Orbital Fractures

Total Page:16

File Type:pdf, Size:1020Kb

Orbital Fractures Vadim P. Nikolaenko Yury S. Astakhov Editors Orbital Fractures A Physician’s Manual 123 Orbital Fractures Vadim P. Nikolaenko • Yury S. Astakhov Editors Orbital Fractures A Physician's Manual Editors Vadim P. Nikolaenko, MD, PhD, DSc Yury S. Astakhov, MD, PhD, DSc Ophthalmology Ophthalmology Saint-Petersburg State Hospital No. 2 I.P. Pavlov First Saint Petersburg State Saint-Petersburg Medical University Russia Saint-Petersburg Russia Authorized translation of the 1st Russian language edition Orbital Fractures – A Physician’s Manual by Vadim P. Nikolaenko and Yury S. Astakhov © LLC Eco-Vektor, Saint-Petersburg, Russia, 2012, www.eco-vector.com All Rights Reserved ISBN 978-3-662-46207-2 ISBN 978-3-662-46208-9 (eBook) DOI 10.1007/978-3-662-46208-9 Library of Congress Control Number: 2015934822 Springer Heidelberg New York Dordrecht London © Springer-Verlag Berlin Heidelberg 2015 This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or part of the material is concerned, specifi cally the rights of translation, reprinting, reuse of illustrations, recita- tion, broadcasting, reproduction on microfi lms or in any other physical way, and transmission or infor- mation storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar methodology now known or hereafter developed. The use of general descriptive names, registered names, trademarks, service marks, etc. in this publica- tion does not imply, even in the absence of a specifi c statement, that such names are exempt from the relevant protective laws and regulations and therefore free for general use. The publisher, the authors and the editors are safe to assume that the advice and information in this book are believed to be true and accurate at the date of publication. Neither the publisher nor the authors or the editors give a warranty, express or implied, with respect to the material contained herein or for any errors or omissions that may have been made. Printed on acid-free paper Springer is part of Springer Science+Business Media (www.springer.com) Pref ace Craniofacial injury has drawn particular attention in the last years due to increasing rates of motor vehicle accidents, deteriorating crime rates, domestic violence, and terrorist threat. Over the last 15–20 years, the research effort provided a large amount of data, new diagnostic and treatment strategies of midface injuries appeared. Still, there is pressing need especially among resident and young specialists in comprehensive textbooks and manuals to critically review this large body of knowledge and provide evidence-based information on natural history, clinical presentation, diagnosis, and treatment of orbital fractures. The authors attempted to summarize all relevant clinical topics on signs and symptoms, diagnosis, and treatment of orbital fractures through the prism of years of clinical practice and research data. This manual consists of eight chapters. The fi rst chapter is a discussion of bony and soft tissue anatomy of the orbit as well as its vascular and nerve supply. The second chapter deals with the imaging of the orbit. The third chapter focuses on the clinical presentation, diagnosis, and treatment of the most common orbital frac- tures—fractures of the orbital fl oor. The fourth chapter highlights isolated medial wall fractures, while in the fi fth chapter, medial wall fractures are discussed in the context of naso-orbito-ethmoid injuries. The sixth and seventh chapters review the injury to the orbit associated with zygomatic and maxillary fractures. Finally, the eighth chapter covers the essentials of frontobasilar fractures. This manual would be impossible without the support and expertise of our col- leagues—experienced specialists in anatomy, imaging, otolaryngology, maxillo- facial surgery, and neurosurgery. We would like to acknowledge the invaluable help of professor I. Gaivoronovsky, MD, PhD, Head of Department of Anatomy, Military Medical Academy (Chap. 1 ). Professor S. Karpischenko, MD, PhD, Head of Department of Otolaryngology, St. Petersburg State Medical University, shared his expertise in multiple orbital injuries and trauma to sinuses (Chaps. 