Leaf Expansion – an Integrating Plant Behaviour

Total Page:16

File Type:pdf, Size:1020Kb

Leaf Expansion – an Integrating Plant Behaviour Plant, Cell and Environment (1999) 22, 1463–1473 COMMISSIONED REVIEW Leaf expansion – an integrating plant behaviour E. VAN VOLKENBURGH Department of Botany, Box 355325, University of Washington, Seattle, WA 98195, USA ABSTRACT the phase of leaf development contributing most to surface area and shape of the lamina. Leaves expand to intercept light for photosynthesis, to take Leaves can be considered, functionally, as iterated green up carbon dioxide, and to transpire water for cooling and antennae specialized for trapping light energy, absorbing circulation. The extent to which they expand is determined carbon dioxide, transpiring water, and monitoring the envi- partly by genetic constraints, and partly by environmental ronment. The leaf canopy may be made up of many or few, conditions signalling the plant to expand more or less leaf small or large leaves. They may be simple in shape, like the surface area. Leaves have evolved sophisticated sensory monocotyledonous leaves of grasses or dicotyledonous mechanisms for detecting these cues and responding with leaves of sunflower and elm. Or leaves may be more their own growth and function as well as influencing a complex, with intricate morphologies as different as the variety of whole-plant behaviours. Leaf expansion itself is delicate, sensitive structure of the Mimosa leaf is from the an integrating behaviour that ultimately determines canopy magnificent blade of Monstera. Some species, such as development and function, allocation of materials deter- cactus, do not develop leaves at all, but carry out leaf func- mining relative shoot : root volume, and the onset of repro- tions in the stem. Other plants display small leaves in order duction. To understand leaf development, and in particular, to conserve water, but with the consequence of limiting how leaf expansion is regulated, we must know at the mol- photosynthetic productivity. ecular level which biochemical processes accomplish cell Plant species can be lumped into groups of slow-growers growth. Physiological experimentation focusing on ion and rapid-growers, with contrasting ecological strategies fluxes across the plasmamembrane is providing new mol- paralleled by differences in leaf area (Lambers, Poorter & ecular information on how light stimulates cell expansion Van Vuuren 1998). Slowly growing species live in harsher in some dicotyledonous species. Genetic analyses in Ara- environments, and their low relative growth rate can be bidopsis, corn, and other species are rapidly generating attributed to production of small, or slowly expanding leaf a list of mutations and enzyme activities associated with area. More rapidly growing species may have evolved from leaf development and expansion. Combination of these slowly growing ones, or vice versa, and have a faster rela- approaches, using informed physiological interpretations of tive growth rate associated with more rapid development phenotypic variation will allow us in the future to identify of leaf area (Poorter & van der Werf 1998). Size and shape genes encoding both the processes causing cell expansion, of leaves is to a large extent genetically controlled, imply- and the regulators of these events. ing that these are adaptive features lending advantage to plants in specific habitats. Yet, developmental flexibility Key-words: cell expansion; ion transport; osmoregulation; exists even within an individual plant, with leaf size and phytochrome; proton pump; wall extensibility. shape depending on environmental circumstances prevail- ing during leaf formation. Leaves will remain small if cir- INTRODUCTION cumstances are unfavourable, or they will expand a large surface area when the necessary nutrients are available The diversity of leaf shapes and sizes is a compelling and (Chapin 1991). Plants have developed sophisticated sensing curious feature of our natural surroundings. Leaves attract mechanisms for determining the availability of resources in our attention, and their many distinct characteristics have the soil, atmosphere and light. They respond to these cues aided the catagorization of plants into taxonomic groups. by regulating biochemical processes that control leaf The functions of all these shapes and sizes remain an eco- expansion, developing their leaf canopies accordingly. logical and evolutionary puzzle, one which will be more Given the prominence of leaves in our environment, approachable once we understand the cellular mechanisms their importance for plant function, and our fascination at work in creating the leaf blade. These mechanisms will with their appearance, it is astounding that so little is known be considered here under the description of leaf expansion, about the physiological processes giving rise to these organs. Genetic studies have identified a small but growing Correspondence: Fax: 1 206 6851728; number of genes involved in controlling leaf development, e-mail: [email protected] and physiological studies have described a few biochemical © 1999 Blackwell Science Ltd 1463 1464 E. Van Volkenburgh mechanisms involved in cell division and expansion in for nutrients, thus attracting sufficient carbohydrate and stems and roots. But most studies of leaf function have nitrogen to signal continued division cycles? What if the focused on photosynthetic capacity, light interception, and expansion of meristematic cells were stalled for a time responses of leaves to environmental stresses (sometimes during mid-cycle, perhaps by a transient water deficit – including inhibition of growth), without including detailed would that be enough to reduce carbon/nitrogen import study of the mechanisms regulating leaf expansion. It is and prevent