The First Release COSMOS Optical and Near-IR Data and Catalog

Total Page:16

File Type:pdf, Size:1020Kb

The First Release COSMOS Optical and Near-IR Data and Catalog Draft version October 22, 2018 Preprint typeset using LATEX style emulateapj v. 08/22/09 THE FIRST RELEASE COSMOS OPTICAL AND NEAR-IR DATA AND CATALOG⋆ P. Capak1, H. Aussel2,47, M. Ajiki26, H. J. McCracken2,17, B. Mobasher5, N. Scoville1,2, P. Shopbell1, Y. Taniguchi26,45, D. Thompson1,46, S. Tribiano16,36, S. Sasaki1,26,45, A. W. Blain1, M. Brusa13, C. Carilli 6, A. Comastri35, C. M. Carollo8, P. Cassata12, J. Colbert31, R. S. Ellis1, M. Elvis10, M. Giavalisco5, W. Green1, L. Guzzo12, G. Hasinger13, O. Ilbert4, C. Impey14, K. Jahnke25, J. Kartaltepe4, J-P. Kneib15, J. Koda1, A. Koekemoer5, Y. Komiyama43, A. Leauthaud1,15, O. Lefevre15, S. Lilly8, R. Massey1, S. Miyazaki18, T. Murayama26, T. Nagao 43,44, J. A. Peacock32, A. Pickles 33, C. Porciani8, A. Renzini21,34, J. Rhodes1,22, M. Rich23, M. Salvato1, D. B. Sanders4, C. Scarlata8, D. Schiminovich24, E. Schinnerer25, M. Scodeggio38, K. Sheth1,31, Y. Shioya 45, L. A. M. Tasca15, J. E. Taylor1, L. Yan31, G. Zamorani29 Draft version October 22, 2018 ABSTRACT We present imaging data and photometry for the COSMOS survey in 15 photometric bands between 0.3µm and 2.4µm. These include data taken on the Subaru 8.3m telescope, the KPNO and CTIO 4m telescopes, and the CFHT 3.6m telescope. Special techniques are used to ensure that the relative photometric calibration is better than 1% across the field of view. The absolute photometric accuracy from standard star measurements is found to be 6%. The absolute calibration is corrected using galaxy spectra, providing colors accurate to 2% or better. Stellar and galaxy colors and counts agree well with the expected values. Finally, as the first step in the scientific analysis of these data we construct panchromatic number counts which confirm that both the geometry of the universe and the galaxy population are evolving. Subject headings: cosmology: observations — galaxies: evolution — cosmology: surveys — cosmology: large scale structure of universe ⋆ Based in part on observations with : The NASA/ESA Hubble 15 Laboratoire d’Astrophysique de Marseille, BP 8, Traverse du Space Telescope, obtained at the Space Telescope Science Institute, Siphon, 13376 Marseille Cedex 12, France which is operated by AURA Inc, under NASA contract NAS5- 16 American Museum of Natural History, Central Park West at 26555. The Subaru Telescope, which is operated by the National 79th Street, New York, NY 10024 Astronomical Observatory of Japan. The MegaPrime/MegaCam, a 17 Institut d’Astrophysique de Paris, UMR7095 CNRS, Univer- joint project of CFHT and CEA/DAPNIA, at the Canada-France- sit`ePierre et Marie Curie, 98 bis Boulevard Arago, 75014 Paris, Hawaii Telescope (CFHT) which is operated by the National Re- France search Council (NRC) of Canada, the Institute National des Sci- 18 Subaru Telescope, National Astronomical Observatory of ence de l’Univers of the Centre National de la Recherche and the Japan, 650 North Aohoku Place, Hilo, HI 96720 University of Hawaii. The Kitt Peak National Observatory, Cerro 19 Department of Physics and Astronomy, Johns Hopkins Uni- Tololo Inter-American Observatory and the National Optical As- versity, Homewood Campus, Baltimore, MD 21218 tronomy Observatory, which is operated by the Association of Uni- 20 Service d’Astrophysique, CEA/Saclay, 91191 Gif-sur-Yvette, versities for Research in Astronomy Inc. (AURA) under coopera- France tive agreement with the National Science Foundation. 