Autonomous Blimp Major Qualifying Project Report

Total Page:16

File Type:pdf, Size:1020Kb

Autonomous Blimp Major Qualifying Project Report Project ID: FJL-BLMP Project ID: GTH-AAA6 Towards the Realization of an Autonomous Blimp Major Qualifying Project Report Submitted to the Faculty Of WORCESTER POLYTECHNIC INSTITUTE In partial fulfillment of the requirements for the Degree of Bachelor of Science in Electrical and Computer Engineering and Computer Science by Jeremy Colon (CS) Melinda Race (ECE) Darius Toussi (ECE) Richard Walker (ECE) Date Submitted: April 25, 2013 Project Advisors: George Heineman Fred Looft 0 Abstract This project continues an MQP from the 2011-12 academic year: Development of an Autonomous Blimp. The objective of our project was to modify the existing design by implementing autonomous flight capability using an Android phone, a power system capable of tracking energy usage, and a camera mission module for aerial photography. Through testing and flight tests, we demonstrated that we successfully implemented non-optimized autonomous flight, portions of the power system design, and a camera mission module. i Acknowledgements We would like to thank our advisors Professor George Heineman and Professor Fred Looft for their continued support throughout this project. We would also like to thank the following individuals for their help with this project: Thomas Angelotti Danielle Beaulieu Torbjorn Bergstrom Professor Stephen Bitar Adam Blumenau Nicholas DeMarinis Cathy Emmerton Richard Gammon Mitchell Monserrate Patrick Morrison Earl Ziegler ii Table of Contents Abstract ............................................................................................................................................ i Acknowledgements ......................................................................................................................... ii Table of Figures ............................................................................................................................ vii Table of Tables ............................................................................................................................... x 1 Introduction ............................................................................................................................. 1 1.1 Introduction ...................................................................................................................... 1 1.2 Project Statement.............................................................................................................. 1 1.3 Summary .......................................................................................................................... 1 2 Background ............................................................................................................................. 3 2.1 Autonomous Blimp Project Goals ................................................................................... 3 2.1.1 Outdoor Operation .................................................................................................... 3 2.1.2 Autonomous Operation ............................................................................................. 3 2.1.3 Performing Multiple Roles ....................................................................................... 4 2.1.4 Endurance Flights ..................................................................................................... 4 2.1.5 Two-Way Communication with a Base Station........................................................ 4 2.1.6 System Requirements................................................................................................ 4 2.2 Project Accomplishments ................................................................................................. 5 2.2.1 Gondola ..................................................................................................................... 5 2.2.2 Electronics................................................................................................................. 7 2.2.3 Software .................................................................................................................... 7 2.2.4 Mission Modules ....................................................................................................... 8 2.3 Problems ........................................................................................................................... 9 2.3.1 Hardware Failures ..................................................................................................... 9 2.3.2 Drive and Power System Efficiency ....................................................................... 10 2.3.3 Documentation and Organization ........................................................................... 10 2.3.4 Time Constraints ..................................................................................................... 11 2.4 Summary ........................................................................................................................ 12 3 Detailed Project Proposal ...................................................................................................... 13 3.1 Hardware for Autonomous Flight .................................................................................. 13 3.2 Power System ................................................................................................................. 14 3.3 Mission Modules ............................................................................................................ 15 3.4 Requirements .................................................................................................................. 16 3.4.1 Flight Requirements ................................................................................................ 16 3.4.2 Power System Requirements .................................................................................. 16 3.4.3 Mission Modules ..................................................................................................... 17 3.4.4 Requirement Chart .................................................................................................. 18 3.5 Summary ........................................................................................................................ 18 4 System Architecture .............................................................................................................. 19 4.1 Introduction .................................................................................................................... 19 4.2 High Level Systems ....................................................................................................... 