completion of the cell cycle? What do we know, the intent of this brief, and selected, review to promote actually, about the minute-to-minute regulation of cell thoughtful investigation into the mechanisms controlling expansion, and the dependence of the cell cycle on cell leaf expansion. With emerging molecular genetic methods, expansion? it should soon be possible to determine the biochemical Cellular mechanisms for controlling growth are likely to basis for both the processes that drive leaf expansion, and be genetically redundant. This means that identifying phe- the signalling pathways that control it. notypes for genetic variants may be difficult without precise physiological information. The following focuses on mech- anisms that may explain short-term regulation of cell Regulation of leaf expansion at the growth, with the recognition that meristematic cells must cellular level enlarge in volume prior to mitosis and cell division. An Once a leaf primordium has been initiated within an apical emphasis on the molecular basis for the physiological meristem, the newly formed organ embarks on a predic- processes controlling cell expansion will help us, in the long table developmental programme leading to the formation run, to identify functions of genes known to affect leaf of a small but recognizable leaf. This early phase of leaf growth and morphology. development is largely accomplished by production of new cells that become anatomically committed to form orga- Biophysical considerations nized tissues creating a dorsiventral structure. At this stage, in dicotyledonous leaves, the blade and petiole become dis- The question of how leaf cells, and for that matter, plant tinct, and vascular patterning is evident. In monocotyledo- cells in general, enlarge is a complex one without many nous leaves, the blade grows to a considerable length before answers as yet. For the last several decades, the regulation the sheath is formed, but even at early stages the vascular of cell expansion has been described and investigated from pattern is clear. As is the case for growing roots and stems, a biophysical point of view starting with the theoretical it is possible in leaves to identify zones of cell division and treatment of Lockhart (1965). Since then, the theory has zones of cell expansion, although these zones are much been amplified and revised (e.g. Passioura & Fry 1992) but more distinct in monocot leaves. In dicot leaves, the in general, these revisions share a similar basis. Cell growth processes of cell division and expansion may overlap spa- theory is based on the observation that the relative growth tially as well as temporally to a considerable extent (Dale rate of cells is a function of the internal hydrostatic or 1988). No matter how much cell division occurs, it is the turgor pressure in excess of the yield threshold of the cell process of cell expansion that creates the surface area of wall, and the extensibility of the cell wall. Turgor pressure the mature organ. Even in the zone of cell division, cells itself is a dependent variable, determined by the osmotic must increase in volume prior to mitosis and cytokinesis gradient attracting water into the cell, the reflection coeffi- (Ray 1987). After cell replication ceases, leaf cells continue cient of the plasmamembrane, the hydraulic conductance of to expand and may obtain a final volume 20 to 50 times that the membranes to water, and the biomechanical properties of their meristematic progenitors (Maksymowych 1973; of the cell wall material (Cosgrove 1981). In theory, growth Becraft 1999). rate could be controlled by any one of these variables, or Variation in leaf size has been attributed to differences by complex changes involving several. in cell number, or cell size, or combinations of the two Over the past 20 years, emphasis has shifted from the (e.g. Granier
Recommended publications
  • Carbohydrate Regulation of Leaf Development
    Iowa State University Capstones, Theses and Retrospective Theses and Dissertations Dissertations 2000 Carbohydrate regulation of leaf development: Investigating the role of source strength, carbon partitioning and hexokinase signaling in regulating leaf senescence Adam Christopher Miller Iowa State University Follow this and additional works at: https://lib.dr.iastate.edu/rtd Part of the Molecular Biology Commons, and the Plant Sciences Commons Recommended Citation Miller, Adam Christopher, "Carbohydrate regulation of leaf development: Investigating the role of source strength, carbon partitioning and hexokinase signaling in regulating leaf senescence " (2000). Retrospective Theses and Dissertations. 12707. https://lib.dr.iastate.edu/rtd/12707 This Dissertation is brought to you for free and open access by the Iowa State University Capstones, Theses and Dissertations at Iowa State University Digital Repository. It has been accepted for inclusion in Retrospective Theses and Dissertations by an authorized administrator of Iowa State University Digital Repository. For more information, please contact [email protected]. INFORMATION TO USERS This manuscript has been reproduced from the microfilm master. UMI films the text directly from the original or copy submitted. Thus, some thesis and dissertation copies are in typewriter tace, while others may be from any type of computer printer. The quality of this reproduction is dependent upon the quality of the copy submitled. Broken or indistinct print, colored or poor quality illustrations and photographs, print bleedthrough, substandard margins, and improper alignment can adversely affect reproduction. In the unlikely event that the author dM not send UMI a complete manuscript and there are missing pages, these will be noted. Also, if unauthorized copyright material had to be removed, a note will indicate the deletran.