21 1 European Southern Observatory, Karl-Schwarzschild-Str. 2, California Institute of Technology, MC 105-24, 1200 East Cal- D-85748 Garching, Germany ifornia Boulevard, Pasadena, CA 91125 22 2 Jet Propulsion Laboratory, Pasadena, CA 91109 Visiting Astronomer, Univ. Hawaii, 2680 Woodlawn Dr., Hon- 23 Department of Physics and Astronomy, University ofCalifor- olulu, HI, 96822 3 nia, Los Angeles, CA 90095 Canadian Institute for Theoretical Astrophysics, Mclennan 24 Department of Astronomy, Columbia University, MC2457, Labs, University of Toronto, 60 St. George St, Room 1403, 550 W. 120 St. New York, NY 10027 arXiv:0704.2430v1 [astro-ph] 19 Apr 2007 Toronto, ON M5S 3H8, Canada 25 4 Max Planck Institut f¨ur Astronomie, K¨onigstuhl 17, Heidel- Institute for Astronomy, 2680 Woodlawn Dr., University of berg, D-69117, Germany Hawaii, Honolulu, Hawaii, 96822 26 5 Astronomical Institute, Graduate School of Science, Tohoku Space Telescope Science Institute, 3700 San Martin Drive, Bal- University, Aramaki, Aoba, Sendai 980-8578, Japan timore, MD 21218 27 Department of Astronomy, Yale University, P.O. Box 208101, 6 National Radio Astronomy Observatory, P.O. Box 0, Socorro, New Haven, CT 06520-8101 NM 87801-0387 29 7 INAF-Osservatorio Astronomico di Bologna, via Ranzani 1, Department of Physics, University of Chicago, 5640 South Ellis I-40127 Bologna, Italy Avenue, Chicago, IL 60637 30 8 Max-Planck-Institut f¨ur Astrophysik, D-85748 Garching bei Department of Physics, ETH Zurich, CH-8093 Zurich, Switzer- M¨unchen, Germany land 31 9 Spitzer Science Center, California Institute of Technology, National Optical Astronomy Observatory, P.O. Box 26732, Pasadena, CA 91125 Tucson, AZ 85726 32 10 Institute for Astronomy, University of Edinburgh, Royal Ob- Harvard-Smithsonian Center for Astrophysics, 60 Garden servatory, Blackford Hill, Edinburgh EH9 3HJ, U.K. Street, Cambridge, MA 02138 33 Caltech Optical Observatories, MS 320-47, California Insti- 11 Department of Physics, Carnegie Mellon University, 5000 tute of Technology, Pasadena, CA 91125 Forbes Avenue, Pittsburgh, PA 15213 34 12 Dipartimento di Astronomia, Universit di Padova, vicolo INAF-Osservatorio Astronomico di Brera, via Bianchi 46, I- dell’Osservatorio 2, I-35122 Padua, Italy 23807 Merate (LC), Italy 35 13 INAF-Osservatorio Astronomico di Bologna, via Ranzani 1, Max Planck Institut f¨ur Extraterrestrische Physik, D-85478 40127 Bologna, Italy Garching, Germany 36 14 CUNY Borough of Manhattan Community College, 199 Steward Observatory, University of Arizona, 933 North Chambers St., New York, NY 10007 Cherry Avenue, Tucson, AZ 85721 37 Astrophysical Observatory, City University of New York, Col- 2 data. Such data have been collected at nearly every ob- 1. INTRODUCTION servable wavelength from the X-rays to the radio. The Advances in astronomy are often driven by improved study of large-scale structures places strong calibration accuracy and precision along with increases in sensi- requirements on the COSMOS data; for example spatial tivity and area of the available data. The Canada- variations in photometry and astrometry must be kept to a minimum, typically less than 1% for photometry to France Redshift Survey (CFRS)(Lilly et al. 1995), the ′′ Hawaii Deep Surveys (HDSs) (Cowie et al. 1999), and ensure high quality photometric redshifts and 0.01 