4 and 5 ). Professor G. Khatskevich, MD, PhD, Head of Department of Pediatric Dentistry, and assistant professors M. Soloviev and I. Trofi mov, MD, PhD, Department of Pediatric Dentistry from St. Petersburg State Medical University, were coauthors of Chaps. 6 and 7 . Professor Yu. Shulev, MD, PhD, Department of Neurosurgery, North-Western State Medical University, shared his extensive knowledge in Chap. 8 . v vi Preface CT and MRI anatomy of the orbit (Chap. 2 ) was discussed in collaboration with G. Trufanov, MD, PhD (Head of Department of Radiology), E. Burlachenko (Department of Radiology), V. Lugina (Department of Ophthalmology) from Military Medical Academy, St. Petersburg, Russia, and V. Zakharov, MD, PhD, Head of Department of Radiology, State Clinical Hospital #2, St. Petersburg, Russia. The purpose of Orbital Fractures: Physician’s Manual is to serve as a textbook for a wide range of medical specialists including ophthalmologists, maxillofacial surgeons, neurosurgeons, neurologists, otolaryngologists, radiologists, and emer- gency doctors. This book is an excellent resource for all medical students, residents in ophthalmology, and fellows who desire to broaden their spectrum of knowledge in orbital pathology. This manual is our fi rst experience in describing a multidisciplinary approach to orbital injuries. The authors would be very grateful for comments and feedback from the readers. Saint-Petersburg, Russia Vadim P. Nikolaenko, MD, PhD, DSc Saint-Petersburg, Russia Yury S. Astakhov, MD, PhD, DSc Acknowledgment Authors would like to thank Edward Cherney, MD, PhD, who thorougly reviewed the book and whose patientce and expertise made the English editions of this book possible. vii Contents 1 Clinical Anatomy of the Orbit and Periorbital Area . 1 Vadim P. Nikolaenko , Yury S. Astakhov , and Ivan V. Gaivoronsky 2 Radiological Examination of the Orbit . 69 Vadim P. Nikolaenko , Yury S. Astakhov , Gennadiy E. Trufanov , Evgeniy P. Burlachenko , Valery V. Zakharov , and Valentina D. Lugina 3 Orbital Floor Fractures . 121 Vadim P. Nikolaenko and Yury S. Astakhov 4 Medial Wall Fractures . 231 Vadim P. Nikolaenko , Yury S. Astakhov , and Sergei A. Karpischenko 5 Naso-Orbito-Ethmoid Fractures . 251 Vadim P. Nikolaenko , Yury S. Astakhov , and Sergei A. Karpischenko 6 Zygomaticoorbital Fractures . 271 Vadim P. Nikolaenko , Yury S. Astakhov , Mikhail M. Soloviev , G. Khatskevich , and Igor G. Trofi mov 7 Maxillary Fractures . 303 Vadim P. Nikolaenko , Yury S. Astakhov , Mikhail M. Soloviev , G. Khatskevich , and Igor G. Trofi mov 8 Frontobasilar Fractures . 325 Vadim P. Nikolaenko , Yury S. Astakhov , Yury A. Shulev , and Sergei A. Karpischenko ix Clinical Anatomy of the Orbit and Periorbital Area 1 Vadim P. Nikolaenko , Yury S. Astakhov , and Ivan V. Gaivoronsky Contents 1.1 Bones Forming the Orbit 3 1.2 Soft Tissues of the Orbit 16 1.3 Blood Supply to the Orbit 37 1.4 Characteristics of the Cranial Nerves Involved in Innervation of the Orbital Complex 42 1.5 Anatomy of Paranasal Sinuses 57 1.6 Anatomy of the Temporal, Infratemporal, and Pterygopalatine Fossae 61 References 64 Further Reading 67 The orbit is a paired bony socket in the facial portion of the skull located on both sides of the nasal root. The three-dimensional reconstruction of the orbit is more likely to be shaped like a pear than like a quadrilateral pyramid losing one of its facets in the orbital apex area (as it is conventionally described in the textbooks) (Fig. 1.1a ). V. P. Nikolaenko , MD, PhD (*) Department of Ophthalmology, Saint Petersburg State Hospital No. 2, Saint-Petersburg, Russia Department of Otolaryngology and Ophthalmology, Medical Faculty, Saint-Petersburg State University, Saint-Petersburg, Russia e-mail: [email protected] Y. S. Astakhov