    [Show full text]
  • Plant Responses to Salt Stress: Adaptive Mechanisms
    agronomy Review Plant Responses to Salt Stress: Adaptive Mechanisms Jose Ramón Acosta-Motos 1, Maria Fernanda Ortuño 2, Agustina Bernal-Vicente 1, Pedro Diaz-Vivancos 1, Maria Jesus Sanchez-Blanco 2 and Jose Antonio Hernandez 1,* 1 Fruit Tree Biotechnology Group, Department of Plant Breeding, CEBAS-CSIC, Campus Universitario de Espinardo, P.O. Box 164, E-30100 Murcia, Spain; [email protected] (J.R.A.-M.); [email protected] (A.B.-V.); [email protected] (P.D.-V.) 2 Irrigation Department, CEBAS-CSIC, Campus Universitario de Espinardo, P.O. Box 164, E-30100 Murcia, Spain; [email protected] (M.F.O.); [email protected] (M.J.S.-B.) * Correspondence: [email protected] Academic Editors: José Palma and Peter Langridge Received: 22 December 2016; Accepted: 20 February 2017; Published: 23 February 2017 Abstract: This review deals with the adaptive mechanisms that plants can implement to cope with the challenge of salt stress. Plants tolerant to NaCl implement a series of adaptations to acclimate to salinity, including morphological, physiological and biochemical changes. These changes include increases in the root/canopy ratio and in the chlorophyll content in addition to changes in the leaf anatomy that ultimately lead to preventing leaf ion toxicity, thus maintaining the water status in order to limit water loss and protect the photosynthesis process. Furthermore, we deal with the effect of salt stress on photosynthesis and chlorophyll fluorescence and some of the mechanisms thought to protect the photosynthetic machinery, including the xanthophyll cycle, photorespiration pathway, and water-water cycle. Finally, we also provide an updated discussion on salt-induced oxidative stress at the subcellular level and its effect on the antioxidant machinery in both salt-tolerant and salt-sensitive plants.
    [Show full text]
  • Arabidopsis EGY1 Is Critical for Chloroplast Development in Leaf Epidermal Guard Cells
    plants Article Arabidopsis EGY1 Is Critical for Chloroplast Development in Leaf Epidermal Guard Cells Alvin Sanjaya 1,†, Ryohsuke Muramatsu 1,†, Shiho Sato 1, Mao Suzuki 1, Shun Sasaki 1, Hiroki Ishikawa 1, Yuki Fujii 1, Makoto Asano 1, Ryuuichi D. Itoh 2, Kengo Kanamaru 3, Sumie Ohbu 4, Tomoko Abe 4, Yusuke Kazama 4,5 and Makoto T. Fujiwara 1,4,* 1 Department of Materials and Life Sciences, Faculty of Science and Technology, Sophia University, Kioicho, Chiyoda, Tokyo 102-8554, Japan; [email protected] (A.S.); [email protected] (R.M.); [email protected] (S.S.); [email protected] (M.S.); [email protected] (S.S.); [email protected] (H.I.); [email protected] (Y.F.); [email protected] (M.A.) 2 Department of Chemistry, Biology and Marine Science, Faculty of Science, University of the Ryukyus, Okinawa 903-0213, Japan; [email protected] 3 Faculty of Agriculture, Kobe University, Nada, Kobe 657-8501, Japan; [email protected] 4 RIKEN Nishina Center, Wako, Saitama 351-0198, Japan; [email protected] (S.O.); [email protected] (T.A.); [email protected] (Y.K.) 5 Faculty of Bioscience and Biotechnology, Fukui Prefectural University, Eiheiji, Fukui 910-1195, Japan * Correspondence: [email protected]; Tel.: +81-3-3238-3495 † These authors contributed equally to this work. Abstract: In Arabidopsis thaliana, the Ethylene-dependent Gravitropism-deficient and Yellow-green 1 (EGY1) gene encodes a thylakoid membrane-localized protease involved in chloroplast development in leaf Citation: Sanjaya, A.; Muramatsu, R.; mesophyll cells.