for the Hubble Deep Fields (HDFs) (Williams et al. 1996; astrometry to enable measurements of weak lensing and Casertano et al. 2000) were the first deep imaging and correlation functions. Meeting these calibration require- spectroscopic surveys aimed at understanding galaxy for- ments is often difficult as multiple instrument pointings mation and evolution. These discovered the global de- are used to cover the field. cline in star formation at z < 1 and showed that this This paper concentrates on the ground-based data re- was due to star formation occurring in smaller galax- duction, the multi-band optical and near-infrared cata- ies at later times (Lilly et al. 1996; Cowie et al. 1999), log and the steps taken to ensure a high level of pho- a phenomenon often referred to as ”Cosmic Downsiz- tometric consistency. The observing strategy for the ing”. At the same time Steidel et al. (1996, 1999, 2003) Subaru Suprime-Cam observations, which form the bulk used the Lyman-Break Galaxy (LBG) color selection of our ground based data, are discussed separately in technique to identify galaxies at high redshift, dramati- Taniguchi et al. (2007). In addition, the absolute pho- cally improving the efficiency of spectroscopic surveys at tometric and astrometric system used here is defined in z > 3. Other selections such as the BzK (Daddi et al. Aussel et al. (2007). 2004), BX/BM(Adelberger et al. 2004), and DRG (Dis- An overview of the COSMOS project and its goals are tant Red Galaxy) (Franx et al. 2003) have allowed for given in Scoville et al. (2007b). Details of the Hubble efficient sorting of 1 <z< 3 galaxies. Space Telescope (HST) observations, including the Ad- Photometric redshifts are the logical extension of color vanced Camera for Surveys (ACS), the Wide Field Plane- selection by estimating redshifts and spectral energy dis- tary Camera 2 (WFPC2), and the Near Infrared Camera tributions (SEDs) from many photometric bands. Un- and Multi-Object Spectrometer (NICMOS) are found in like color selection, photometric redshifts take advantage Scoville et al. (2007a). The ACS data acquisition and of all available information, enabling redshift estimates reduction are detailed in Koekemoer et al. (2007), and a along with the age, star formation rate (SFR) and mass. monochromatic catalog based only on the HST-ACS ob- Unfortunately, photometric redshifts are also suscepti- servations is presented in Leauthaud et al. (2007). Ob- ble to systematics in all bands. This increases the cali- servations at other wavelengths consist of: X-ray ob- bration requirements, especially the required photomet- servations with XMM (Hasinger et al. 2007), ultraviolet ric accuracy, for modern cosmological surveys such as (UV) observations with GALEX (Zamojski et al. 2007), the Great Observatories Origins Deep Survey (GOODS) mid-infrared observations with the Spitzer Space Tele- (Giavalisco et al. 2004), the Galaxy Evolution from Mor- scope (Sanders et al. 2007), sub-mm observations from phology and Spectral Energy Distributions (GEMS) sur- the Caltech Sub-mm Observatory (CSO) (Aguirre et al. vey (Rix et al. 2004), and the Cosmic Evolution Survey 2007) and Institut de Radioastronomie Millim´etrique or COSMOS (Scoville et al. 2007b). (IRAM) 30m telescope (Bertoldi et al. 2007), and ra- GOODS and GEMS are designed to study evolution of dio observations with the Very Large Array (VLA) galaxies with look back time, whereas COSMOS is de- (Schinnerer et al.
