First Record of Turbinaria Patula (Scleractinia) from Palk Bay, India

Total Page:16

File Type:pdf, Size:1020Kb

First Record of Turbinaria Patula (Scleractinia) from Palk Bay, India Indian Journal of Geo Marine Sciences Vol. 46 (01), January 2017, pp. 190-191 First record of Turbinaria patula (Scleractinia) from Palk Bay, India G. Mathews*, K. Diraviya Raj, S. Rajesh, P. Dinesh Kumar and J.K. Patterson Edward Suganthi Devadason Marine Research Institute, 44-Beach Road, Tuticorin – 628 001, Tamil Nadu, India *[Email: [email protected]] Received 25 September 2014; revised 22 October 2014 A new patch coral area has been recorded first time during a recent survey by Suganthi Devadason Marine Research Insti- tute (SDMRI) Reef Research Team (RRT) in the northern region of Palk Bay near Thamodharanpattinam fishing village which is about 70 km away from Pamban. Among the four species recorded in the patch coral area, Turbinaria patula is a new record for the Palk Bay and has been listed as vulnerable in IUCN red list. The current findings provide an insight in to more new coral patches and probably new species in Palk Bay which are to be explored yet. [Key words: Turbinaria patula, Palk Bay, coral patches, Seagrasses] The importance of coral reefs has been widely New patch coral area was recorded by SDMRI RRT acknowledged and various steps are being taken to during a recent survey in Palk Bay at a significant counter the global reef decline, however, there are distance from the already recorded coral areas2. Three many reef areas in the world which are still to be patches of corals measuring a total of 475 sq.m area explored. Coral reefs in India mainly occur in Gulf of were found parallel to Thamodharanpattinam fishing Mannar and Palk Bay, Lakshadweep, Andaman & village (N 09°44.572’ E 079°05.559’) at about 6 m Nicobar Islands, and Gulf of Kutch and all these depth. Distance from this village to these patch coral major reefs are under natural and anthropogenic area was about 5.8 km. The average cover of live cor- threats. Majority of the corals in the Palk Bay region als was 18.29% and coral genera Turbinaria and Go- are distributed on the south Palk Bay region i.e. niopora were recorded with two species each; T. pa- northern side of the Rameswaram Island to Vedhaa- tula, T. peltata, G. minor and G. stutchburyi. Pillai lai, covering a distance of about 25 km coastline and (1971)3 recorded 66 species of corals belonging to 23 northern side of Palk Bay is provided with luxuriant genera in Palk Bay which is far less than the 117 cor- seagrass meadows. Pillai (1969)1 made his al species4 in Gulf of Mannar. Among the four spe- observations as provided below: Poor representation cies recorded, T. patula (Dana 1846), which is com- of corals on the reef and widely spaced nature of monly called disc coral, was recorded for the first the colonies indicate that the reef in consideration is time in Palk Bay. This species has been listed as not an actively growing one in Palk Bay. Widely vulnerable in the IUCN Red List. Colonies of this spaced and poor growth of corals at Palk Bay species were found healthy in the middle of dense indicates that the existing ecological factors are not seagrass meadows dominated by Cymodocea serrula- very congenial for a luxuriant growth of corals. Shore ta. The presence of new recruits of T. patula of as well as the lagoon bottom in the Palk Bay being different size classes justifies the successful reproduc- sandy, a large quantity of silt is stirred up during the tion and recruitment of this species. Colonies of this period of north-east monsoon, the wind at this period species are usually irregularly folded, unifacial, mostly crossing the shore in a north-east direction. upright fronds with long tubular corallites strongly Stirred up sand and silt get suspended and the lagoon inclined towards the colony margins. Corallites have waters look muddy during this period. The effect of elliptical openings, and average 5 millimetres in di- silt during north-east monsoon is a marked degree ameter. Colour of this species is pale brown, green or here, which prevents a healthy growth of corals. grey5. Following is the classification of T. patula. INDIAN J. MAR. SCI., VOL. 46, NO.01, JANUARY 2017 191 Kingdom – Animalia Acknowledgement Phylum – Cnidaria Authors are thankful to Tamil Nadu Forest Department for