Common Ground: Restoring Land Health for Sustainable Agriculture

Total Page:16

File Type:pdf, Size:1020Kb

Common Ground: Restoring Land Health for Sustainable Agriculture Common ground Restoring land health for sustainable agriculture Ludovic Larbodière, Jonathan Davies, Ruth Schmidt, Chris Magero, Alain Vidal, Alberto Arroyo Schnell, Peter Bucher, Stewart Maginnis, Neil Cox, Olivier Hasinger, P.C. Abhilash, Nicholas Conner, Vanja Westerberg, Luis Costa INTERNATIONAL UNION FOR CONSERVATION OF NATURE About IUCN IUCN is a membership Union uniquely composed of both government and civil society organisations. It provides public, private and non-governmental organisations with the knowledge and tools that enable human progress, economic development and nature conservation to take place together. Created in 1948, IUCN is now the world’s largest and most diverse environmental network, harnessing the knowledge, resources and reach of more than 1,400 Member organisations and some 15,000 experts. It is a leading provider of conservation data, assessments and analysis. Its broad membership enables IUCN to fill the role of incubator and trusted repository of best practices, tools and international standards. IUCN provides a neutral space in which diverse stakeholders including governments, NGOs, scientists, businesses, local communities, indigenous peoples organisations and others can work together to forge and implement solutions to environmental challenges and achieve sustainable development. Working with many partners and supporters, IUCN implements a large and diverse portfolio of conservation projects worldwide. Combining the latest science with the traditional knowledge of local communities, these projects work to reverse habitat loss, restore ecosystems and improve people’s well-being. www.iucn.org https://twitter.com/IUCN/ Common ground Restoring land health for sustainable agriculture Ludovic Larbodière, Jonathan Davies, Ruth Schmidt, Chris Magero, Alain Vidal, Alberto Arroyo Schnell, Peter Bucher, Stewart Maginnis, Neil Cox, Olivier Hasinger, P.C. Abhilash, Nicholas Conner, Vanja Westerberg, Luis Costa The designation of geographical entities in this publication, and the presentation of the material, do not imply the expression of any opinion whatsoever on the part of IUCN concerning the legal status of any country, territory, or area, or of its authorities, or concerning the delimitation of its frontiers or boundaries. The views expressed in this publication do not necessarily reflect those of IUCN. IUCN is pleased to acknowledge the support of its Framework Partners who provide core funding: Ministry for Foreign Affairs of Finland; Government of France and the French Development Agency (AFD); the Ministry of Environment, Republic of Korea; the Norwegian Agency for Development Cooperation (Norad); the Swedish International Development Cooperation Agency (Sida); the Swiss Agency for Development and Cooperation (SDC) and the United States Department of State. This report was developed with support from the French Ministry of Agriculture, the Government of France and the French Development Agency (AFD). Published by: IUCN, Gland, Switzerland Copyright: © 2020 IUCN, International Union for Conservation of Nature and Natural Resources Reproduction of this publication for educational or other non-commercial purposes is authorised without prior written permission from the copyright holder, provided the source is fully acknowledged. Reproduction of this publication for resale or other commercial purposes is prohibited without prior written permission of the copyright holder. Citation: Larbodière, L., Davies, J., Schmidt, R., Magero, C., Vidal, Arroyo Schnell, A., Bucher, P., Maginnis, S., Cox, N., Hasinger, O., Abhilash, P.C., Conner, N., Westerberg, V., Costa, L. (2020). Common ground: restoring land health for sustainable agriculture. Gland, Switzerland: IUCN. ISBN: 978-2-8317-2068-5 (PDF) DOI: https://doi.org/10.2305/IUCN.CH.2020.10.en Copy editor: Stephen Graham Cover photo: @ Shutterstock Layout by: Eyeris Communications Graphics: All graphics in this publication were developed by the authors and are under copyright with IUCN, unless stated otherwise. Available from: IUCN, International Union for Conservation of Nature Global Ecosystem Management Programme Rue Mauverney 28 1196 Gland, Switzerland [email protected] www.iucn.org/resources/publications Common ground: restoring land health for sustainable agriculture Table of contents Foreword............................................................................................................................................................................ vii Executive summary........................................................................................................................................................... viii Why the search for common ground?............................................................................................................ viii Conserving soil biodiversity improves agricultural land health....................................................................... viii Improved agricultural land health can bring massive benefits for society...................................................... viii Solutions for restoring and maintaining agricultural land health are well established................................... ix Incentives are needed to accelerate the transition........................................................................................ ix Conditions are favourable for rapid progress................................................................................................. ix Recommendations......................................................................................................................................... x Acknowledgements............................................................................................................................................................ xii Acronyms and abbreviations............................................................................................................................................ xiii 1. Introducing the search for common ground: feeding nine billion people while protecting nature............. 1 1.1 Feeding the future................................................................................................................................... 2 1.2 Balancing sustainability goals............................................................................................................. 3 1.3 Managing nature for improved agricultural sustainability................................................................ 4 1.4 Towards system change........................................................................................................................ 6 2. Unsustainable agricultural practices and the future of farming...................................................................... 7 2.1 Land as a finite resource....................................................................................................................... 8 2.1.1 The contribution of agriculture to the transgression of ecological boundaries................................ 9 2.2 Agricultural development: a high performer?...................................................................................... 10 2.2.1 Land under agriculture.................................................................................................................... 13 2.3 Environmental impacts on agricultural land....................................................................................... 15 2.3.1 Land degradation........................................................................................................................... 15 2.3.2 Biodiversity decline....................................................................................................................... 16 2.3.3 Water stress................................................................................................................................... 17 2.4 Drivers of land degradation in agriculture.......................................................................................... 17 2.5 Reviving land health to drive sustainability in the food system....................................................... 19 2.6 Conclusion to Chapter 2...................................................................................................................... 20 3. Soil biodiversity and agricultural land health................................................................................................... 21 3.1 The rich biodiversity of soil.................................................................................................................. 23 3.1.2 Macrofauna................................................................................................................................... 23 3.1.1 Soil biota and ecosystem processes............................................................................................ 25 3.1.4 Microfauna.................................................................................................................................... 26 3.2 Soil as an ecological system.............................................................................................................. 27 3.2.1 Essential ecosystem services for agriculture............................................................................... 28 3.2.1.1 Nutrient cycling..................................................................................................................... 28 3.2.1.2
Recommended publications
  • Presentation Title
    Building a Digital Business Jim Swanson, Chief Information Officer March 22, 2016 Monsanto: A Sustainable Agriculture Company • Bringing a broad range of solutions to help nourish our growing world • Collaborating to help tackle some of the world’s biggest challenges • >20,000 employees in 66 countries • >50% employees based outside of the United States • One of the 25 World’s Best Multinational Workplaces by Great Place to Work Institute Our systems approach integrates technology platforms to maximize farmer effectiveness. Breeding • Stress Tolerance Biologicals • Disease Control • Weed Control • Yield • Insect Control • Vegetables, corn, cotton, soybeans, wheat, canola • Virus Control Biotechnology • Plant Health • Weed Control • Insect Control • Stress Tolerance • Yield / Yield Protection Data Science • Nutrients • Planting Script Creator • Increased production Crop Protection • Efficient water use • Weed Control (Roundup ® Branded Agricultural Herbicides) • Efficient nutrient use • Insect Control • Disease Control We can help meet the needs of the future. 20 4000 ) World Sustainably Supporting Population 18 Demand and Preserving 3500 Tonnes Natural Landscapes 16 Total Food 3000 Reduce the footprint of Production 14 (tonnes) farming 2500 12 Global Land Increase crop yields Use in Land Use (Millions of Ha) Population (Billions) 10 Agriculture 2000 Improve efficiency (Ha) Food Food Production (Billion 8 1500 Reduce waste 6 Improve diets 1000 4 500 By 2060: 160M hectares can be 2 restored to nature Source: National Geographic ,“Feeding the World”, 2014 0 0 Source: UN FAO, 2014, Monsanto internal calculations; Ausubel, et al., Peak Farmland and the Prospect for Land Sparing Population and Development Review Volume, , 38: 221–242 1900 1920 1940 1960 1980 2000 2020 2040 2060 2080 2100 Our strategy for unlocking digital yield enables us to lead in digital agriculture.