Department of Ophthalmology, I.P. Pavlov First Saint Petersburg State Medical University, Saint-Petersburg, Russia City Ophthalmologic Center at Saint Petersburg State Hospital No. 2, Saint-Petersburg, Russia I. V. Gaivoronsky Department of Normal Anatomy, Kirov Military Medical Academy , Saint-Petersburg , Russia Department of Morphology, Saint-Petersburg State University , Saint-Petersburg , Russia © Springer-Verlag Berlin Heidelberg 2015 1 V.P. Nikolaenko, Y.S. Astakhov (eds.), Orbital Fractures: A Physician’s Manual, DOI 10.1007/978-3-662-46208-9_1 2 V.P. Nikolaenko et al. a b c Fig. 1.1 Orbit anatomy: ( a ) pear-shaped 3D model of the orbit; ( b , c ) axial cross-sectional images of the orbits and the main parameters of the interorbital topographic and anatomic relationships: the medial orbital walls are almost parallel; the lateral orbital walls make a right angle. The inter- orbital distance is 25 mm; the angle between the optic nerves is 45°; the angle between the optic nerve and the optic axis is 22.5° The axes of the orbital pyramids converge backward and diverge forward; the medial orbital walls are almost parallel, while the lateral ones make a right angle [ 1 ]. If the optic nerves are taken as the reference points, the normal divergence angle of the optical axes does not exceed 45°, which can be clearly seen in the computed axial tomography scans (Fig. 1.1b, c ). The permanent adduction stimulus induced by divergence of the orbits (to maintain orthophoria) is responsible for the fact that the medial rectus is the strongest extraocular rectus muscle. Elimination of the con- vergence stimulus in individuals with a blind eye causes a noticeable temporal devi- ation of the blind eye (exotropia). The divergence angle of the optical axes determines the interorbital distance (the distance between the anterior lacrimal crests). It is the crucial element of facial har- mony. The normal interorbital distance in adults varies from 18.5 mm to 30.7 mm; the ideal value is 25 mm. Both decreased ( stenopia ) and increased ( euryopia ) inter- orbital distances are indicative of a severe craniofacial anomaly. 1 Clinical Anatomy of the Orbit and Periorbital Area 3 The average length of the anteroposterior axis (“depth”) of the orbit in adults is 45 mm .
Recommended publications
  • Orbital Blowout Fractures in Sport
    Br J Sp Med 1994; 28(4) Br J Sports Med: first published as 10.1136/bjsm.28.4.272 on 1 December 1994. Downloaded from Orbital blowout fractures in sport N. P. Jones FRCS FCOphth University Department of Ophthalmology, Manchester Royal Eye Hospital, Manchester, UK One-third of orbital blowout fractures are sustained with confirmed pure orbital blowout fractures. during sport. Soccer is most commonly involved. Though Particular attention was paid to blowout fractures visual acuity recovery is usually complete, permanent loss sustained during sport: the sport involved; the of binocular visual field is almost universal. Typically mechanism of injury; the necessary treatment; and high-energy blows by opponent's finger, fist, elbow, knee residual visual problem. or boot are responsible. Injuries to the eye itself may also be sustained and should be looked for. Ocular protection may be feasible in some sports, but the main preventive Results measure to be addressed is the reduction in aggressive play or deliberate injury. During the retrospective study period a total of 62 pure orbital blowout fractures was identified in 62 Keywords: Blowout fracture, sports injury patients. Various forms of assault accounted for 33 (53%) of these patients. Twenty-three fractures (37%) were sustained as a result of sporting activity. The The phenomenon of isolated orbital wall fracture was aetiology of all fractures is shown in Table 1. first recognized in the 19th century1 but the term Of those fractures sustained at sport, Table 2 shows 'blowout' was attributed in 1957 by Converse and the sport involved, the most common being soccer Smith2.