financial support through the project Class – Anthozoa on “Species Conservation Action Plan for Dugongs in Subclass – Hexacorallia Palk Bay” under Tamil Nadu Biodiversity Greening Project and Suganthi Devadason Marine Research Order – Sclecactinia Institute for facilities. Authors also extend thanks to Family – Dendrophyllidae Andrew H. Baird, ARC Centre of Excellence for Genus – Turbinaria Coral Reef Studies, James Cook University, and Townsville, Australia for helping in species Species – patula identification. A References 1 Pillai , C S G., The distribution of corals on a reef at Manda- pam (Palk Bay), South India. J. Mar. Biol. Ass. India, 11(1) (1969): 62-72. 2 Live patch corals discovered in Palk Bay. The Hindu, 05 Sep- tember. (2014) Ramanathapuram (Special Correspondent). 3 Pillai, C S G., Composition of the coral fauna of the sou theas- tern coast of India. In: Regional Variation in Indian Ocean Coral Reefs (ed. Stoddart, D.R and Young, C.M.). Symposia of the Zoological society of London., 28 (1971) 301-325. 4 Edward, J K P., Mathews, G., Jamila. P., Wilhelmsson, D., Tamelander, J. and Linden, O., Coral reefs of the Gulf of Man- nar, Southeastern India - Distribution, Diversity and Status. SDMRI Special publication no.12., (2007) pp.113. 5 Veron, J E N., Corals of the World. Australian Institute of B Marine Science, Townsville. (2000), pp. 1382. 6 Karuthapandian, T., Karuppudurai, A. and Kumaraguru, K., A preliminary study on the environmental condition of the coral reef habitat. Int. J. Environ. Sci. Tech., 4(3) (2007) 371-378. 7 Thinesh, T., Mathews, G. and Edward, J K P., Coral disease prevalence in the Palk Bay, Southeastern India – with special emphasis to black band. Indian Journal of Geo-Marine Science, Vol.40 (6)., (2011) 813 - 820. 8 Thinesh, T., Studies on the coral diseases of Gulf of Mannar and Palk Bay, Southeast coast of India, Ph.D. thesis, Manon- maniyam Fig. 1 — A&B Underwater photographs of T.patula coral found in seagrass meadows in Palk Bay In Palk Bay, corals are being disturbed by human impacts through oil pollution, waste discharge from processing units and discharge of domestic household wastes from the nearby Mandapam town6. Coral diseases also have been recorded affecting health of Palk Bay reefs which have reduced the coral cover significantly7-8. The current finding encourages further underwater surveys focusing to record new unexplored coral areas and associated living resources. .
Recommended publications
  • Reproductive Strategies of the Coral Turbinaria Reniformis in The
    www.nature.com/scientificreports OPEN Reproductive strategies of the coral Turbinaria reniformis in the northern Gulf of Aqaba (Red Sea) Received: 10 October 2016 Hanna Rapuano1, Itzchak Brickner1, Tom Shlesinger1, Efrat Meroz-Fine2, Raz Tamir1,2 & Accepted: 13 January 2017 Yossi Loya1 Published: 14 February 2017 Here we describe for the first time the reproductive biology of the scleractinian coralTurbinaria reniformis studied during three years at the coral reefs of Eilat and Aqaba. We also investigated the possibility of sex change in individually tagged colonies followed over a period of 12 years. T. reniformis was found to be a stable gonochorist (no detected sex change) that reproduces by broadcast spawning 5–6 nights after the full moon of June and July. Spawning was highly synchronized between individuals in the field and in the lab. Reproduction ofT. reniformis is temporally isolated from the times at which most other corals reproduce in Eilat. Its relatively long reproductive cycle compared to other hermaphroditic corals may be due to the high reproductive effort associated with the production of eggs by gonochoristic females. Sex ratio in both the Aqaba and Eilat coral populations deviated significantly from a 1:1 ratio. The larger number of males than of females may provide a compensation for sperm limitation due to its dilution in the water column. We posit that such sex allocation would facilitate adaptation within gonochoristic species by increasing fertilization success in low density populations, constituting a phenomenon possibly regulated by chemical communication. Research on scleractinian coral reproduction is a prerequisite for the study of other life-history strategies, the ecol- ogy and persistence of populations and communities, and for the management and preservation of the reef1–3.