Recommended publications
  • GLOBE at Night: Using Sky Quality Meters to Measure Sky Brightness
    GLOBE at Night: using Sky Quality Meters to measure sky brightness This document includes: • How to observe with the SQM o The SQM, finding latitude and longitude, when to observe, taking and reporting measurements, what do the numbers mean, comparing results • Demonstrating light pollution o Background in light pollution and lighting, materials needed for the shielding demo, doing the shielding demo • Capstone activities (and resources) • Appendix: An excel file for multiple measurements CREDITS This document on citizen-scientists using Sky Quality Meters to monitor light pollution levels in their community was a collaborative effort between Connie Walker at the National Optical Astronomy Observatory, Chuck Bueter of nightwise.org, Anna Hurst of ASP’s Astronomy from the Ground Up program, Vivian White and Marni Berendsen of ASP’s Night Sky Network and Kim Patten of the International Dark-Sky Association. Observations using the Sky Quality Meter (SQM) The Sky Quality Meters (SQMs) add a new twist to the GLOBE at Night program. They expand the citizen science experience by making it more scientific and more precise. The SQMs allow citizen-scientists to map a city at different locations to identify dark sky oases and even measure changes over time beyond the GLOBE at Night campaign. This document outlines how to make and report SQM observations. Important parts of the SQM ! Push start button here. ! Light enters here. ! Read out numbers here. The SQM Model The SQM-L Model Using the SQM There are two models of Sky Quality Meters. Information on the newer model, the SQM- L, can be found along with the instruction sheet at http://unihedron.com/projects/sqm-l/.
    [Show full text]
  • Measuring Night Sky Brightness: Methods and Challenges
    Measuring night sky brightness: methods and challenges Andreas H¨anel1, Thomas Posch2, Salvador J. Ribas3,4, Martin Aub´e5, Dan Duriscoe6, Andreas Jechow7,13, Zolt´anKollath8, Dorien E. Lolkema9, Chadwick Moore6, Norbert Schmidt10, Henk Spoelstra11, G¨unther Wuchterl12, and Christopher C. M. Kyba13,7 1Planetarium Osnabr¨uck,Klaus-Strick-Weg 10, D-49082 Osnabr¨uck,Germany 2Universit¨atWien, Institut f¨urAstrophysik, T¨urkenschanzstraße 17, 1180 Wien, Austria tel: +43 1 4277 53800, e-mail: [email protected] (corresponding author) 3Parc Astron`omicMontsec, Comarcal de la Noguera, Pg. Angel Guimer`a28-30, 25600 Balaguer, Lleida, Spain 4Institut de Ci`encies del Cosmos (ICCUB), Universitat de Barcelona, C.Mart´ıi Franqu´es 1, 08028 Barcelona, Spain 5D´epartement de physique, C´egep de Sherbrooke, Sherbrooke, Qu´ebec, J1E 4K1, Canada 6Formerly with US National Park Service, Natural Sounds & Night Skies Division, 1201 Oakridge Dr, Suite 100, Fort Collins, CO 80525, USA 7Leibniz-Institute of Freshwater Ecology and Inland Fisheries, 12587 Berlin, Germany 8E¨otv¨osLor´andUniversity, Savaria Department of Physics, K´arolyi G´asp´ar t´er4, 9700 Szombathely, Hungary 9National Institute for Public Health and the Environment, 3720 Bilthoven, The Netherlands 10DDQ Apps, Webservices, Project Management, Maastricht, The Netherlands 11LightPollutionMonitoring.Net, Urb. Ve¨ınatVerneda 101 (Bustia 49), 17244 Cass`ade la Selva, Girona, Spain 12Kuffner-Sternwarte,Johann-Staud-Straße 10, A-1160 Wien, Austria 13Deutsches GeoForschungsZentrum Potsdam, Telegrafenberg, 14473 Potsdam, Germany Abstract Measuring the brightness of the night sky has become an increasingly impor- tant topic in recent years, as artificial lights and their scattering by the Earth’s atmosphere continue spreading around the globe.
    [Show full text]
  • A Model to Determine Naked-Eye Limiting Magnitude
    Volume 10 Issue 1 (2021) HS Research A Model to Determine Naked-Eye Limiting Magnitude Dasha Crocker1, Vincent Schmidt1 and Laura Schmidt1 1Bellbrook High School, Bellbrook, OH, USA ABSTRACT The purpose of this study was to determine which variables would be needed to generate a model that predicted the naked eye limiting magnitude on a given night. After background research was conducted, it seemed most likely that wind speed, air quality, skyglow, and cloud cover would contribute to the proposed model. This hypothesis was tested by obtaining local weather data, then determining the naked eye limiting magnitude for the local conditions. This procedure was repeated for the moon cycle of October, then repeated an additional 11 times in November, December, and January. After the initial 30 trials, r values were calculated for each variable that was measured. These values revealed that wind was not at all correlated with the naked eye limiting magnitude, but pollen (a measure of air quality), skyglow, and cloud cover were. After the generation of several models using multiple regression tests, air quality also proved not to affect the naked eye limiting magnitude. It was concluded that skyglow and cloud cover would contribute to a model that predicts naked eye limiting magnitude, proving the original hypothesis to be partially correct. Introduction Humanity has been looking to the stars for thousands of years. Ancient civilizations looked to the stars hoping that they could explain the world around them. Mayans invented shadow casting devices to track the movement of the sun, moon, and planets, while Chinese astronomers discovered Ganymede, one of Jupiter’s moons (Cook, 2018).