    [Show full text]
  • Clinical Features and Treatment of Pediatric Orbit Fractures
    ORIGINAL INVESTIGATION Clinical Features and Treatment of Pediatric Orbit Fractures Eric M. Hink, M.D.*, Leslie A. Wei, M.D.*, and Vikram D. Durairaj, M.D., F.A.C.S.*† Departments of *Ophthalmology, and †Otolaryngology and Head and Neck Surgery, University of Colorado Denver, Aurora, Colorado, U.S.A. of craniofacial skeletal development.1 Orbit fractures may be Purpose: To describe a series of orbital fractures and associated with ophthalmic, neurologic, and craniofacial inju- associated ophthalmic and craniofacial injuries in the pediatric ries that may require intervention. The result is that pediatric population. facial trauma is often managed by a diverse group of specialists, Methods: A retrospective case series of 312 pediatric and each service may have their own bias as to the ideal man- patients over a 9-year period (2002–2011) with orbit fractures agement plan.4 In addition, children’s skeletal morphology and diagnosed by CT. physiology are quite different from adults, and the benefits of Results: Five hundred ninety-one fractures in 312 patients surgery must be weighed against the possibility of detrimental were evaluated. There were 192 boys (62%) and 120 girls (38%) changes to facial skeletal growth and development. The purpose with an average age of 7.3 years (range 4 months to 16 years). of this study was to describe a series of pediatric orbital frac- Orbit fractures associated with other craniofacial fractures were tures; associated ophthalmic, neurologic, and craniofacial inju- more common (62%) than isolated orbit fractures (internal ries; and fracture management and outcomes. fractures and fractures involving the orbital rim but without extension beyond the orbit) (38%).
    [Show full text]
  • Endoscopic Endonasal Repair of Orbital Floor Fracture
    ORIGINAL ARTICLE Endoscopic Endonasal Repair of Orbital Floor Fracture Katsuhisa Ikeda, MD; Hideaki Suzuki, MD; Takeshi Oshima, MD; Tomonori Takasaka, MD Background: High-resolution endoscopes and the ad- (mean age, 24 years). These patients had undergone pri- vent of endoscopic instruments for sinus surgery pro- mary repair of pure orbital blowout fractures and were vide surgeons with excellent endonasal visualization and followed up at least 6 months after surgery. access to the orbital walls. Results: There were no intraoperative or postoperative Objective: To demonstrate repair of orbital floor blow- complications. Nine patients showed a complete im- out fractures through an intranasal endoscopic ap- provement of their diplopia. Two patients with poste- proach that allows repair of the orbital floor fracture and rior fractures showed persistent diplopia, which was well elevation of the orbital content using a balloon catheter managed by prisms. without an external incision. Conclusion: Endoscopic repair of the orbital floor blow- Design: This study was a retrospective analysis of 11 out fracture using an endonasal approach appears to be a patients who underwent surgical repair of orbital floor safe and effective technique for the treatment of diplopia. fractures from September 1994 to June 1997. There were 10 male patients and 1 female patient, aged 12 to 32 years Arch Otolaryngol Head Neck Surg. 1999;125:59-63 HE ORBITAL floor blowout RESULTS fracture is characterized by the involvement of Demographic and clinical patient pro- only the wall of the orbit files are given in the Table. There were with an intact orbital rim1 no intraoperative or postoperative com- Tafter blunt trauma.
