase and the viral proteases NS2-NS3 genus Hepacivirus in the Flaviviridae family. It possesses and NS3-NS4A[37]. Viral genome replication is carried an approximately 9.6 kb positive-sense RNA genome out by NS5B utilizing a negative-sense viral genome that is translated as a single polypeptide approximately intermediate[38]. New virions are assembled at the sites [10,11] 3000 amino acids in length . It is subsequently of cytosolic lipid droplets in the vicinity of endoplasmic proteolytically cleaved into 10 viral proteins including reticulum (ER) membrane where core protein enca- the structural proteins core, E1, and E2 as well as the psidates the viral genome followed by budding of the non-structural (NS) proteins p7, NS2, NS3, NS4A, nascent virion into the lumen of ER[39]. The virions follow [12] NS4B, NS5A and NS5B . Core is the viral nucleocapsid the Golgi-dependent secretory pathway during which protein that encapsidates the viral genome in the virion. they undergo maturation by addition of lipid components E1 and E2 are glycoproteins on the viral envelope that significantly decreasing their buoyant density[40,41]. Finally are involved in receptor-mediated viral entry. p7 is an the mature virions are secreted through exocytosis[42]. integral membrane ion channel also called viroporin In order to establish successful infection, HCV that functions to protect virions from acidification during depends on numerous host factors during its entire life [13] maturation by allowing protons to flow . NS2, NS3, and cycle. In addition to performing virus-specific functions NS4A are the viral proteases, while NS4B is a helicase. such as viral genome replication and virion assembly, NS5A, a 56-59 kDa multifunctional phosphoprotein, HCV proteins alter cellular metabolism, critical signaling lacks any known enzymatic activity, is a component of pathways, and organellar morphology and function to the viral replicase complex, and has been implicated in establish persistent infection and to escape the immune regulation of HCV genome replication, internal ribosomal responses. Accumulation of misfolded viral proteins entry site (IRES)-mediated viral protein translation, in the ER leads to ER stress and the unfolded protein and infectious
Recommended publications
  • Computational Genome-Wide Identification of Heat Shock Protein Genes in the Bovine Genome [Version 1; Peer Review: 2 Approved, 1 Approved with Reservations]
    F1000Research 2018, 7:1504 Last updated: 08 AUG 2021 RESEARCH ARTICLE Computational genome-wide identification of heat shock protein genes in the bovine genome [version 1; peer review: 2 approved, 1 approved with reservations] Oyeyemi O. Ajayi1,2, Sunday O. Peters3, Marcos De Donato2,4, Sunday O. Sowande5, Fidalis D.N. Mujibi6, Olanrewaju B. Morenikeji2,7, Bolaji N. Thomas 8, Matthew A. Adeleke 9, Ikhide G. Imumorin2,10,11 1Department of Animal Breeding and Genetics, Federal University of Agriculture, Abeokuta, Nigeria 2International Programs, College of Agriculture and Life Sciences, Cornell University, Ithaca, NY, 14853, USA 3Department of Animal Science, Berry College, Mount Berry, GA, 30149, USA 4Departamento Regional de Bioingenierias, Tecnologico de Monterrey, Escuela de Ingenieria y Ciencias, Queretaro, Mexico 5Department of Animal Production and Health, Federal University of Agriculture, Abeokuta, Nigeria 6Usomi Limited, Nairobi, Kenya 7Department of Animal Production and Health, Federal University of Technology, Akure, Nigeria 8Department of Biomedical Sciences, Rochester Institute of Technology, Rochester, NY, 14623, USA 9School of Life Sciences, University of KwaZulu-Natal, Durban, 4000, South Africa 10School of Biological Sciences, Georgia Institute of Technology, Atlanta, GA, 30032, USA 11African Institute of Bioscience Research and Training, Ibadan, Nigeria v1 First published: 20 Sep 2018, 7:1504 Open Peer Review https://doi.org/10.12688/f1000research.16058.1 Latest published: 20 Sep 2018, 7:1504 https://doi.org/10.12688/f1000research.16058.1 Reviewer Status Invited Reviewers Abstract Background: Heat shock proteins (HSPs) are molecular chaperones 1 2 3 known to bind and sequester client proteins under stress. Methods: To identify and better understand some of these proteins, version 1 we carried out a computational genome-wide survey of the bovine 20 Sep 2018 report report report genome.