    [Show full text]
  • Checklist of Fish and Invertebrates Listed in the CITES Appendices
    JOINTS NATURE \=^ CONSERVATION COMMITTEE Checklist of fish and mvertebrates Usted in the CITES appendices JNCC REPORT (SSN0963-«OStl JOINT NATURE CONSERVATION COMMITTEE Report distribution Report Number: No. 238 Contract Number/JNCC project number: F7 1-12-332 Date received: 9 June 1995 Report tide: Checklist of fish and invertebrates listed in the CITES appendices Contract tide: Revised Checklists of CITES species database Contractor: World Conservation Monitoring Centre 219 Huntingdon Road, Cambridge, CB3 ODL Comments: A further fish and invertebrate edition in the Checklist series begun by NCC in 1979, revised and brought up to date with current CITES listings Restrictions: Distribution: JNCC report collection 2 copies Nature Conservancy Council for England, HQ, Library 1 copy Scottish Natural Heritage, HQ, Library 1 copy Countryside Council for Wales, HQ, Library 1 copy A T Smail, Copyright Libraries Agent, 100 Euston Road, London, NWl 2HQ 5 copies British Library, Legal Deposit Office, Boston Spa, Wetherby, West Yorkshire, LS23 7BQ 1 copy Chadwick-Healey Ltd, Cambridge Place, Cambridge, CB2 INR 1 copy BIOSIS UK, Garforth House, 54 Michlegate, York, YOl ILF 1 copy CITES Management and Scientific Authorities of EC Member States total 30 copies CITES Authorities, UK Dependencies total 13 copies CITES Secretariat 5 copies CITES Animals Committee chairman 1 copy European Commission DG Xl/D/2 1 copy World Conservation Monitoring Centre 20 copies TRAFFIC International 5 copies Animal Quarantine Station, Heathrow 1 copy Department of the Environment (GWD) 5 copies Foreign & Commonwealth Office (ESED) 1 copy HM Customs & Excise 3 copies M Bradley Taylor (ACPO) 1 copy ^\(\\ Joint Nature Conservation Committee Report No.
    [Show full text]
  • Plant Life Magill’S Encyclopedia of Science
    MAGILLS ENCYCLOPEDIA OF SCIENCE PLANT LIFE MAGILLS ENCYCLOPEDIA OF SCIENCE PLANT LIFE Volume 4 Sustainable Forestry–Zygomycetes Indexes Editor Bryan D. Ness, Ph.D. Pacific Union College, Department of Biology Project Editor Christina J. Moose Salem Press, Inc. Pasadena, California Hackensack, New Jersey Editor in Chief: Dawn P. Dawson Managing Editor: Christina J. Moose Photograph Editor: Philip Bader Manuscript Editor: Elizabeth Ferry Slocum Production Editor: Joyce I. Buchea Assistant Editor: Andrea E. Miller Page Design and Graphics: James Hutson Research Supervisor: Jeffry Jensen Layout: William Zimmerman Acquisitions Editor: Mark Rehn Illustrator: Kimberly L. Dawson Kurnizki Copyright © 2003, by Salem Press, Inc. All rights in this book are reserved. No part of this work may be used or reproduced in any manner what- soever or transmitted in any form or by any means, electronic or mechanical, including photocopy,recording, or any information storage and retrieval system, without written permission from the copyright owner except in the case of brief quotations embodied in critical articles and reviews. For information address the publisher, Salem Press, Inc., P.O. Box 50062, Pasadena, California 91115. Some of the updated and revised essays in this work originally appeared in Magill’s Survey of Science: Life Science (1991), Magill’s Survey of Science: Life Science, Supplement (1998), Natural Resources (1998), Encyclopedia of Genetics (1999), Encyclopedia of Environmental Issues (2000), World Geography (2001), and Earth Science (2001). ∞ The paper used in these volumes conforms to the American National Standard for Permanence of Paper for Printed Library Materials, Z39.48-1992 (R1997). Library of Congress Cataloging-in-Publication Data Magill’s encyclopedia of science : plant life / edited by Bryan D.