    [Show full text]
  • Visor Osteotomy of the Anterior Mandible Avoid an Excessive Mentolabial Fold.7 the Lateral Wings of the Genial Segment, However, Are Prone to Resorbtion
    View metadata, citation and similar papers at core.ac.uk BRIEF CLINICAL STUDIES brought to you by CORE provided by Bern Open Repository and Information System (BORIS) MATERIAL AND METHODS Visor Osteotomy of the Clinical Report Anterior Mandible An 18-year-old girl was referred for treatment of micrognathia Albino Triaca, DMD, DDS,Ã Daniel Brusco, DMD, DDS,Ã inferior congenita. Once orthodontic presurgical alignment was Roger Minoretti, DMD, DDS,y and done, cone beam computed tomography (eXam-Vision 3D, Ima- Nikola Saulacic, DDS, PhDz ging Sciences International, KaVo Dental GmbH, Biberach, Germany) was used to determine the quantity of jaw bone and morphology (Fig. 1A-B). The occlusal plane was corrected by Abstract: Current techniques for three-dimensional correction bilateral sagittal split rotation osteotomies. Simultaneously, wing of the chin in patients with mandibular retrusion may increase osteotomy was performed to vertically enlarge the mandibular mentolabial fold depth, but have limited effect on the lips. The border plane (Fig. 1C-D).11 Upper wisdom teeth were also authors present a single surgical technique to support the extracted. Two years later, the patient was scheduled for visor mentolabial fold and improve labial competence. The visor osteotomy to increase support of the mentolabial fold. The patient osteotomy is performed from canine to canine. The bone frag- signed a written consent form. ment pedicled to the lingual periosteum is coronally mobilized Surgery was performed under local anesthesia. Mucosa was and fixed in the new position. Preserved vascularization is incised in the vestibulum from premolars to premolars, 0.5 to 1.0 cm supposed to minimize the amount of bone resorbed.
    [Show full text]
  • Penetrating Knife Wounds to the Orbital Region
    Trauma and Emergency Care Case Report Penetrating knife wounds to the orbital region: A report of two cases Rodrigo Liceaga Reyes1, Luis Manuel Bustos Aguilera2 and Luis Gerardo Fuenmayor García3 1Maxillofacial Surgery Department, Specialities Hospital, Campeche, México 2Maxillofacial Surgery Department, General Hospital, Aguascalientes, México 3Maxillofacial Surgery Department, General Hospital, Guadalajara, México Abstract Background: Penetrating knife injuries to the orbit are rare and infrequently reported. The orbit is a vulnerable area that provides access to the intracranial cavity, and a penetrating foreign object can injure eye, meninges and the central nervous system. The approach to treatment should be multidisciplinary, beginning with the trauma unit to provide airway maintenance and haemodynamic stabilization. Objectives: The aim of the present was to describe and analyze penetrating knife injuries to the orbit, and discuss diverse types of orbital damage and treatments according to the kinematics of the trauma. Materials and methods: It was a retrospective study, analysing 2 cases of penetrating knife injuries to the orbit reported at maxillofacial department. Conclusions: Patients with knife penetrating wounds of the orbital region and orbital fractures are infrequent. The kinematics of traumatism, types of knife and force magnitude are fundamental factors to determine the damage produced by the knife and thus the treatment. Treatment should always be multidisciplinary and giving priority to vital structures and functions and the health of the ocular globe. Introduction showed normal eye and muscle structures (Figures 2 and 3) and a pure blow blowout fracture of the orbital floor (Figure 4). The patient had Knife wounds to the maxillofacial region are infrequently reported; brought with him the kitchen knife he had been assaulted with, (Figure although they can be a significant life threat to the patient [1].