19 4.3 Detailed Sub-Systems .................................................................................................... 19 4.3.1 Power Supply .......................................................................................................... 20 4.3.2 Sensors .................................................................................................................... 20 4.3.3 Power Display Unit ................................................................................................. 21 4.3.4 Drive System ........................................................................................................... 21 iii 4.3.5 Control System........................................................................................................ 21 4.3.6 Manual Override ..................................................................................................... 22 4.3.7 Mission Module ...................................................................................................... 22 4.3.8 Base Station ............................................................................................................ 22 4.4 Summary ........................................................................................................................ 22 5 Control System...................................................................................................................... 23 5.1 Introduction .................................................................................................................... 23 5.2 System Design ................................................................................................................ 23 5.2.1 System Needs .......................................................................................................... 24 5.2.2 System Requirements.............................................................................................. 26 5.3 System Architecture and Trade Studies ......................................................................... 28 5.4 Final System Design....................................................................................................... 31 5.5 Detailed System Design ................................................................................................. 32 5.5.1 Detailed System Design Architecture ..................................................................... 33 5.5.2 Detailed Manual Override System .......................................................................... 35 5.6 Testing and Results ........................................................................................................ 39 5.6.1 Testing and Results ................................................................................................. 39 5.6.2 Tests and Results for PWM Signals Generated by Android
Recommended publications
  • Lighter-Than-Air Vehicles for Civilian and Military Applications
    Lighter-than-Air Vehicles for Civilian and Military Applications From the world leaders in the manufacture of aerostats, airships, air cell structures, gas balloons & tethered balloons Aerostats Parachute Training Balloons Airships Nose Docking and PARACHUTE TRAINING BALLOONS Mooring Mast System The airborne Parachute Training Balloon system (PTB) is used to give preliminary training in static line parachute jumping. For this purpose, an Instructor and a number of trainees are carried to the operational height in a balloon car, the winch is stopped, and when certain conditions are satisfied, the trainees are dispatched and make their parachute descent from the balloon car. GA-22 Airship Fully Autonomous AIRSHIPS An airship or dirigible is a type of aerostat or “lighter-than-air aircraft” that can be steered and propelled through the air using rudders and propellers or other thrust mechanisms. Unlike aerodynamic aircraft such as fixed-wing aircraft and helicopters, which produce lift by moving a wing through the air, aerostatic aircraft, and unlike hot air balloons, stay aloft by filling a large cavity with a AEROSTATS lifting gas. The main types of airship are non rigid (blimps), semi-rigid and rigid. Non rigid Aerostats are a cost effective and efficient way to raise a payload to a required altitude. airships use a pressure level in excess of the surrounding air pressure to retain Also known as a blimp or kite aerostat, aerostats have been in use since the early 19th century their shape during flight. Unlike the rigid design, the non-rigid airship’s gas for a variety of observation purposes.
    [Show full text]
  • Goodyear – Civilian Blimps
    Goodyear – civilian blimps Peter Lobner, 24 August 2021 1. Introduction Goodyear Tire & Rubber Company began their involvement with lighter-than-air (LTA) vehicles in 1912, when the company developed a fabric envelope suitable for use in airships and aerostats. The first blimps manufactured by the Goodyear Tire & Rubber Company were B-Type blimps ordered by the US Navy in 1917 for convoy escort duty. Goodyear (envelope supplier) and Curtiss Aeroplane (gondola supplier) produced 9 of the 17 B-Type blimps ordered. Goodyear also supplied the envelopes for some of the Navy’s 10 C-Type patrol blimps, which were delivered in 1918, after the end of WW I. Both the B- and C-Type blimps used hydrogen as the lift gas. In 1923, Goodyear teamed with German firm Luftschiffbau Zeppelin and created a new subsidiary, Goodyear Zeppelin Corporation. In June 1925, their Type AD Pilgrim (NC-9A) made its first flight and became Goodyear’s first blimp to use helium lift gas. Pilgrim was certified later in 1925, becoming the first US commercial airship. Goodyear Zeppelin Corporation filed a patent application for a nonrigid airship in September 1929, describing the objectives of their invention as follows: “This invention relates to non-rigid airships, and it has particular relation to the suspension of pilot cars or gondolas from the envelopes of non-rigid airships. The principal object of the invention is to provide a non-rigid airship in which the envelope and the pilot car or engine car are so constructed as to offer the minimum air resistance. Another object of the invention is to provide connections between the envelope and pilot car that are not exposed to the airstream for sustaining the weight of the pilot car, as well as stabilizing it against lateral or longitudinal movement.” 1 In patent Figure 1, the pressurized lift gas envelope (10) contains an air ballonet (12, for adjusting airship buoyancy) and a load suspension system for carrying and distributing the weight of the gondola (11) affixed under the envelope and the thrust loads from the with attached engines.