    [Show full text]
  • Scleractinian Reef Corals: Identification Notes
    SCLERACTINIAN REEF CORALS: IDENTIFICATION NOTES By JACKIE WOLSTENHOLME James Cook University AUGUST 2004 DOI: 10.13140/RG.2.2.24656.51205 http://dx.doi.org/10.13140/RG.2.2.24656.51205 Scleractinian Reef Corals: Identification Notes by Jackie Wolstenholme is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 3.0 Unported License. TABLE OF CONTENTS TABLE OF CONTENTS ........................................................................................................................................ i INTRODUCTION .................................................................................................................................................. 1 ABBREVIATIONS AND DEFINITIONS ............................................................................................................. 2 FAMILY ACROPORIDAE.................................................................................................................................... 3 Montipora ........................................................................................................................................................... 3 Massive/thick plates/encrusting & tuberculae/papillae ................................................................................... 3 Montipora monasteriata .............................................................................................................................. 3 Massive/thick plates/encrusting & papillae ...................................................................................................
    [Show full text]
  • Volume 2. Animals
    AC20 Doc. 8.5 Annex (English only/Seulement en anglais/Únicamente en inglés) REVIEW OF SIGNIFICANT TRADE ANALYSIS OF TRADE TRENDS WITH NOTES ON THE CONSERVATION STATUS OF SELECTED SPECIES Volume 2. Animals Prepared for the CITES Animals Committee, CITES Secretariat by the United Nations Environment Programme World Conservation Monitoring Centre JANUARY 2004 AC20 Doc. 8.5 – p. 3 Prepared and produced by: UNEP World Conservation Monitoring Centre, Cambridge, UK UNEP WORLD CONSERVATION MONITORING CENTRE (UNEP-WCMC) www.unep-wcmc.org The UNEP World Conservation Monitoring Centre is the biodiversity assessment and policy implementation arm of the United Nations Environment Programme, the world’s foremost intergovernmental environmental organisation. UNEP-WCMC aims to help decision-makers recognise the value of biodiversity to people everywhere, and to apply this knowledge to all that they do. The Centre’s challenge is to transform complex data into policy-relevant information, to build tools and systems for analysis and integration, and to support the needs of nations and the international community as they engage in joint programmes of action. UNEP-WCMC provides objective, scientifically rigorous products and services that include ecosystem assessments, support for implementation of environmental agreements, regional and global biodiversity information, research on threats and impacts, and development of future scenarios for the living world. Prepared for: The CITES Secretariat, Geneva A contribution to UNEP - The United Nations Environment Programme Printed by: UNEP World Conservation Monitoring Centre 219 Huntingdon Road, Cambridge CB3 0DL, UK © Copyright: UNEP World Conservation Monitoring Centre/CITES Secretariat The contents of this report do not necessarily reflect the views or policies of UNEP or contributory organisations.