    [Show full text]
  • Extracranial Course of Cranial Nerves
    Extracranial course of cranial nerves Oculomotor, Trochlear, Abducent, Trigeminal, Facial and Accessory nerves Dr. Heba Kalbouneh Associate Professor of Anatomy and Histology Dr. Heba Kalbouneh Brainstem Mid brain Pons Medulla Pons Inferior view Facial nerve Anatomically, the course of the facial nerve can be divided into two parts: Motor: Innervates the muscles of facial Intracranial – the course of the nerve through expression, the posterior belly of the the cranial cavity, and the cranium itself. digastric, the stylohyoid and the stapedius Extracranial – the course of the nerve outside muscles. the cranium, through the face and neck. General Sensory: A small area around the concha of the auricle, EAM Special Sensory: Provides special taste sensation to the anterior 2/3 of the tongue. Parasympathetic: Supplies many of the glands of the head and neck, including: 1- Submandibular and sublingual salivary glands (via the submandibular ganglion/ chorda tympani) 2- Nasal, palatine and pharyngeal mucous glands (via the pterygopalatine ganglion/ greater petrosal) 3- Lacrimal glands (via the pterygopalatine ganglion/ greater petrosal) Dr. Heba Kalbouneh Intracranial course The nerve arises in the pons. It begins as two roots; a large motor root, and a small sensory root The two roots travel through the internal acoustic meatus. Pons Here, they are in very close proximity to the inner ear. 7th (motor) 8th Note: The part of the facial nerve that runs between the motor root of facial and vestibulocochlear nerve is sometimes Kalbouneh known as the nervus intermedius It contains the sensory and parasympathetic Heba fibers of the facial nerve Dr. Dr. Still within the temporal bone, the roots leave the internal acoustic meatus, and enter into the facial canal.
    [Show full text]
  • Meet the Krash Family
    Meet the Krash Family “Get in the van, kids! We’re running late!” The Krash family of four is headed to Grandpa Krash’s 90th birthday party, and they’re off to a hectic start. Father Jimmy, 43, is at the wheel, impatient because his two kids (JJ, 17 and Ramona, 7) were slow to get ready to leave and now they’re running behind. On this late November afternoon, they’re traveling down Big River Road - a rural highway - at approximately 65 mph in a minivan, with temperatures dipping down into the 30’s. “Jimmy, slow down – you’re going too fast for these curvy country roads!” Jimmy’s wife Jane is nervous because Jimmy is hurrying more than she thinks is safe. Suddenly, just as they reach a blind curve, a deer darts out into the road causing him to jerk the wheel. Tires screeching on the asphalt, the minivan loses control and rolls down a four-foot embankment, flipping over and landing on its top, with the Krash family still inside. A passing motorist approaches a few minutes later and notices the fresh disturbance in the guardrail. Horrified at the possibility of a recent accident, she stops to investigate and notices the overturned minivan. She yells to the family that she’s getting help and rushes to call 911 for an ambulance, describing the scene as best she can. Folsom County Fire and EMS crews arrive within nine minutes of dispatch, and identify our four patients who are still inside the vehicle. A teenage boy appears to be trapped in the third row of the minivan, but the other three patients are removed while crews work to stabilize the vehicle.
    [Show full text]
  • The 'White-Eyed' Orbital Blowout Fracture: An
    Open Access Review Article DOI: 10.7759/cureus.4412 The ‘White-eyed’ Orbital Blowout Fracture: An Easily Overlooked Injury in Maxillofacial Trauma Nicholas P. Saggese 1 , Ebrahim Mohammadi 2 , Vito A. Cardo 1 1. Oral and Maxillofacial Surgery, Brookdale University Hospital and Medical Center, Brooklyn, USA 2. Oral and Maxillofacial Surgery, Babol University of Medical Science, Babol, IRN Corresponding author: Nicholas P. Saggese, [email protected] Abstract The ‘white-eyed’ blowout fracture (WEBOF) is an injury that is often overlooked in head trauma patients, as it often has few overt clinical and radiographic features. Although benign in appearance, it can lead to significant patient morbidity. Here, we intend to increase the awareness of WEBOF and provide general principles for its diagnosis. WEBOF should be recognized early to ensure timely management and a successful outcome. Categories: Emergency Medicine, Ophthalmology, Trauma Keywords: white-eyed, orbital trauma, missed injury, misdiagnosis, maxillofacial trauma, muscle entrapment, lamina papyracea, oculocardiac reflex, orbital blowout fracture, diagnostic pitfall Introduction And Background Orbital wall fractures can lead to serious patient morbidity, including the oculocardiac reflex (also known as Aschner phenomenon or trigeminocardiac reflex), diplopia, enophthalmos, hypoglobus, infraorbital nerve paresthesia, and ophthalmoplegia [1]. In the setting of orbital trauma, orbital wall fractures have a reported incidence of 4% to 70% [2]. Clinical diagnosis can be difficult, especially when there are no other facial fractures present to increase the chance of ecchymosis and edema. Therefore, it is essential to assess the eyes of all head trauma patients carefully upon presentation to the emergency department (ED). Jordan et al. were the first to report that orbital fractures may lack external signs of injury, and coined the term white-eyed blowout fracture (WEBOF) in 1998 [3].