    [Show full text]
  • Introducing the Bortle Dark-Sky Scale
    observer’s log Introducing the Bortle Dark-Sky Scale Excellent? Typical? Urban? Use this nine-step scale to rate the sky conditions at any observing site. By John E. Bortle ow dark is your sky? A Limiting Magnitude Isn’t Enough precise answer to this ques- Amateur astronomers usually judge their tion is useful for comparing skies by noting the magnitude of the observing sites and, more im- faintest star visible to the naked eye. Hportant, for determining whether a site is However, naked-eye limiting magnitude dark enough to let you push your eyes, is a poor criterion. It depends too much telescope, or camera to their theoretical on a person’s visual acuity (sharpness of limits. Likewise, you need accurate crite- eyesight), as well as on the time and ef- ria for judging sky conditions when doc- fort expended to see the faintest possible umenting unusual or borderline obser- stars. One person’s “5.5-magnitude sky” vations, such as an extremely long comet is another’s “6.3-magnitude sky.” More- tail, a faint aurora, or subtle features in over, deep-sky observers need to assess the galaxies. visibility of both stellar and nonstellar ob- On Internet bulletin boards and news- jects. A modest amount of light pollution groups I see many postings from begin- degrades diffuse objects such as comets, ners (and sometimes more experienced nebulae, and galaxies far more than stars. observers) wondering how to evaluate To help observers judge the true dark- the quality of their skies. Unfortunately, ness of a site, I have created a nine-level most of today’s stargazers have never scale.
    [Show full text]
  • The Pan-Starrs1 Surveys K
    Draft version January 31, 2019 Preprint typeset using LATEX style emulateapj v. 12/16/11 THE PAN-STARRS1 SURVEYS K. C. Chambers1, E. A. Magnier1, N. Metcalfe2, H. A. Flewelling1, M. E. Huber1, C. Z. Waters1, L. Denneau1, P. W. Draper2, D. Farrow2,7, D. P. Finkbeiner3,4, C. Holmberg1, J. Koppenhoefer7,39 P. A. Price6, A. Rest23, R. P. Saglia7,39, E. F. Schlafly8,9, S. J. Smartt10, W. Sweeney1, R. J. Wainscoat1, W. S. Burgett11, S. Chastel1, T. Grav13, J. N. Heasley14, K. W. Hodapp1, R. Jedicke1, N. Kaiser1, R.-P. Kudritzki1, G. A. Luppino15,16, R. H. Lupton6, D. G. Monet17, J. S. Morgan11, P. M. Onaka1, B. Shiao23, C. W. Stubbs3, J. L. Tonry1, R. White23, E. Banados~ 5,18,19, E. F. Bell 20, R. Bender7,39, E. J. Bernard21, M. Boegner23, F. Boffi23, M.T. Botticella22, A. Calamida23, S. Casertano23, W.-P. Chen24, X. Chen25, S. Cole2, N. Deacon1,5,26, C. Frenk2, A. Fitzsimmons10, S. Gezari 27, V. Gibbs 23, C. Goessl7,39, T. Goggia1, R. Gourgue23, B. Goldman5, P. Grant23, E. K. Grebel28, N.C. Hambly29, G. Hasinger1, A. F. Heavens30 T. M. Heckman13, R. Henderson31, T. Henning5, M. Holman32, U. Hopp7,39, W.-H. Ip24, S. Isani1, M. Jackson23, C.D. Keyes23, A. M. Koekemoer23, R. Kotak10, D. Le23, D. Liska23, K. S. Long23, J.R Lucey2, M. Liu1, N.F. Martin5,33, G. Masci23, B. McLean23, E. Mindel23, P. Misra23, E. Morganson34, D.N.A. Murphy35, A. Obaika23, G. Narayan23 M. A. Nieto-Santisteban23, P. Norberg2,36, J.A. Peacock29, E.