    [Show full text]
  • CEDS Working Committee
    2016 - 2015 CEDS Annual Performance Report Blackhawk Hills Regional Council Northwest Illinois' Regional Planning Commission: serving the counties of Carroll, Jo Daviess, Lee, Ogle, Stephenson, and Whiteside. Blackhawk Hills Regional Council 102 East Route 30, Suite 3 Rock Falls, IL 61071 815.625.3854 www.blackhawkhills.com April 29, 2016 Ladies and Gentlemen: On behalf of the Blackhawk Hills Regional Council (formally known as the RC&D), I am pleased to present the 2015-2016 Comprehensive Economic Development Strategy (CEDS) Annual Performance Report and Update. This report contains information on the Blackhawk Hills Regional Council as it pertains to the Economic Development District. Included in this update are strategies for improving the district to benefit the counties and communities within the region. You will find attached our region’s list of priority projects modified annually from our most recently adopted 5-Year CEDS Document, as well as our immediate project list for those projects that are ready to start now if funds were available. In order to develop the strategies for improvement, Blackhawk Hills examines the area’s demographic and economic trends, as well as the needs of the communities and counties, on an annual basis. The focus of the District is to encourage local sponsors, through implementation of these strategies, to support and maintain the economic vitality of the region. The information contained in this report confirms the need for Blackhawk Hills to continue its involvement in promoting community planning, economic development, resource conservation and strengthening of partnerships through the county CEDS committees. Sincerely, Ron Colson Blackhawk Hills Regional Council President 02 East Route 30, Suite 3 Rock Falls, IL 61071 Phone 815-625-3854 Fax 815-625-4072 www.blackhawkhills.com BLACKHAWK HILLS REGIONAL COUNCIL The Blackhawk Hills Regional Council (formally known as Blackhawk Hills RC&D) serves the region as an Economic Development District (EDD).
    [Show full text]
  • Conservation Agriculture with Trees (Cawt) Project: Scaling-Up the Science and Practice of Conservation Agriculture in Sub-Saharan Africa
    CONSERVATION AGRICULTURE WITH TREES (CAWT) PROJECT: SCALING-UP THE SCIENCE AND PRACTICE OF CONSERVATION AGRICULTURE IN SUB-SAHARAN AFRICA END OF PROJECT REPORT Draft 1: August 2012 JONATHAN MURIUKI, HAMISI DULLA, SAIDI MKOMWA, JEREMIAS MOWO AND THE PROJECT IMPLEMENTATION TEAM FUNDED BY: The Swedish International Development Cooperation Agency SIDA/ICRAF/ACT Conservation Agriculture with Trees Final Project report | 1 Table of contents Table of contents ........................................................................................................................ 2 List of abbreviations and acronymsAcknowledgements ............................................................ 4 Executive Summary .................................................................................................................... 5 1. INTRODUCTION ...................................................................................................................... 8 1.1 Background ............................................................................................................. 8 1.2 Case study country selection .................................................................................. 9 1.3 Formation of the Project Implementation Team .................................................. 10 1.4 Project inception ................................................................................................... 11 2. SITUATION ANALYSIS ON CONSERVATION AGRICULTURE AND AGROFORESTRY IN THE FOUR COUNTRIES ...............................................................................................