    [Show full text]
  • Atlas of the Facial Nerve and Related Structures
    Rhoton Yoshioka Atlas of the Facial Nerve Unique Atlas Opens Window and Related Structures Into Facial Nerve Anatomy… Atlas of the Facial Nerve and Related Structures and Related Nerve Facial of the Atlas “His meticulous methods of anatomical dissection and microsurgical techniques helped transform the primitive specialty of neurosurgery into the magnificent surgical discipline that it is today.”— Nobutaka Yoshioka American Association of Neurological Surgeons. Albert L. Rhoton, Jr. Nobutaka Yoshioka, MD, PhD and Albert L. Rhoton, Jr., MD have created an anatomical atlas of astounding precision. An unparalleled teaching tool, this atlas opens a unique window into the anatomical intricacies of complex facial nerves and related structures. An internationally renowned author, educator, brain anatomist, and neurosurgeon, Dr. Rhoton is regarded by colleagues as one of the fathers of modern microscopic neurosurgery. Dr. Yoshioka, an esteemed craniofacial reconstructive surgeon in Japan, mastered this precise dissection technique while undertaking a fellowship at Dr. Rhoton’s microanatomy lab, writing in the preface that within such precision images lies potential for surgical innovation. Special Features • Exquisite color photographs, prepared from carefully dissected latex injected cadavers, reveal anatomy layer by layer with remarkable detail and clarity • An added highlight, 3-D versions of these extraordinary images, are available online in the Thieme MediaCenter • Major sections include intracranial region and skull, upper facial and midfacial region, and lower facial and posterolateral neck region Organized by region, each layered dissection elucidates specific nerves and structures with pinpoint accuracy, providing the clinician with in-depth anatomical insights. Precise clinical explanations accompany each photograph. In tandem, the images and text provide an excellent foundation for understanding the nerves and structures impacted by neurosurgical-related pathologies as well as other conditions and injuries.
    [Show full text]
  • Clinical Review: Facial Fracture
    CLINICAL Fracture, Facial REVIEW Indexing Metadata/Description › Title/condition: Fracture, Facial › Synonyms: Facial fracture › Anatomical location/body part affected: Face/mandible, orbit floor, maxilla, zygomatic arch, nose, cranial base, occiput › Area(s) of specialty: Orthopedic Rehabilitation › Description: Traumatic fractures of the midface and jaw, excluding skull/cranial fractures • Head and neck trauma is increasing in frequency in modern combat and is thought to be due to the increased use of improvised explosive devices and the increased likelihood of surviving severe wounds(8) › ICD-10 codes: • S07.0 crushing injury of face • S02.1 fracture of base of skull • S02.11 fracture of occiput • S02.2 fracture of nasal bones • S02.3 fracture of orbital floor • S02.4 fracture of malar, maxillary, and zygoma bones • S02.41 LeFort fracture • S02.6 fracture of mandible • S02.9 fracture of unspecified skull and facial bones (ICD codes are provided for the reader’s reference only, not for billing purposes) › Reimbursement: Reimbursement for therapy will depend on insurance contract coverage; no special agencies or specific issues regarding reimbursement have been identified for this condition. If the patient is an athlete with multiple facial fractures, a custom-made face mask might be required prior to return to athletic participation. Unfortunately, insurance might not cover the device, making it cost prohibitive and thus forcing an athlete to return to athletic competition at a much later time(1) Author › Presentation/signs and symptoms