    [Show full text]
  • Differential Expression of Genes Related to the Formation of Giant
    Article Differential Expression of Genes Related to the Formation of Giant Leaves in Triploid Poplar Kang Du 1,2,3 , Qiang Han 1,2,3, Ying Zhang 1,2,3 and Xiangyang Kang 1,2,3,* 1 Beijing Advanced Innovation Center for Tree Breeding by Molecular Design, Beijing Forestry University, Beijing 100083, China; [email protected] (K.D.); [email protected] (Q.H.); [email protected] (Y.Z.) 2 National Engineering Laboratory for Tree Breeding, Beijing Forestry University, Beijing 100083, China 3 Key Laboratory for Genetics and Breeding in Forest Trees and Ornamental Plants, Ministry of Education, College of Biological Sciences and Technology, Beijing Forestry University, Beijing 100083, China * Correspondence: [email protected]; Tel.: +86-10-6233-6168 Received: 21 August 2019; Accepted: 16 October 2019; Published: 19 October 2019 Abstract: Plant polyploids tend to have large leaves, but their formation mechanism has not yet been well explained. Therefore, daily transcriptomic differences between triploids and diploids from a synthetic Populus sect. Tacamahaca three times a day (i.e., 04:00, 09:00, and 21:00) were investigated using high-throughput RNA-seq analysis. In this study, we identified several transcription factors associated with giant leaves. The combined effects included the high expression of several transcription factors (WRKY, MYB, etc.) and hormone-related genes (e.g., activates auxin, cytokine, and brassinosteroid synthesis-related genes) that accelerate the synthesis and accumulation of endogenous hormones. High levels of growth hormones were maintained by reducing the genes’ expression of hormone metabolism and degradation. The coordination of hormones accumulated sufficient materials and energy for leaf growth and development.
    [Show full text]
  • Leaf and Root Growth in Relation to Water Status Theodore C
    Leaf and Root Growth in Relation to Water Status Theodore C. Hsiao Department of Land, Air and Water Resources, University of California, Davis, CA 95616-8628 Expansive growth of leaves of a plant defines the size of its canopy flowing aqueous solution (Frensch and Hsiao, 1995). There C was for capturing sunlight and carrying out photosynthesis. Expansive assessed to be large relative to m. On the other hand, studies have growth of roots defines the volume of soil that the plant explores for pointed to conductance as a major factor limiting growth of cells in the water and mineral nutrients. The two organs, however, compete for stem (hypocotyl) of soybean [Glycine max (L.) Murr.] seedling with assimilates produced by the mature leaves, and for minerals and water. roots in water-deficient vermiculite (Nonami and Boyer, 1990). In that Yet they are coordinated in size, and their sizes relative to each other case, the low conductance of the radial path between the xylem and the change dynamically in responses to environmental conditions, in a growing cells was attributed to a layer of small cells ≈200 µm thick manner expected for the optimal utilization of assimilates and other separating the ring of xylem vessels from the cortical and epidermal resources (Wilson, 1988). How the coordination is achieved remains cells (Nonami et al., 1997). to be clearly delineated in spite of recent progress in our understanding For simplicity, the remaining part of this paper will discuss growth of expansive growth. Here I outline and highlight some of the recent mostly in terms of the parameters in Eq.