    [Show full text]
  • The Pan-STARRS Synthetic Solar System Model: a Tool for Testing and Efficiency Determination of the Moving Object Processing System
    The Pan-STARRS Synthetic Solar System Model: A tool for testing and efficiency determination of the Moving Object Processing System Tommy Grav Department of Physics and Astronomy, Johns Hopkins University [email protected] Robert Jedicke Institute for Astronomy, University of Hawaii [email protected] Larry Denneau Institute for Astronomy, University of Hawaii [email protected] Steve Chesley Jet Propulsion Laboratory, California Institute of Technology [email protected] Matthew J. Holman Harvard-Smithsonian Center for Astrophysics [email protected] Timothy B. Spahr Harvard-Smithsonian Center for Astrophysics [email protected] March 27, 2008 Submitted to Icarus. Manuscript: 76 pages, with 2 tables and 23 figures. Corresponding author: Tommy Grav Department of Physics and Astronomy Johns Hopkins University 3400 N. Charles St. Baltimore, MD 21218 Phone: (410) 516-7683 Email: [email protected] 2 Abstract We present here the Pan-STARRS Moving Object Processing System (MOPS) Synthetic Solar System Model (S3M), the first ever attempt at building a com- prehensive flux-limited model of the small bodies in the solar system. The model is made up of synthetic populations of near-Earth objects (NEOs with a sub-population of Earth impactors), the main belt asteroids (MBAs), Trojans of all planets from Venus through Neptune, Centaurs, trans-neptunian objects (classical, resonant and scattered TNOs), long period comets (LPCs), and in- terstellar comets (ICs). All of these populations are complete to a minimum of V = 24:5, corresponding to approximately the expected limiting magnitude for Pan-STARRS'sability to detect moving objects. The only exception to this rule are the NEOs, which are complete to H = 25 (corresponding to objects of about 50 meter in diameter).
    [Show full text]
  • Appendix 1: Telescope Limiting-Magnitude and Resolution
    Appendix 1: Telescope Limiting-Magnitude and Resolution Listed below are limiting-magnitudes and resolution values for a variety of common-sized ( SIZE in inches) backyard telescopes in use today, ranging from 2- to 14-in. in aperture. (The 2.4-in. entry is the ubiquitous 60 mm refractor, of which there are perhaps more than any other telescope in the world!) Values for the minimum visual magnitude ( MAG .) listed here are for single stars and are only very approximate, since experienced keen-eyed observers may see as much as a full magnitude fainter under excellent sky conditions. Companions to visual double stars—especially those in close proximity to a bright primary—are typically much more dif fi cult to see than is a star of the same magnitude placed alone in the eye- piece fi eld. Among the many variables involved are light pollution, sky conditions, optical quality, mirror and lens coatings, eyepiece design, obstructed or unob- structed optical system, color (spectral type) of the star, and even the age of the observer. Only a few representative limiting magnitudes are given here (in incre- ments of increasing aperture), as an indication of what an observer might typically expect to see in various sized telescopes. Three different values in arc-seconds are listed for resolution, which are for two stars of equal brightness and of about the sixth magnitude. These fi gures differ signi fi cantly for brighter, fainter and, espe- cially, unequal pairs. DAWES is the value based on Dawes’ Limit ( R = 4.56/A), RAYLEIGH on the Rayleigh Criterion ( R = 5.5/D), and MARKOWITZ on Markowitz’s Limit ( R = 6.0/D).