    [Show full text]
  • Species ANALYSIS International Journal for Species ISSN 2319 – 5746 EISSN 2319 – 5754
    Species ANALYSIS International Journal for Species ISSN 2319 – 5746 EISSN 2319 – 5754 Particular qualities of identification and taxonomy of some scleractinian Latypov YuYa҉ A.V. Zhirmunsky Institute of Marine Biology FEB RAS, Vladivostok, Russia ҉Correspondence to: A.V. Zhirmunsky Institute of Marine Biology FEB RAS, Dr. Yu. Latypov, Vladivostok, 690041, Russia; E-mail: [email protected] Publication History Received: 20 February 2015 Accepted: 19 March 2015 Published: 25 March 2015 Citation Latypov YuYa. Particular qualities of identification and taxonomy of some scleractinian. Species, 2015, 13(40), 29-41 ABSTRACT Is a brief history of the taxonomy scleractinian genera Porites and Turbinaria, common in all reefs Indo-Pacific. Discusses the morphology and terminology of the skeleton of the coral and their tacsonomic history. Are audited signs to identify those corals. Key words: Porites, Turbinaria, Scleractinian, Tacsonomy, Signs, Morphology, Terminology. 1. INTRODUCTION AND TACSONOMIC HISTORY Sсleraсtinian genera Porites and Turbinaria distributed on all reef Indo-Pacific. They are found in all reef zones from littoral baths palm-size up to the maximum depth (40-45 m) base reef slopes. Especially in time of reproduction and the ability to get rid of muddy sediment, may be one of the main factors in the success of this corals at high latitudes and in turbid eutrophicated waters, where they compete with algae for area and light (Tomascik and Sander, 1974; Terry, Fish Channel.com; SKM, 2009). 1.1. Genus Turbinaria The generic name “Turbinaria” for funnel-shaped Dendrophyliidae was offered for the first time by L. Oken (1815), but almost for a half a century it was not recognized among taxonomists of that time.
    [Show full text]
  • Submission Re Proposed Cooloola World Heritage Area Boundary
    Nearshore Marine Biodiversity of the Sunshine Coast, South-East Queensland: Inventory of molluscs, corals and fishes July 2010 Photo courtesy Ian Banks Baseline Survey Report to the Noosa Integrated Catchment Association, September 2010 Lyndon DeVantier, David Williamson and Richard Willan Executive Summary Nearshore reef-associated fauna were surveyed at 14 sites at seven locations on the Sunshine Coast in July 2010. The sites were located offshore from Noosa in the north to Caloundra in the south. The species composition and abundance of corals and fishes and ecological condition of the sites were recorded using standard methods of rapid ecological assessment. A comprehensive list of molluscs was compiled from personal observations, the published literature, verifiable unpublished reports, and photographs. Photographic records of other conspicuous macro-fauna, including turtles, sponges, echinoderms and crustaceans, were also made anecdotally. The results of the survey are briefly summarized below. 1. Totals of 105 species of reef-building corals, 222 species of fish and 835 species of molluscs were compiled. Thirty-nine genera of soft corals, sea fans, anemones and corallimorpharians were also recorded. An additional 17 reef- building coral species have been reported from the Sunshine Coast in previous publications and one additional species was identified from a photo collection. 2. Of the 835 mollusc species listed, 710 species could be assigned specific names. Some of those not assigned specific status are new to science, not yet formally described. 3. Almost 10 % (81 species) of the molluscan fauna are considered endemic to the broader bioregion, their known distribution ranges restricted to the temperate/tropical overlap section of the eastern Australian coast (Central Eastern Shelf Transition).