    [Show full text]
  • Table 2. Significant
    Table 2. Significant (Q < 0.05 and |d | > 0.5) transcripts from the meta-analysis Gene Chr Mb Gene Name Affy ProbeSet cDNA_IDs d HAP/LAP d HAP/LAP d d IS Average d Ztest P values Q-value Symbol ID (study #5) 1 2 STS B2m 2 122 beta-2 microglobulin 1452428_a_at AI848245 1.75334941 4 3.2 4 3.2316485 1.07398E-09 5.69E-08 Man2b1 8 84.4 mannosidase 2, alpha B1 1416340_a_at H4049B01 3.75722111 3.87309653 2.1 1.6 2.84852656 5.32443E-07 1.58E-05 1110032A03Rik 9 50.9 RIKEN cDNA 1110032A03 gene 1417211_a_at H4035E05 4 1.66015788 4 1.7 2.82772795 2.94266E-05 0.000527 NA 9 48.5 --- 1456111_at 3.43701477 1.85785922 4 2 2.8237185 9.97969E-08 3.48E-06 Scn4b 9 45.3 Sodium channel, type IV, beta 1434008_at AI844796 3.79536664 1.63774235 3.3 2.3 2.75319499 1.48057E-08 6.21E-07 polypeptide Gadd45gip1 8 84.1 RIKEN cDNA 2310040G17 gene 1417619_at 4 3.38875643 1.4 2 2.69163229 8.84279E-06 0.0001904 BC056474 15 12.1 Mus musculus cDNA clone 1424117_at H3030A06 3.95752801 2.42838452 1.9 2.2 2.62132809 1.3344E-08 5.66E-07 MGC:67360 IMAGE:6823629, complete cds NA 4 153 guanine nucleotide binding protein, 1454696_at -3.46081884 -4 -1.3 -1.6 -2.6026947 8.58458E-05 0.0012617 beta 1 Gnb1 4 153 guanine nucleotide binding protein, 1417432_a_at H3094D02 -3.13334396 -4 -1.6 -1.7 -2.5946297 1.04542E-05 0.0002202 beta 1 Gadd45gip1 8 84.1 RAD23a homolog (S.
    [Show full text]
  • A SARS-Cov-2-Human Protein-Protein Interaction Map Reveals Drug Targets and Potential Drug-Repurposing
    A SARS-CoV-2-Human Protein-Protein Interaction Map Reveals Drug Targets and Potential Drug-Repurposing Supplementary Information Supplementary Discussion All SARS-CoV-2 protein and gene functions described in the subnetwork appendices, including the text below and the text found in the individual bait subnetworks, are based on the functions of homologous genes from other coronavirus species. These are mainly from SARS-CoV and MERS-CoV, but when available and applicable other related viruses were used to provide insight into function. The SARS-CoV-2 proteins and genes listed here were designed and researched based on the gene alignments provided by Chan et. al. 1 2020 .​ Though we are reasonably sure the genes here are well annotated, we want to note that not every ​ protein has been verified to be expressed or functional during SARS-CoV-2 infections, either in vitro or in vivo. ​ ​ In an effort to be as comprehensive and transparent as possible, we are reporting the sub-networks of these functionally unverified proteins along with the other SARS-CoV-2 proteins. In such cases, we have made notes within the text below, and on the corresponding subnetwork figures, and would advise that more caution be taken when examining these proteins and their molecular interactions. Due to practical limits in our sample preparation and data collection process, we were unable to generate data for proteins corresponding to Nsp3, Orf7b, and Nsp16. Therefore these three genes have been left out of the following literature review of the SARS-CoV-2 proteins and the protein-protein interactions (PPIs) identified in this study.