    [Show full text]
  • Manufacturing Techniques of a Hybrid Airship Prototype
    UNIVERSIDADE DA BEIRA INTERIOR Engenharia Manufacturing Techniques of a Hybrid Airship Prototype Sara Emília Cruz Claro Dissertação para obtenção do Grau de Mestre em Engenharia Aeronáutica (Ciclo de estudos integrado) Orientador: Prof. Doutor Jorge Miguel Reis Silva, PhD Co-orientador: Prof. Doutor Pedro Vieira Gamboa, PhD Covilhã, outubro de 2015 ii AVISO A presente dissertação foi realizada no âmbito de um projeto de investigação desenvolvido em colaboração entre o Instituto Superior Técnico e a Universidade da Beira Interior e designado genericamente por URBLOG - Dirigível para Logística Urbana. Este projeto produziu novos conceitos aplicáveis a dirigíveis, os quais foram submetidos a processo de proteção de invenção através de um pedido de registo de patente. A equipa de inventores é constituída pelos seguintes elementos: Rosário Macário, Instituto Superior Técnico; Vasco Reis, Instituto Superior Técnico; Jorge Silva, Universidade da Beira Interior; Pedro Gamboa, Universidade da Beira Interior; João Neves, Universidade da Beira Interior. As partes da presente dissertação relevantes para efeitos do processo de proteção de invenção estão devidamente assinaladas através de chamadas de pé de página. As demais partes são da autoria do candidato, as quais foram discutidas e trabalhadas com os orientadores e o grupo de investigadores e inventores supracitados. Assim, o candidato não poderá posteriormente reclamar individualmente a autoria de qualquer das partes. Covilhã e UBI, 1 de Outubro de 2015 _______________________________ (Sara Emília Cruz Claro) iii iv Dedicator I want to dedicate this work to my family who always supported me. To my parents, for all the love, patience and strength that gave me during these five years. To my brother who never stopped believing in me, and has always been my support and my mentor.
    [Show full text]
  • Hacking Roomba®
    Hacking Roomba® Tod E. Kurt Wiley Publishing, Inc. Hacking Roomba® Published by Wiley Publishing, Inc. 10475 Crosspoint Boulevard Indianapolis, IN 46256 www.wiley.com Copyright © 2007 by Wiley Publishing, Inc., Indianapolis, Indiana Published simultaneously in Canada ISBN-13: 978-0-470-07271-4 ISBN-10: 0-470-07271-7 Manufactured in the United States of America 10 9 8 7 6 5 4 3 2 1 No part of this publication may be reproduced, stored in a retrieval system or transmitted in any form or by any means, electronic, mechanical, photocopying, recording, scanning or otherwise, except as permitted under Sections 107 or 108 of the 1976 United States Copyright Act, without either the prior written permission of the Publisher, or authorization through payment of the appropriate per-copy fee to the Copyright Clearance Center, 222 Rosewood Drive, Danvers, MA 01923, (978) 750-8400, fax (978) 646-8600. Requests to the Publisher for permission should be addressed to the Legal Department, Wiley Publishing, Inc., 10475 Crosspoint Blvd., Indianapolis, IN 46256, (317) 572-3447, fax (317) 572-4355, or online at http://www.wiley.com/go/permissions. Limit of Liability/Disclaimer of Warranty: The publisher and the author make no representations or warranties with respect to the accuracy or completeness of the contents of this work and specifically disclaim all warranties, including without limitation warranties of fitness for a particular purpose. No warranty may be created or extended by sales or promotional materials. The advice and strategies contained herein may not be suitable for every situation. This work is sold with the understanding that the publisher is not engaged in rendering legal, accounting, or other professional services.