    [Show full text]
  • CNIDARIA Corals, Medusae, Hydroids, Myxozoans
    FOUR Phylum CNIDARIA corals, medusae, hydroids, myxozoans STEPHEN D. CAIRNS, LISA-ANN GERSHWIN, FRED J. BROOK, PHILIP PUGH, ELLIOT W. Dawson, OscaR OcaÑA V., WILLEM VERvooRT, GARY WILLIAMS, JEANETTE E. Watson, DENNIS M. OPREsko, PETER SCHUCHERT, P. MICHAEL HINE, DENNIS P. GORDON, HAMISH J. CAMPBELL, ANTHONY J. WRIGHT, JUAN A. SÁNCHEZ, DAPHNE G. FAUTIN his ancient phylum of mostly marine organisms is best known for its contribution to geomorphological features, forming thousands of square Tkilometres of coral reefs in warm tropical waters. Their fossil remains contribute to some limestones. Cnidarians are also significant components of the plankton, where large medusae – popularly called jellyfish – and colonial forms like Portuguese man-of-war and stringy siphonophores prey on other organisms including small fish. Some of these species are justly feared by humans for their stings, which in some cases can be fatal. Certainly, most New Zealanders will have encountered cnidarians when rambling along beaches and fossicking in rock pools where sea anemones and diminutive bushy hydroids abound. In New Zealand’s fiords and in deeper water on seamounts, black corals and branching gorgonians can form veritable trees five metres high or more. In contrast, inland inhabitants of continental landmasses who have never, or rarely, seen an ocean or visited a seashore can hardly be impressed with the Cnidaria as a phylum – freshwater cnidarians are relatively few, restricted to tiny hydras, the branching hydroid Cordylophora, and rare medusae. Worldwide, there are about 10,000 described species, with perhaps half as many again undescribed. All cnidarians have nettle cells known as nematocysts (or cnidae – from the Greek, knide, a nettle), extraordinarily complex structures that are effectively invaginated coiled tubes within a cell.
    [Show full text]
  • Guide to Theecological Systemsof Puerto Rico
    United States Department of Agriculture Guide to the Forest Service Ecological Systems International Institute of Tropical Forestry of Puerto Rico General Technical Report IITF-GTR-35 June 2009 Gary L. Miller and Ariel E. Lugo The Forest Service of the U.S. Department of Agriculture is dedicated to the principle of multiple use management of the Nation’s forest resources for sustained yields of wood, water, forage, wildlife, and recreation. Through forestry research, cooperation with the States and private forest owners, and management of the National Forests and national grasslands, it strives—as directed by Congress—to provide increasingly greater service to a growing Nation. The U.S. Department of Agriculture (USDA) prohibits discrimination in all its programs and activities on the basis of race, color, national origin, age, disability, and where applicable sex, marital status, familial status, parental status, religion, sexual orientation genetic information, political beliefs, reprisal, or because all or part of an individual’s income is derived from any public assistance program. (Not all prohibited bases apply to all programs.) Persons with disabilities who require alternative means for communication of program information (Braille, large print, audiotape, etc.) should contact USDA’s TARGET Center at (202) 720-2600 (voice and TDD).To file a complaint of discrimination, write USDA, Director, Office of Civil Rights, 1400 Independence Avenue, S.W. Washington, DC 20250-9410 or call (800) 795-3272 (voice) or (202) 720-6382 (TDD). USDA is an equal opportunity provider and employer. Authors Gary L. Miller is a professor, University of North Carolina, Environmental Studies, One University Heights, Asheville, NC 28804-3299.
    [Show full text]
  • Conservation of Reef Corals in the South China Sea Based on Species and Evolutionary Diversity