    [Show full text]
  • Genomic Identification, Evolution and Sequence Analysis of the Heat
    G C A T T A C G G C A T genes Article Genomic Identification, Evolution and Sequence Analysis of the Heat-Shock Protein Gene Family in Buffalo 1, 2, 3 4 1 Saif ur Rehman y, Asif Nadeem y , Maryam Javed , Faiz-ul Hassan , Xier Luo , Ruqayya Bint Khalid 3 and Qingyou Liu 1,* 1 State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Guangxi University, Nanning 530005, China; [email protected] (S.u.R.); [email protected] (X.L.) 2 Department of Biotechnology, Virtual University of Pakistan, Lahore-54000, Pakistan; [email protected] 3 Institute of Biochemistry and Biotechnology, University of Veterinary and Animal Sciences, Lahore-54000, Pakistan; [email protected] (M.J.); [email protected] (R.B.K.) 4 Institute of Animal and Dairy Sciences, Faculty of Animal Husbandry, University of Agriculture, Faisalabad-38040, Pakistan; [email protected] * Correspondence: [email protected]; Tel.: +86-138-7880-5296 These authors contributed equally to this manuscript. y Received: 26 October 2020; Accepted: 18 November 2020; Published: 23 November 2020 Abstract: Heat-shock proteins (HSP) are conserved chaperones crucial for protein degradation, maturation, and refolding. These adenosine triphosphate dependent chaperones were classified based on their molecular mass that ranges between 10–100 kDA, including; HSP10, HSP40, HSP70, HSP90, HSPB1, HSPD, and HSPH1 family. HSPs are essential for cellular responses and imperative for protein homeostasis and survival under stress conditions. This study performed a computational analysis of the HSP protein family to better understand these proteins at the molecular level.
    [Show full text]
  • Human Induced Pluripotent Stem Cell–Derived Podocytes Mature Into Vascularized Glomeruli Upon Experimental Transplantation
    BASIC RESEARCH www.jasn.org Human Induced Pluripotent Stem Cell–Derived Podocytes Mature into Vascularized Glomeruli upon Experimental Transplantation † Sazia Sharmin,* Atsuhiro Taguchi,* Yusuke Kaku,* Yasuhiro Yoshimura,* Tomoko Ohmori,* ‡ † ‡ Tetsushi Sakuma, Masashi Mukoyama, Takashi Yamamoto, Hidetake Kurihara,§ and | Ryuichi Nishinakamura* *Department of Kidney Development, Institute of Molecular Embryology and Genetics, and †Department of Nephrology, Faculty of Life Sciences, Kumamoto University, Kumamoto, Japan; ‡Department of Mathematical and Life Sciences, Graduate School of Science, Hiroshima University, Hiroshima, Japan; §Division of Anatomy, Juntendo University School of Medicine, Tokyo, Japan; and |Japan Science and Technology Agency, CREST, Kumamoto, Japan ABSTRACT Glomerular podocytes express proteins, such as nephrin, that constitute the slit diaphragm, thereby contributing to the filtration process in the kidney. Glomerular development has been analyzed mainly in mice, whereas analysis of human kidney development has been minimal because of limited access to embryonic kidneys. We previously reported the induction of three-dimensional primordial glomeruli from human induced pluripotent stem (iPS) cells. Here, using transcription activator–like effector nuclease-mediated homologous recombination, we generated human iPS cell lines that express green fluorescent protein (GFP) in the NPHS1 locus, which encodes nephrin, and we show that GFP expression facilitated accurate visualization of nephrin-positive podocyte formation in
    [Show full text]
  • The HSP70 Chaperone Machinery: J Proteins As Drivers of Functional Specificity
    REVIEWS The HSP70 chaperone machinery: J proteins as drivers of functional specificity Harm H. Kampinga* and Elizabeth A. Craig‡ Abstract | Heat shock 70 kDa proteins (HSP70s) are ubiquitous molecular chaperones that function in a myriad of biological processes, modulating polypeptide folding, degradation and translocation across membranes, and protein–protein interactions. This multitude of roles is not easily reconciled with the universality of the activity of HSP70s in ATP-dependent client protein-binding and release cycles. Much of the functional diversity of the HSP70s is driven by a diverse class of cofactors: J proteins. Often, multiple J proteins function with a single HSP70. Some target HSP70 activity to clients at precise locations in cells and others bind client proteins directly, thereby delivering specific clients to HSP70 and directly determining their fate. In their native cellular environment, polypeptides are participates in such diverse cellular functions. Their constantly at risk of attaining conformations that pre- functional diversity is remarkable considering that vent them from functioning properly and/or cause them within and across species, HSP70s have high sequence to aggregate into large, potentially cytotoxic complexes. identity. They share a single biochemical activity: an Molecular chaperones guide the conformation of proteins ATP-dependent client-binding and release cycle com- throughout their lifetime, preventing their aggregation bined with client protein recognition, which is typi- by protecting interactive surfaces against non-productive cally rather promiscuous. This apparent conundrum interactions. Through such inter actions, molecular chap- is resolved by the fact that HSP70s do not work alone, erones aid in the folding of nascent proteins as they are but rather as ‘HSP70 machines’, collaborating with synthesized by ribosomes, drive protein transport across and being regulated by several cofactors.