    [Show full text]
  • REFERENCE LIST Status Report: Focus on Staple Crops
    AGRA (Alliance for a Green Revolution in Africa). 2013. Africa Agriculture REFERENCE LIST Status Report: Focus on Staple Crops. Nairobi: AGRA. http://agra-alliance.org/ AAAS (American Association for the Advancement of Science). 2012. download/533977a50dbc7/. “Statement by the AAAS Board of Directors on Labeling of Genetically AgResearch. 2016. “Shortlist of Five Holds Key to Reduced Methane Modified Foods.” Emissions from Livestock.” AgResearch News Release. http://www. Abalos, D., S. Jeffery, A. Sanz-Cobena, G. Guardia, and A. Vallejo. 2014. agresearch.co.nz/news/shortlist-of-five-holds-key-to-reduced-methane- “Meta-analysis of the Effect of Urease and Nitrification Inhibitors on Crop emissions-from-livestock/. Productivity and Nitrogen Use Efficiency.” Agriculture, Ecosystems, and AHDB (Agriculture and Horticulture Development Board). 2017. “Average Milk Environment 189: 136–144. Yield.” Farming Data. https://dairy.ahdb.org.uk/resources-library/market- Abalos, D., S. Jeffery, C.F. Drury, and C. Wagner-Riddle. 2016. “Improving information/farming-data/average-milk-yield/#.WV0_N4jyu70. Fertilizer Management in the U.S. and Canada for N O Mitigation: 2 Ahmed, S.E., A.C. Lees, N.G. Moura, T.A. Gardner, J. Barlow, J. Ferreira, and R.M. Understanding Potential Positive and Negative Side-Effects on Corn Yields.” Ewers. 2014. “Road Networks Predict Human Influence on Amazonian Bird Agriculture, Ecosystems, and Environment 221: 214–221. Communities.” Proceedings of the Royal Society B 281 (1795): 20141742. Abbott, P. 2012. “Biofuels, Binding Constraints and Agricultural Commodity Ahrends, A., P.M. Hollingsworth, P. Beckschäfer, H. Chen, R.J. Zomer, L. Zhang, Price Volatility.” Paper presented at the National Bureau of Economic M.
    [Show full text]
  • United Nations Environment Programme
    UNITED NATIONS EP United Nations UNEP (DEPI)/VW.1 /INF.3. Environment Programme Original: ENGLISH Regional Seas Visioning Workshop, Geneva, Switzerland, 3-4 July 2014 Scenario For environmental and economic reasons, this document is printed in a limited number. Delegates are kindly requested to bring their copies to meetings and not to request additional copies 4. Future pathways toward sustainable development “Life can only be understood backwards; but it must be lived Table 1. Top-15 crowd-sourced ideas on “What do you think forwards.” (Søren Kierkegaard) the world will be like in 2050?” Idea Score “Two different worlds are owned by man: one that created us, Global collapse of ocean fisheries before 2050. 90 the other which in every age we make as best as we can.” Accelerating climate damage 89 (Zobolotsky (1958), from Na zakate, p. 299.) There will be increasing inequity, tension, and social strife. 86 This chapter compares semi-quantitative narratives of what Global society will create a better life for most but not all, 86 would happen, if we continued as we did in the past, with primarily through continued economic growth. Persistent poverty and hunger amid riches 86 alternative pathways towards global sustainable Humanity will avoid “collapse induced by nature” and has development. The “stories” are internally coherent and 83 rather embarked on a path of “managed decline”. deemed feasible by experts, as they are derived from large- Two thirds of world population under water stress 83 scale global modelling of sustainable development Urbanization reaches 70% (+2.8 billion people in urban areas, - scenarios for Rio+20 in 2012.