    [Show full text]
  • Analysis of Seven Years of Globe at Night Data
    Birriel et al., JAAVSO Volume 42, 2014 219 Analysis of Seven Years of Globe at Night Data Jennifer J. Birriel Department of Mathematics, Computer Science and Physics, Morehead State University, Morehead KY 40351 Constance E. Walker National Optical Astronomical Observatory, 950 N. Cherry Avenue, Tucson, AZ 85719 Cory R. Thornsberry Department of Mathematics, Computer Science, and Physics, Morehead State University, Morehead KY (current Address, Department of Physics and Astronomy, University of Tennessee, Knoxville TN 37996) Received April 27, 2012; revised November 4, 2013, November 18, 2013; accepted November 19, 2013 Abstract The Globe at Night (GaN) project website contains seven years of night-sky brightness data contributed by citizen scientists. We perform a statistical analysis of naked-eye limiting magnitudes (NELMs) and find that over the period from 2006 to 2012 global averages of NELMs have remained essentially constant. Observations in which participants reported both NELM and Unihedron Sky Quality Meter (SQM) measurements are compared to a theoretical expression relating night sky surface brightness and NELM: the overall agreement between observed and predicted NELM values based on the reported SQM measurements supports the reliability of GaN data. 1. The Globe at Night (GaN) project The faint band of the Milky Way as seen under a dark sky is very much a part of humanity’s cultural and natural heritage. More than one-fifth of the world population, two-thirds of the United States population, and one-half of the European Union population have already lost naked-eye visibility of the Milky Way (Cinzano et al. 2001). This loss is caused by light pollution.
    [Show full text]
  • How Light Pollution Affects the Stars: Magnitude Readers
    The National Optical Astronomy Observatory’s Dark Skies and Energy Education Program How Light Pollution Affects the Stars: Magnitude Readers (This lesson was adapted from an activity by the International Dark-Sky Association: www.darksky.org.) Grades: 5th – 12th grade Overview: Students each build a “Magnitude Reader”. They use the reader to determine how light pollution affects the visibility of stars and thereby learn the meaning of “limiting magnitude”. The Magnitude Reader has 5 windows or holes numbered 1 through 5. In the 1st hole you can see only the brightest stars. The higher the numbered hole, the fainter the star you can see. To use the Magnitude Reader, students find a constellation like Orion in the night sky and view the stars in the constellation through the holes in the Magnitude Reader. For each star in a drawing of the constellation (like the one of Orion in this activity), the students write down the number of the hole through which they can see the star the faintest. This illustrates the concept of magnitude. Note that for some of the stars on the drawing, the students will not be able to see due to light pollution. Using the faintest star they see (e.g., the limiting magnitude), the students can then estimate how many stars they have lost (e.g., they are unable to see) across their whole sky due to light pollution at their location. Purpose: To help students determine how light pollution affects the visibility of stars and understand the meaning of “limiting magnitude” by using a Magnitude Reader.
    [Show full text]
  • Dark Sky Park Program
    Dark-Sky Park Program (Version 1.31) International Dark-Sky Association 3225 N first Ave - Tucson Arizona 85719 - 520-293-3198 - www.darksky.org To preserve and protect the nighttime environment and our heritage of dark skies through quality outdoor lighting Dark Sky Park Designation Objectives: A To identify and honor protected public lands (national, state, provincial and other parks and notable public lands) with exceptional commitment to, and success in implementing, the ideals of dark sky preservation and/or restoration; B To preserve and/or restore outstanding night skies; C To promote protection of nocturnal habitat, public enjoyment of the night sky and its heritage, and areas ideal for professional and amateur astronomy; D To encourage park administrators to identify dark skies as a valuable resource in need of proactive protection; E To provide international recognition for such parks; F To encourage parks and similar public entities to become environmental leaders on dark sky issues by communicating the importance of dark skies to the general public and surrounding communities, and by providing an example of what is possible. Benefits: Achieving this designation brings recognition of the efforts a park has made towards protecting dark skies. It will raise the awareness of park staff, visitors, and the surrounding community. Designation as an IDA DSP (Dark-Sky Park) entitles the park to display IDA DSP logo in official park publications and promotions, and use of this logo by commercial or other groups within the community when identifying the park area itself (e.g. an organization can say “located in Grand View Park, an IDA DSP” or other words to the same effect).