    [Show full text]
  • Discovery of a Molecular Glue That Enhances Uprmt to Restore
    bioRxiv preprint doi: https://doi.org/10.1101/2021.02.17.431525; this version posted February 17, 2021. The copyright holder for this preprint (which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. Title: Discovery of a molecular glue that enhances UPRmt to restore proteostasis via TRKA-GRB2-EVI1-CRLS1 axis Authors: Li-Feng-Rong Qi1, 2 †, Cheng Qian1, †, Shuai Liu1, 2†, Chao Peng3, 4, Mu Zhang1, Peng Yang1, Ping Wu3, 4, Ping Li1 and Xiaojun Xu1, 2 * † These authors share joint first authorship Running title: Ginsenoside Rg3 reverses Parkinson’s disease model by enhancing mitochondrial UPR Affiliations: 1 State Key Laboratory of Natural Medicines, China Pharmaceutical University, 210009, Nanjing, Jiangsu, China. 2 Jiangsu Key Laboratory of Drug Discovery for Metabolic Diseases, China Pharmaceutical University, 210009, Nanjing, Jiangsu, China. 3. National Facility for Protein Science in Shanghai, Zhangjiang Lab, Shanghai Advanced Research Institute, Chinese Academy of Science, Shanghai 201210, China 4. Shanghai Science Research Center, Chinese Academy of Sciences, Shanghai, 201204, China. Corresponding author: Ping Li, State Key Laboratory of Natural Medicines, China Pharmaceutical University, 210009, Nanjing, Jiangsu, China. Email: [email protected], Xiaojun Xu, State Key Laboratory of Natural Medicines, Jiangsu Key Laboratory of Drug Discovery for Metabolic Diseases, China Pharmaceutical University, 210009, Nanjing, Jiangsu, China. Telephone number: +86-2583271203, E-mail: [email protected]. bioRxiv preprint doi: https://doi.org/10.1101/2021.02.17.431525; this version posted February 17, 2021. The copyright holder for this preprint (which was not certified by peer review) is the author/funder.
    [Show full text]
  • Single Cell Derived Clonal Analysis of Human Glioblastoma Links
    SUPPLEMENTARY INFORMATION: Single cell derived clonal analysis of human glioblastoma links functional and genomic heterogeneity ! Mona Meyer*, Jüri Reimand*, Xiaoyang Lan, Renee Head, Xueming Zhu, Michelle Kushida, Jane Bayani, Jessica C. Pressey, Anath Lionel, Ian D. Clarke, Michael Cusimano, Jeremy Squire, Stephen Scherer, Mark Bernstein, Melanie A. Woodin, Gary D. Bader**, and Peter B. Dirks**! ! * These authors contributed equally to this work.! ** Correspondence: [email protected] or [email protected]! ! Supplementary information - Meyer, Reimand et al. Supplementary methods" 4" Patient samples and fluorescence activated cell sorting (FACS)! 4! Differentiation! 4! Immunocytochemistry and EdU Imaging! 4! Proliferation! 5! Western blotting ! 5! Temozolomide treatment! 5! NCI drug library screen! 6! Orthotopic injections! 6! Immunohistochemistry on tumor sections! 6! Promoter methylation of MGMT! 6! Fluorescence in situ Hybridization (FISH)! 7! SNP6 microarray analysis and genome segmentation! 7! Calling copy number alterations! 8! Mapping altered genome segments to genes! 8! Recurrently altered genes with clonal variability! 9! Global analyses of copy number alterations! 9! Phylogenetic analysis of copy number alterations! 10! Microarray analysis! 10! Gene expression differences of TMZ resistant and sensitive clones of GBM-482! 10! Reverse transcription-PCR analyses! 11! Tumor subtype analysis of TMZ-sensitive and resistant clones! 11! Pathway analysis of gene expression in the TMZ-sensitive clone of GBM-482! 11! Supplementary figures and tables" 13" "2 Supplementary information - Meyer, Reimand et al. Table S1: Individual clones from all patient tumors are tumorigenic. ! 14! Fig. S1: clonal tumorigenicity.! 15! Fig. S2: clonal heterogeneity of EGFR and PTEN expression.! 20! Fig. S3: clonal heterogeneity of proliferation.! 21! Fig.