    Biodivers Conserv DOI 10.1007/s10531-016-1052-7 ORIGINAL PAPER Conservation of reef corals in the South China Sea based on species and evolutionary diversity 1 2 3 Danwei Huang • Bert W. Hoeksema • Yang Amri Affendi • 4 5,6 7,8 Put O. Ang • Chaolun A. Chen • Hui Huang • 9 10 David J. W. Lane • Wilfredo Y. Licuanan • 11 12 13 Ouk Vibol • Si Tuan Vo • Thamasak Yeemin • Loke Ming Chou1 Received: 7 August 2015 / Revised: 18 January 2016 / Accepted: 21 January 2016 Ó Springer Science+Business Media Dordrecht 2016 Abstract The South China Sea in the Central Indo-Pacific is a large semi-enclosed marine region that supports an extraordinary diversity of coral reef organisms (including stony corals), which varies spatially across the region. While one-third of the world’s reef corals are known to face heightened extinction risk from global climate and local impacts, prospects for the coral fauna in the South China Sea region amidst these threats remain poorly understood. In this study, we analyse coral species richness, rarity, and phylogenetic Communicated by Dirk Sven Schmeller. Electronic supplementary material The online version of this article (doi:10.1007/s10531-016-1052-7) contains supplementary material, which is available to authorized users. & Danwei Huang [email protected] 1 Department of Biological Sciences and Tropical Marine Science Institute, National University of Singapore, Singapore 117543, Singapore 2 Naturalis Biodiversity Center, PO Box 9517, 2300 RA Leiden, The Netherlands 3 Institute of Biological Sciences, Faculty of
    [Show full text]
  • A Case Study of Acropora Sp., Turbinaria Sp., and Porites Sp
    An effect-analysis method for species-dependent coral health status in temperature and ammonia: a case study of Acropora sp., Turbinaria sp., and Porites sp. U Bussapakorn1, C Petchporn and R Sompop 2 1 Graduate student, Associate Professor, Department of Environmental Engineering, Chulalongkorn University, Bangkok 10330, Thailand 2 Senior Researcher, Aquatic Resources Research Institute, Chulalongkorn University, Bangkok 10330, Thailand Abstract. This research toxicity testing at 48 hrs by using Probit analysis [11]. Finally, the correlations of health status percentages and Zooxanthellae density were determined. 2.4 Active polyp percentages The authors found it difficult to observe any stress in Figure 1. Coral species: a) Acropora sp. b) Turbinaria sp. Acropora sp. with the naked eye. Therefore, active c) Porites sp. polyps were recorded by camera, converting true color into 256 gray scales. Fragment areas were selected and counted for active polyps (extend polyps), white spots and non-active polyps and red spots from 256 gray-scale 2.2 Coral health status evaluation picture [2]. Coral health status was evaluated by using the coral health chart (Figure 2). The color determination was Active polyp percentages were calculated at 100*active grouped into 4 groups and coral health statuses were polyp numbers/(total polyps counted) classified into 6 levels [9]. A Level 6 color is representative of good health status for the coral (best health) and Level 1 color is representative of declining Results and Discussion coral health status (worst health). After evaluating the coral health based on color the researchers calculated 3.1 Effects of Temperature and Ammonia health condition and mortality percentages as shown in Table 1.
    [Show full text]
  • Marine Biodiversity in India
    MARINEMARINE BIODIVERSITYBIODIVERSITY ININ INDIAINDIA MARINE BIODIVERSITY IN INDIA Venkataraman K, Raghunathan C, Raghuraman R, Sreeraj CR Zoological Survey of India CITATION Venkataraman K, Raghunathan C, Raghuraman R, Sreeraj CR; 2012. Marine Biodiversity : 1-164 (Published by the Director, Zool. Surv. India, Kolkata) Published : May, 2012 ISBN 978-81-8171-307-0 © Govt. of India, 2012 Printing of Publication Supported by NBA Published at the Publication Division by the Director, Zoological Survey of India, M-Block, New Alipore, Kolkata-700 053 Printed at Calcutta Repro Graphics, Kolkata-700 006. ht³[eg siJ rJrJ";t Œtr"fUhK NATIONAL BIODIVERSITY AUTHORITY Cth;Govt. ofmhfUth India ztp. ctÖtf]UíK rvmwvtxe yÆgG Dr. Balakrishna Pisupati Chairman FOREWORD The marine ecosystem is home to the richest and most diverse faunal and floral communities. India has a coastline of 8,118 km, with an exclusive economic zone (EEZ) of 2.02 million sq km and a continental shelf area of 468,000 sq km, spread across 10 coastal States and seven Union Territories, including the islands of Andaman and Nicobar and Lakshadweep. Indian coastal waters are extremely diverse attributing to the geomorphologic and climatic variations along the coast. The coastal and marine habitat includes near shore, gulf waters, creeks, tidal flats, mud flats, coastal dunes, mangroves, marshes, wetlands, seaweed and seagrass beds, deltaic plains, estuaries, lagoons and coral reefs. There are four major coral reef areas in India-along the coasts of the Andaman and Nicobar group of islands, the Lakshadweep group of islands, the Gulf of Mannar and the Gulf of Kachchh . The Andaman and Nicobar group is the richest in terms of diversity.
    [Show full text]