    [Show full text]
  • September 2008 [KT 1572] Sub
    September 2008 [KT 1572] Sub. Code: 3115 DIPLOMA IN OTO-RHINO-LARYNGOLOGY EXAMINATION. Paper II – OTO-RHINO-LARYNGOLOGY INCLUDING AUDIOLOGY AND NEURO OTOLOGY (Candidates admitted upto 2003-2004 and Candidates admitted from 2004-2005 onwards) Q.P. Code : 353115 Time : Three hours Maximum : 100 marks Draw suitable diagram wherever necessary. Answer ALL questions. I. Essay questions : (2 X 20 = 40) 1. Discuss the etiology, clinical features and management epistaxis 2. Discuss the aetiopathogenesis, clinical features and managent of Post cricoid malignancy II. Write short notes on : (10 X 6 = 60) 1. Subglottic stenosis. 2. Otitic hydrocephalus. 3. Oroantral fistula. 4. Ennumerate ENT manifestations of AIDS. 5. Penetrating neck injuries. 6. Neoglottis. 7. Congenital cholesteatoma. 8. Prognostic tests for facial nerve palsy. 9. Puberphonia. 10. Cryosurgery in ENT diseases. ____________ MARCH -2009 [KU 1572] Sub. Code: 3115 DIPLOMA IN OTO-RHINO-LARYNGOLOGY EXAMINATION. Paper II – OTO-RHINO-LARYNGOLOGY INCLUDING AUDIOLOGY AND NEURO OTOLOGY (Common to all Regulations) Q.P. Code : 353115 Time : Three hours Maximum : 100 marks Draw suitable diagram wherever necessary. Answer ALL questions. I. Essay questions : (2 X 20 = 40) 1. Discuss the etiopathogenesis, clinical features and management of acoustic neuroma. 2. Describe the aetiology, clinical features and management of fungal sinusitis. II. Write short notes on : (10 X 6 = 60) 1. Stapedotomy. 2. Electronystagmography. 3. Vidian neurectomy. 4. CSF rhinorrhoea. 5. Blow out fracture. 6. Septal perforation. 7. Rhinophyma. 8. Perilymph fistula. 9. Tinnitus. 10. Tuberculous otitis media. ***** September - 2009 [KV 1572] Sub. Code: 3115 DIPLOMA IN OTO-RHINO-LARYNGOLOGY EXAMINATION. Paper II – OTO-RHINO-LARYNGOLOGY INCLUDING AUDIOLOGY AND NEURO OTOLOGY (Common to all Regulations) Q.P.
    [Show full text]
  • Clinical Anatomy of Greater Petrosal Nerve and Its Surgical Importance
    [Downloaded free from http://www.indianjotol.org on Monday, August 18, 2014, IP: 218.241.189.21] || Click here to download free Android application for this journal ORIGINAL ARTICLE Clinical anatomy of greater petrosal nerve and its surgical importance Prashant E Natekar, Fatima M De Souza Department of Anatomy, Goa Medical College, Bambolim, Goa, India Background: Surgical approach towards greater petrosal nerve has to be done with caution as many surgeons ABSTRACT are unfamiliar with the anatomy of the facial nerve. The anatomical landmarks selected must be reliable and above all easy to identify for identification of the greater petrosal nerve so as to avoid injury to the structures in the middle cranial fossa. Observation and Results: The present study is carried out on 100 temporal bones by examining the following measurements of the right and the left sides a) length of the hiatus for grater petrosal superficial nerve b) distance from superior petrosal sinus c) distance from lateral margin of middle cranial fossa d) arcuate eminence and e) distance from exit to the foramen ovale. Conclusion: The anatomical landmarks selected must be reliable and above all easy to identify. Bony structures are more suitable than soft tissue or cartilaginous landmarks because of their rigid and reliable location. These anatomical landmarks will definitely help the surgeon while performing vidian nerve neurectomy and also the anatomical relationship of the facial nerve in temporal bone. The middle fossa approach involves a temporal craniotomy in cases of perineural spread of adenoid cystic carcinomas hence these anatomical landmarks will serve as useful guide for the surgeons and radiologists.
    [Show full text]