    [Show full text]
  • Prognostic and Functional Significant of Heat Shock Proteins (Hsps)
    biology Article Prognostic and Functional Significant of Heat Shock Proteins (HSPs) in Breast Cancer Unveiled by Multi-Omics Approaches Miriam Buttacavoli 1,†, Gianluca Di Cara 1,†, Cesare D’Amico 1, Fabiana Geraci 1 , Ida Pucci-Minafra 2, Salvatore Feo 1 and Patrizia Cancemi 1,2,* 1 Department of Biological Chemical and Pharmaceutical Sciences and Technologies (STEBICEF), University of Palermo, 90128 Palermo, Italy; [email protected] (M.B.); [email protected] (G.D.C.); [email protected] (C.D.); [email protected] (F.G.); [email protected] (S.F.) 2 Experimental Center of Onco Biology (COBS), 90145 Palermo, Italy; [email protected] * Correspondence: [email protected]; Tel.: +39-091-2389-7330 † These authors contributed equally to this work. Simple Summary: In this study, we investigated the expression pattern and prognostic significance of the heat shock proteins (HSPs) family members in breast cancer (BC) by using several bioinfor- matics tools and proteomics investigations. Our results demonstrated that, collectively, HSPs were deregulated in BC, acting as both oncogene and onco-suppressor genes. In particular, two different HSP-clusters were significantly associated with a poor or good prognosis. Interestingly, the HSPs deregulation impacted gene expression and miRNAs regulation that, in turn, affected important bio- logical pathways involved in cell cycle, DNA replication, and receptors-mediated signaling. Finally, the proteomic identification of several HSPs members and isoforms revealed much more complexity Citation: Buttacavoli, M.; Di Cara, of HSPs roles in BC and showed that their expression is quite variable among patients. In conclusion, G.; D’Amico, C.; Geraci, F.; we elaborated two panels of HSPs that could be further explored as potential biomarkers for BC Pucci-Minafra, I.; Feo, S.; Cancemi, P.
    [Show full text]
  • Characterization of the Dual Functional Effects of Heat Shock Proteins (Hsps
    Zhang et al. Genome Medicine (2020) 12:101 https://doi.org/10.1186/s13073-020-00795-6 RESEARCH Open Access Characterization of the dual functional effects of heat shock proteins (HSPs) in cancer hallmarks to aid development of HSP inhibitors Zhao Zhang1†, Ji Jing2†, Youqiong Ye1, Zhiao Chen1, Ying Jing1, Shengli Li1, Wei Hong1, Hang Ruan1, Yaoming Liu1, Qingsong Hu3, Jun Wang4, Wenbo Li1, Chunru Lin3, Lixia Diao5*, Yubin Zhou2* and Leng Han1* Abstract Background: Heat shock proteins (HSPs), a representative family of chaperone genes, play crucial roles in malignant progression and are pursued as attractive anti-cancer therapeutic targets. Despite tremendous efforts to develop anti-cancer drugs based on HSPs, no HSP inhibitors have thus far reached the milestone of FDA approval. There remains an unmet need to further understand the functional roles of HSPs in cancer. Methods: We constructed the network for HSPs across ~ 10,000 tumor samples from The Cancer Genome Atlas (TCGA) and ~ 10,000 normal samples from Genotype-Tissue Expression (GTEx), and compared the network disruption between tumor and normal samples. We then examined the associations between HSPs and cancer hallmarks and validated these associations from multiple independent high-throughput functional screens, including Project Achilles and DRIVE. Finally, we experimentally characterized the dual function effects of HSPs in tumor proliferation and metastasis. Results: We comprehensively analyzed the HSP expression landscape across multiple human cancers and revealed a global disruption of the co-expression network for HSPs. Through analyzing HSP expression alteration and its association with tumor proliferation and metastasis, we revealed dual functional effects of HSPs, in that they can simultaneously influence proliferation and metastasis in opposite directions.