    [Show full text]
  • Temperature-Mediated Alterations of the Plant Apoplast As a Mechanism of Intracellular Freezing Stress Avoidance
    Temperature-Mediated Alterations of the Plant Apoplast as a Mechanism of Intracellular Freezing Stress Avoidance A Thesis Submitted to the College of Graduate Studies and Research in Partial Fulfillment of the Requirements for the Degree of Masters of Science in the Department of Plant Sciences University of Saskatchewan Saskatoon By Jun Liu © Copyright Jun Liu November 2015. All rights reserved. PERMISSION TO USE In presenting this thesis in partial fulfilment of the requirements for a Postgraduate degree from the University of Saskatchewan, I agree that the Libraries of this University may make it freely available for inspection. I further agree that permission for copying of this thesis in any manner, in whole or in part, for scholarly purposes may be granted by the professor or professors who supervised my thesis work or, in their absence, by the Head of the Department or the Dean of the College in which my thesis work was done. It is understood that any copying or publication or use of this thesis or parts thereof for financial gain shall not be allowed without my written permission. It is also understood that due recognition shall be given to me and to the University of Saskatchewan in any scholarly use which may be made of any material in my thesis. Requests for permission to copy or to make other use of material in this thesis in whole or part should be addressed to: Head of the Department of Plant Sciences College of Agriculture and Bioresources 51 Campus Drive University of Saskatchewan Saskatoon, Saskatchewan S7N 5A8, Canada i ABSTRACT Cold hardy Japanese bunching onion (Allium fistulosum L.) was used as a novel model system to examine the role of the apoplast in intracellular freezing avoidance.
    [Show full text]
  • Elevated CO2 and Plant Structure: a Review
    R Global Change Biology (1999) 5, 807±837 Review Elevated CO2 and plant structure: a review SETH G. PRITCHARD,* HUGO H. ROGERS,* STEPHEN A. PRIOR* and CURT M. PETERSON1 *USDA-ARS National Soil Dynamics Laboratory, 411 South Donahue Drive, Auburn, AL 36832, USA, 1Department of Biological Sciences, University of Northern Colorado, Greeley, CO 80639, USA. Abstract Consequences of increasing atmospheric CO2 concentration on plant structure, an im- portant determinant of physiological and competitive success, have not received suf®- cient attention in the literature. Understanding how increasing carbon input will in¯uence plant developmental processes, and resultant form, will help bridge the gap between physiological response and ecosystem level phenomena. Growth in elevated CO2 alters plant structure through its effects on both primary and secondary meri- stems of shoots and roots. Although not well established, a review of the literature suggests that cell division, cell expansion, and cell patterning may be affected, driven mainly by increased substrate (sucrose) availability and perhaps also by differential expression of genes involved in cell cycling (e.g. cyclins) or cell expansion (e.g. xylo- glucan endotransglycosylase). Few studies, however, have attempted to elucidate the mechanistic basis for increased growth at the cellular level. Regardless of speci®c mechanisms involved, plant leaf size and anatomy are often altered by growth in elevated CO2, but the magnitude of these changes, which often decreases as leaves mature, hinges upon plant genetic plasticity, nutrient availability, temperature, and phenology. Increased leaf growth results more often from increased cell expansion rather than increased division. Leaves of crop species exhibit greater in- creases in leaf thickness than do leaves of wild species.
    [Show full text]
  • Stomatal and Pavement Cell Density Linked to Leaf Internal CO2 Concentration
    Annals of Botany 114: 191–202, 2014 doi:10.1093/aob/mcu095, available online at www.aob.oxfordjournals.org Stomatal and pavement cell density linked to leaf internal CO2 concentration Jirˇ´ı Sˇantru˚cˇek1,2,*, Martina Vra´blova´1, Marie Sˇimkova´2, Marie Hronkova´1,2, Martina Drtinova´2, Jirˇ´ı Kveˇtonˇ1, Daniel Vra´bl1, Jirˇ´ı Kuba´sek1, Jana Mackova´1, Dana Wiesnerova´2, Jitka Neuwithova´1 and Lukas Schreiber3 1Faculty of Science, University of South Bohemia, Branisˇovska´ 31, CZ-37005 Cˇ eske´ Budeˇjovice, Czech Republic, 2Biology Centre, Institute of Plant Molecular Biology AS CR, Branisˇovska´ 31, CZ-37005 Cˇ eske´ Budeˇjovice, Czech Republic and 3Institute of Cellular and Molecular Botany, University of Bonn, Kirschallee 1, D-53115 Bonn, Germany * For correspondence. E-mail [email protected] Received: 20 December 2013 Returned for revision: 7 March 2014 Accepted: 4 April 2014 Published electronically: 13 May 2014 Downloaded from † Background and Aims Stomatal density (SD) generally decreases with rising atmospheric CO2 concentration, Ca. However, SD is also affected by light, air humidity and drought, all under systemic signalling from older leaves. This makes our understanding of how Ca controls SD incomplete. This study tested the hypotheses that SD is affected by the internal CO2 concentration of the leaf, Ci, rather than Ca, and that cotyledons, asthe first plant assimilation organs, lack the systemic signal. http://aob.oxfordjournals.org/ † Methods Sunflower (Helianthus annuus), beech (Fagus sylvatica), arabidopsis (Arabidopsis thaliana) and garden cress (Lepidium sativum) were grown under contrasting environmental conditions that affected Ci while Ca was kept constant. The SD, pavement cell density (PCD) and stomatal index (SI) responses to Ci in cotyledons and the first leaves of garden cress were compared.