    [Show full text]
  • Why a Collapse of Global Civilization Will Be Avoided: a Comment on Ehrlich & Ehrlich Rspb.Royalsocietypublishing.Org Michael J
    Downloaded from http://rspb.royalsocietypublishing.org/ on March 30, 2015 Why a collapse of global civilization will be avoided: a comment on Ehrlich & Ehrlich rspb.royalsocietypublishing.org Michael J. Kelly Department of Engineering, University of Cambridge, Cambridge CB3 0FA, UK Comment Ehrlich FRS & Ehrlich [1] claim that over-population, over-consumption and the future climate mean that ‘preventing a global collapse of civilization is perhaps Cite this article: Kelly MJ. 2013 Why a the foremost challenge confronting humanity’. What is missing from the well- collapse of global civilization will be avoided: a referenced perspective of the potential downsides for the future of humanity comment on Ehrlich & Ehrlich. Proc R Soc B is any balancing assessment of the progress being made on these three chal- 280: 20131193. lenges (and the many others they cite by way of detail) that suggests that the problems are being dealt with in a way that will not require a major disruption http://dx.doi.org/10.1098/rspb.2013.1193 to the human condition or society. Earlier dire predictions have been made in the same mode by Malthus FRS [2] on food security, Jevons FRS [3] on coal exhaustion, King FRS & Murray [4] on peak oil, and by many others. They have all been overcome by the exercise of human ingenuity just as the doom Received: 13 May 2013 was being prophesied with the deployment of steam engines to greatly improve Accepted: 3 June 2013 agricultural efficiency, and the discoveries of oil and of fracking oil and gas, respectively, for the three examples given. It is incumbent on those who would continue to predict gloom to learn from history and make a comprehen- sive review of human progress before coming to their conclusions.
    [Show full text]
  • Dr. Robert Fraley Former Chief Technology Officer
    DR. ROBERT FRALEY @RobbFraley FORMER CHIEF TECHNOLOGY OFFICER, MONSANTO COMPANY WORLD FOOD PRIZE LAUREATE Our Planet Faces Some Real Challenges OurPopulation planet Growth faces Rise in Middle Class Changing Economies & Diets 1960-2050 Mid Class Total Pop real challenges 8.5 9.7 6.9 7.8 355 507 4.9 5.6 3.2 in as of 1.8 1965 Today • Population will grow to 2010 2020 2030 2050 World~10 Populationbillion by 2050* 43% increase in calories (billions) from animal protein • Rise in middle class • Changing economiesChanging & dietsClimate & Decreasing Declining Arable Land Water Availability • Declining arable land • Decreasing water availability 1990 2013 • Changing climate Sources: UN FAO; Ray DK, Mueller ND, West PC, Foley JA (2013) Yield Trends Are Insufficient to Double Global Crop Production by 2050. PLoS ONE 8(6): e66428. *Source: United Nations, 2017 Science and Technology have been Essential to Crop Improvement Source: USDA Source: 100 120 140 160 180 200 20 40 60 80 0 1866 1869 Enabling Incredible Gains inProductivity Incredible Enabling 1872 1875 1878 1881 1884 Yields Soybean and Corn U.S. Historical 1887 1890 1893 1896 1899 1902 1905 1908 1911 1914 1917 1920 CORN 1923 1926 1929 1932 1935 1938 SOYBEANS 1941 1944 1947 1950 1953 1956 1959 1962 1965 1968 1971 1974 1977 1980 1983 1986 1989 1992 1995 1998 2001 2004 2007 180.7 bu bu 2010 52.1 2013 /a /a 2016 New Advanced Technologies Enable Farmers To Be More Precise and Productive Than Ever Before Molecular Breeding Gene Editing Improves efficiency within a plant’s DNA Creates germplasm
    [Show full text]
  • Conservation Agriculture with Trees
    CONSERVATION AGRICULTURE WITH TREES GETTING STARTED Joseph Mutua, Jude Capis and Mieke Bourne © World Agroforestry Centre, Nairobi, Kenya , 2014 Prepared by: Dr. Joseph Mutua (Kenya Network for Dissemination of Agricultural Technologies, KENDAT) , Jude Capis, and Mieke Bourne (World Agroforestry Centre, ICRAF) for the EverGreen Agriculture project Layout and Design by Danyell Odhiambo The views expressed in this publication are those of the author(s) and not necessarily those of World Agroforestry Centre. Articles appearing in this publication may be quoted or reproduced without charge, provided the source is acknowledged. All images remain sole property of their source and may not be used for any purpose without written permission of the source. The geographic designation employed and presentation of material in this publication do not imply the expression of any opinion whatsoever on the part of the World Agroforestry Centre concerning the legal status of any country, territory, city or area or its authorities, or concerning the delimitation of its frontiers or boundaries. What is conservation agriculture with trees? Conservation Agriculture With Trees (CAWT) is a practice that combines the principles of Conservation Agriculture with Agroforestry. CAWT involves the integration of crop- friendly trees, mainly high value agroforestry tree species and nitrogen fixing trees into the crop land with Conservation Agriculture practices. Conservation Agriculture (CA) is defined by FAO as an approach to managing agro- ecosystems for improved and sustained productivity, increased profits and food security while preserving and enhancing the resource base and the environment. Conservation agriculture is characterized by three principles namely minimum tillage, maximum soil cover and crop rotation and/or association.