    [Show full text]
  • A Splicing Mutation in the Novel Mitochondrial Protein DNAJC11
    A Splicing Mutation in the Novel Mitochondrial Protein DNAJC11 Causes Motor Neuron Pathology Associated with Cristae Disorganization, and Lymphoid Abnormalities in Mice Fotis Ioakeimidis1,2, Christine Ott3, Vera Kozjak-Pavlovic3, Foteini Violitzi1,2, Vagelis Rinotas1,2, Eleni Makrinou2, Elias Eliopoulos1, Costas Fasseas4, George Kollias2, Eleni Douni1,2* 1 Department of Biotechnology, Agricultural University of Athens, Athens, Greece, 2 Division of Immunology, Biomedical Sciences Research Center ‘‘Alexander Fleming’’, Vari, Greece, 3 Department of Microbiology, Biocenter, University of Wu¨rzburg, Wu¨rzburg, Germany, 4 Department of Crop Science, Agricultural University of Athens, Athens, Greece Abstract Mitochondrial structure and function is emerging as a major contributor to neuromuscular disease, highlighting the need for the complete elucidation of the underlying molecular and pathophysiological mechanisms. Following a forward genetics approach with N-ethyl-N-nitrosourea (ENU)-mediated random mutagenesis, we identified a novel mouse model of autosomal recessive neuromuscular disease caused by a splice-site hypomorphic mutation in a novel gene of unknown function, DnaJC11. Recent findings have demonstrated that DNAJC11 protein co-immunoprecipitates with proteins of the mitochondrial contact site (MICOS) complex involved in the formation of mitochondrial cristae and cristae junctions. Homozygous mutant mice developed locomotion defects, muscle weakness, spasticity, limb tremor, leucopenia, thymic and splenic hypoplasia, general wasting and early lethality. Neuropathological analysis showed severe vacuolation of the motor neurons in the spinal cord, originating from dilatations of the endoplasmic reticulum and notably from mitochondria that had lost their proper inner membrane organization. The causal role of the identified mutation in DnaJC11 was verified in rescue experiments by overexpressing the human ortholog.
    [Show full text]
  • A SARS-Cov-2 Protein Interaction Map Reveals Targets for Drug Repurposing
    Article A SARS-CoV-2 protein interaction map reveals targets for drug repurposing https://doi.org/10.1038/s41586-020-2286-9 A list of authors and affiliations appears at the end of the paper Received: 23 March 2020 Accepted: 22 April 2020 A newly described coronavirus named severe acute respiratory syndrome Published online: 30 April 2020 coronavirus 2 (SARS-CoV-2), which is the causative agent of coronavirus disease 2019 (COVID-19), has infected over 2.3 million people, led to the death of more than Check for updates 160,000 individuals and caused worldwide social and economic disruption1,2. There are no antiviral drugs with proven clinical efcacy for the treatment of COVID-19, nor are there any vaccines that prevent infection with SARS-CoV-2, and eforts to develop drugs and vaccines are hampered by the limited knowledge of the molecular details of how SARS-CoV-2 infects cells. Here we cloned, tagged and expressed 26 of the 29 SARS-CoV-2 proteins in human cells and identifed the human proteins that physically associated with each of the SARS-CoV-2 proteins using afnity-purifcation mass spectrometry, identifying 332 high-confdence protein–protein interactions between SARS-CoV-2 and human proteins. Among these, we identify 66 druggable human proteins or host factors targeted by 69 compounds (of which, 29 drugs are approved by the US Food and Drug Administration, 12 are in clinical trials and 28 are preclinical compounds). We screened a subset of these in multiple viral assays and found two sets of pharmacological agents that displayed antiviral activity: inhibitors of mRNA translation and predicted regulators of the sigma-1 and sigma-2 receptors.
    [Show full text]