    [Show full text]
  • The Diverse Roles of Cytokinins in Regulating Leaf Development
    Michigan Technological University Digital Commons @ Michigan Tech Michigan Tech Publications 6-1-2021 The diverse roles of cytokinins in regulating leaf development Wenqi Wu Beijing Forestry University Kang Du Beijing Forestry University Xiangyang Kang Beijing Forestry University Hairong Wei Michigan Technological University, [email protected] Follow this and additional works at: https://digitalcommons.mtu.edu/michigantech-p Part of the Forest Sciences Commons Recommended Citation Wu, W., Du, K., Kang, X., & Wei, H. (2021). The diverse roles of cytokinins in regulating leaf development. Horticulture Research, 8(1). http://doi.org/10.1038/s41438-021-00558-3 Retrieved from: https://digitalcommons.mtu.edu/michigantech-p/14973 Follow this and additional works at: https://digitalcommons.mtu.edu/michigantech-p Part of the Forest Sciences Commons Wu et al. Horticulture Research (2021) 8:118 Horticulture Research https://doi.org/10.1038/s41438-021-00558-3 www.nature.com/hortres REVIEW ARTICLE Open Access The diverse roles of cytokinins in regulating leaf development Wenqi Wu1,KangDu1,2,3, Xiangyang Kang 1,2,3 and Hairong Wei 4 Abstract Leaves provide energy for plants, and consequently for animals, through photosynthesis. Despite their important functions, plant leaf developmental processes and their underlying mechanisms have not been well characterized. Here, we provide a holistic description of leaf developmental processes that is centered on cytokinins and their signaling functions. Cytokinins maintain the growth potential (pluripotency) of shoot apical meristems, which provide stem cells for the generation of leaf primordia during the initial stage of leaf formation; cytokinins and auxins, as well as their interaction, determine the phyllotaxis pattern.
    [Show full text]
  • An Investigation of the Functions of Leaf Surface Modification in The
    An inve5tigation of the functions of Ieaf surface modifications in the Proteaceae and Araucariaceae. Mansour Afshar-Mohammadian Environmental Biology School of Earth and Environmental Sciences March 2005 Table of content I Table Contents Table Contents .............i Abstract Dedication Declaration """"' """vii Acknowledgements.............. ................viii 1. Introduction .........10 Leaf Modification and Water Stress ..... 10 The Leaf Cuticle. 11 Stomatal crypts 20 Research Objectives........... .....22 2.The impact of epicuticular wax on water loss, gas-exchange and photoinhibition in L eucød endr o n lønìg erum (Proteaceae).......... ...., 24 Introduction................ 24 Materials and methods 28 Plant materials................ 28 Electron and Light Microscopy ............... .'..'.,,,.,29 Seasonal modification of wax deposition .,.'.',.',,29 Wax removal................. ........... 30 Cuticular water loss....... 30 Light reflectance ............... 30 Leaf gas exchange......... ............... 30 Chlorophyll fluorescence .............. ...............31 Data analysis ............. ...............31 Results ..32 Seasonal modifìcation of epicuticular wax 32 Cuticular water loss....,........... 35 Light reflectance ...............35 Gas exchange ............. ........,......38 Chlorophyll fluorescence............ ...............38 Discussion .................. .............. 41 Seasonal modification of epicuticular wax... '.'..'.'.'..',, 4l Cuticular water loss.... A') Light reflectance ...'.',.,'.'..,' 43 Gas exchange ...................
    [Show full text]