    [Show full text]
  • Arxiv:0805.2366V5 [Astro-Ph] 23 May 2018 Stephen Pietrowicz,17 Rob Pike,66 Philip A
    Draft version May 25, 2018 Typeset using LATEX twocolumn style in AASTeX62 LSST: from Science Drivers to Reference Design and Anticipated Data Products Zeljkoˇ Ivezic´,1 Steven M. Kahn,2, 3 J. Anthony Tyson,4 Bob Abel,5 Emily Acosta,2 Robyn Allsman,2 David Alonso,6 Yusra AlSayyad,7 Scott F. Anderson,1 John Andrew,2 James Roger P. Angel,8 George Z. Angeli,9 Reza Ansari,10 Pierre Antilogus,11 Constanza Araujo,2 Robert Armstrong,7 Kirk T. Arndt,6 Pierre Astier,11 Eric´ Aubourg,12 Nicole Auza,2 Tim S. Axelrod,8 Deborah J. Bard,13 Jeff D. Barr,2 Aurelian Barrau,14 James G. Bartlett,12 Amanda E. Bauer,2 Brian J. Bauman,15 Sylvain Baumont,16, 11 Andrew C. Becker,1 Jacek Becla,13 Cristina Beldica,17 Steve Bellavia,18 Federica B. Bianco,19, 20 Rahul Biswas,21 Guillaume Blanc,10, 22 Jonathan Blazek,23, 24 Roger D. Blandford,3 Josh S. Bloom,25 Joanne Bogart,3 Tim W. Bond,13 Anders W. Borgland,13 Kirk Borne,26 James F. Bosch,7 Dominique Boutigny,27 Craig A. Brackett,13 Andrew Bradshaw,4 William Nielsen Brandt,28 Michael E. Brown,29 James S. Bullock,30 Patricia Burchat,3 David L. Burke,3 Gianpietro Cagnoli,31 Daniel Calabrese,2 Shawn Callahan,2 Alice L. Callen,13 Srinivasan Chandrasekharan,32 Glenaver Charles-Emerson,2 Steve Chesley,33 Elliott C. Cheu,34 Hsin-Fang Chiang,17 James Chiang,3 Carol Chirino,2 Derek Chow,13 David R. Ciardi,35 Charles F. Claver,2 Johann Cohen-Tanugi,36 Joseph J.
    [Show full text]
  • Hubble Space Telescope Primer for Cycle 13
    October 2003 Hubble Space Telescope Primer for Cycle 13 An Introduction to HST for Phase I Proposers Space Telescope Science Institute 3700 San Martin Drive Baltimore, Maryland 21218 [email protected] Operated by the Association of Universities for Research in Astronomy, Inc., for the National Aeronautics and Space Administration How to Get Started If you are interested in submitting an HST proposal, then proceed as follows: •Visit the Cycle 13 Announcement Web page: http://www.stsci.edu/hst/proposing • Read the Cycle 13 Call for Proposals. • Read this HST Primer. Then continue by studying more technical documentation, such as that provided in the Instrument Handbooks, which can be accessed from http://www.stsci.edu/hst/HST_overview/documents. Where to Get Help •Visit STScI’s Web site at http://www.stsci.edu. • Contact the STScI Help Desk. Either send e-mail to [email protected] or call 1-800-544-8125; from outside the United States, call [1] 410-338-1082. The HST Primer for Cycle 13 was edited by Diane Karakla and Susan Rose, based in part on versions from previous cycles, and with text and assistance from many different individuals at STScI. Send comments or corrections to: Space Telescope Science Institute 3700 San Martin Drive Baltimore, Maryland 21218 E-mail:[email protected] Table of Contents Chapter 1: Introduction............................................. 1 1.1 About this Document.................................................... 1 1.2 Resources, Documentation and Tools..................... 2 1.2.1 Cycle 13 Announcement Web Page........................... 2 1.2.2 Cycle 13 Call for Proposals ........................................ 2 1.2.3 Instrument Handbooks................................................ 2 1.2.4 The Astronomer’s Proposal Tools (APT)...................
    [Show full text]