    [Show full text]
  • ELO Activity Report 2016
    Pantone 390 ACTIVITY REPORT 2016 CMYK 24 / 0 / 98 / 8 Pantone 364 CMYK 73 / 9 / 94 / 39 Pantone 390 CMYK 24 / 0 / 98 / 8 Pantone 364 CMYK 73 / 9 / 94 / 39 ACTIVITY REPORT 2016 Table of contents INDEX 2 FOREWORD 4 1. THE ELO FAMILY 5 2. ISSUES AND POLICIES 210 1 3. PROJECTS 319 1.1 ELO 6 2.1 CAP 11 3.1 Wildlife Estates 20 1.2. RISE 7 2.2 Biodiversity 12 3.2 PNI 21 1.3 FCS 8 2.3 Agricultural Innovation 13 3.3 Hercules 22 1.4 YFCS 9 2.4 Crop Protection 14 3.3 FORBIO 23 2.5 Climate Change 15 3.4 REVAB 24 2.6 Forestry / Cork 16 3.5 COFARM 25 2.7 Land Access 17 3.6 FEAL 26 2.8 Housing and Energy Efficiency Issues 18 3.7 AgriDemo-F2F 27 4 4. ELO AWARDS 428 4.1 Soil award 29 4.2 Belleuropa Award 30 6. COMMUNICATION 643 8. PARTNERS 849 4.3 European Bee Award 31 4.4 Boom van het Jaar 32 6.1 CountrySide 44 8.1 European Historic Houses Association 50 6.2 The ELO online 45 8.2 Europa Nostra 51 8.3 Future for Religious Heritage 52 8.4 Environmental Partnership Association 53 8.5 Rural Coalition 54 8.6 European Heritage Alliance 3.3 55 Pantone 390 CMYK 24 / 0 / 98 / 8 Pantone 364 5. EVENTS 533 CMYK 73 / 9 / 94 / 39 7. COOPERATION WITH THE EU INSTITUTIONS7 46 5.1 General Assemblies 34 5.2 European Tree of the Year 35 7.1 Intergroup Biodiversity, Hunting, 5.3.1 Forum for the Future of Agriculture 36 Countryside 47 5.3.2 FFA Vienna 37 7.2 Larges Carnivores 48 9.
    [Show full text]
  • Conservation Agriculture for Sustainable Intensification in Southeast Asia
    The Sixth International Soil and Water Assessment Tool Southeast Asia Conference 24-25 October 2019, Siem Reap, Cambodia Perspectives and experiences on Conservation Agriculture for Sustainable Intensification in Southeast Asia Yuji Niino Land Management Officer Regional Office for Asia and the Pacific Food and Agriculture Organization (FAO) of the United Nations A triple Challenge for agriculture • More food, in quantity, quality and diversity, everywhere for everyone (availability, acessibility, utilisation, stability) • Adapt to Climate Change • Contribute to mitigate Climate Change – Agriculture and Land use = 30% of emissions – Needs to be part of the solution ... Overlaps, Synergies and Trade-offs WSFS UNFCCC UNISDR UNCCD Global “Calories” “Carbon” “Disasters” “Soil” Objectives +Biodivesty, Human rights, Health, Trade, Education, ..... National International Food Security Climate Disaster Sustainable land National mitigation Resilience management Local adaptation Climate-smart agriculture: addressing multiple objectives What means Climate-Smart Agriculture? Transform agriculture to enhance the achievement of national food security and development goals in the light of global challenges ww.fao.org/climatechange/climatesmart Towards climate-smart agricultural landscapes Practices + Policies and institutions + Financing Agricultural Sector or Sub-sector and Practices Adaptation Mitigation Climate smart agriculture Crop Conservation agriculture x x x Integrated pest management x x x System for rice intensification x x x Livestock Improved
    [Show full text]
  • Recent Collapse of Crop Belts and Declining Diversity of US Agriculture Since 1840
    Received: 20 January 2020 | Revised: 20 September 2020 | Accepted: 8 October 2020 DOI: 10.1111/gcb.15396 PRIMARY RESEARCH ARTICLE Recent collapse of crop belts and declining diversity of US agriculture since 1840 Michael S. Crossley1 | Kevin D. Burke2 | Sean D. Schoville3 | Volker C. Radeloff4 1Department of Entomology, University of Georgia, Athens, GA, USA Abstract 2Nelson Institute for Environmental Studies, Over the last century, US agriculture greatly intensified and became industrialized, University of Wisconsin-Madison, Madison, increasing in inputs and yields while decreasing in total cropland area. In the indus- WI, USA 3Department of Entomology, University of trial sector, spatial agglomeration effects are typical, but such changes in the patterns Wisconsin-Madison, Madison, WI, USA of crop types and diversity would have major implications for the resilience of food 4 SILVIS Lab, Department of Forest and systems to global change. Here, we investigate the extent to which agricultural in- Wildlife Ecology, University of Wisconsin- Madison, Madison, WI, USA dustrialization in the United States was accompanied by agglomeration of crop types, not just overall cropland area, as well as declines in crop diversity. Based on county- Correspondence Michael S. Crossley, 120 Cedar St., 413 level analyses of individual crop land cover area in the conterminous United States Biological Sciences Bldg., Athens, GA 30602, from 1840 to 2017, we found a strong and abrupt spatial concentration of most crop USA. Email: [email protected] types in very recent years. For 13 of the 18 major crops, the widespread belts that characterized early 20th century US agriculture have collapsed, with spatial concen- Funding information USDA NIFA AFRI ELI, Grant/Award Number: tration increasing 15-fold after 2002.
    [Show full text]
  • Peak Farmland and the Prospect for Land Sparing
    Peak Farmland and the Prospect for Land Sparing JESSE H. AUSUBEL IDDO K. WERN I C K PA UL E. WA GGONER Expecting that more and richer people will demand more from the land, cul- tivating wider fields, logging more forests, and pressingN ature, comes natu- rally. The past half-century of disciplined and dematerializing demand and more intense and efficient land use encourage a rational hope that humanity’s pressure will not overwhelm Nature. Beginning with the examples of crops in the large and fast-developing countries of India and China as well as the United States, we examine the recent half-century. We also look back over the past 150 years when regions like Europe and the United States became the maiden beneficiaries of chemical, biological, and mechanical innovations in agriculture from the Industrial Revolution. Organizing our analysis with the ImPACT identity, we examine the elements contributing to the use of land for crop production, including population, affluence, diet, and the performance of agricultural producers. India and China In 1960 the population of India was about 450 million. In 1961, Indian afflu- ence, as measured by GDP, equaled about 65 billion recent US dollars (World Bank 2012). The average Indian consumed 2,030 food calories (kilocalories) per day, a level that approaches minimum calorie thresholds for hunger.1 Indian farmers tilled 161 million hectares (MHa) of land to grow crops, while the country imported a net 4 million to 10 million tons2 a year of cereal grains, over 6 percent of its demand on average during the decade of the 1960s (Food and Agriculture Organization [FAO] 2012).
    [Show full text]