    [Show full text]
  • Raspberry Pi Market Research
    Raspberry Pi Market Research Contents MARKET ................................................................................................................................................... 3 CONSUMERS ............................................................................................................................................ 8 COMPETITORS ....................................................................................................................................... 12 Element14 ......................................................................................................................................... 12 Gumstix- Geppetto Design ............................................................................................................... 14 Display Module .................................................................................................................................. 17 CoMo Booster For Raspberry Pi Compute Module (Geekroo Technologies ) ................................... 18 2 MARKET When the first Raspberry PI (Pi) was released in February 2012 it made a big impact that extended well beyond the education world for which it was touted. The Pi became a staple amongst the hobbyist and professional maker communities and was used for building everything from media centers, home automation systems, remote sensing devices and forming the brains of home made robots. It has recently been announced that over 5m Raspberry Pi’s have been sold since its inception, making it the best selling
    [Show full text]
  • C 2014 Wenjia Zhou a LIGHTWEIGHT DSP FRAMEWORK for OMAP3530-DRIVEN EMBEDDED DEVICES
    c 2014 Wenjia Zhou A LIGHTWEIGHT DSP FRAMEWORK FOR OMAP3530-DRIVEN EMBEDDED DEVICES BY WENJIA ZHOU THESIS Submitted in partial fulfillment of the requirements for the degree of Master of Science in Electrical and Computer Engineering in the Graduate College of the University of Illinois at Urbana-Champaign, 2014 Urbana, Illinois Adviser: Professor Geir E. Dullerud ABSTRACT This thesis provides a lightweight framework, called MiniDSP, for OMAP3530 heterogeneous dual core SoC to run tasks on its DSP co-processor. This framework is composed of a minimal DSP kernel and a set of programs which run on the ARM A8 master processor. The minimal kernel maintains system stability and initializes the interrupt handler. The set of programs includes a DSP device driver, a host program and two utility programs. Through the device driver, the ARM core can send commands to the DSP and control it to execute compute-intensive applications. The host program performs task off-loading and general ARM-DSP communication. Finally the two utility programs are responsible for converting the DSP executable to a bootable format used by the framework. This framework is open source, highly con- figurable and lightweight, enabling the possibility of high performance com- puting on DSP. ii To my parents, for their love and support. iii ACKNOWLEDGMENTS I would like to thank all the lab members for their generous support: Seungho Lee, for patiently guide me through all the technical details of Hovercraft; Bicheng Zhang, for keeping the lab servers up and live; Steve Granda, for the help of debugging the system; Richard Otap, for all Gumstix software introduction; and Rohan Khanna, for helping me put the hardware pieces together.
    [Show full text]
  • Proyecto Fin De Grado
    ESCUELA TÉCNICA SUPERIOR DE INGENIERÍA Y SISTEMAS DE TELECOMUNICACIÓN PROYECTO FIN DE GRADO TÍTULO: Despliegue de Liota (Little IoT Agent) en Raspberry Pi AUTOR: Ricardo Amador Pérez TITULACIÓN: Ingeniería Telemática TUTOR (o Director en su caso): Antonio da Silva Fariña DEPARTAMENTO: Departamento de Ingeniería Telemática y Electrónica VºBº Miembros del Tribunal Calificador: PRESIDENTE: David Luengo García VOCAL: Antonio da Silva Fariña SECRETARIO: Ana Belén García Hernando Fecha de lectura: Calificación: El Secretario, Despliegue de Liota (Little IoT Agent) en Raspberry Pi Quizás de todas las líneas que he escrito para este proyecto, estas sean a la vez las más fáciles y las más difíciles de todas. Fáciles porque podría doblar la longitud de este proyecto solo agradeciendo a mis padres la infinita paciencia que han tenido conmigo, el apoyo que me han dado siempre, y el esfuerzo que han hecho para que estas líneas se hagan realidad. Por todo ello y mil cosas más, gracias. Mamá, papá, lo he conseguido. Fáciles porque sin mi tutor Antonio, este proyecto tampoco sería una realidad, no solo por su propia labor de tutor, si no porque literalmente sin su ayuda no se hubiera entregado a tiempo y funcionando. Después de esto Antonio, voy a tener que dejarme ganar algún combate en kenpo como agradecimiento. Fáciles porque, sí melones os toca a vosotros, Alex, Alfonso, Manu, Sama, habéis sido mi apoyo más grande en los momentos más difíciles y oscuros, y mis mejores compañeros en los momentos de felicidad. Amigos de Kulturales, los hermanos Baños por empujarme a mejorar, Pablo por ser un ejemplo a seguir, Chou, por ser de los mejores profesores y amigos que he tenido jamás.
    [Show full text]
  • Luiz Otávio Furtado Ferreira Experimental Investigations of Stability and Aerodynamic Interference Effects of an X-Tail Convent
    University of São Paulo São Carlos School of Engineering Mechanical Engineering Department Mechanical Engineering Graduate Program – Aircraft Luiz Otávio Furtado Ferreira Experimental investigations of stability and aerodynamic interference effects of an x-tail conventional airship São Carlos 2018 Universidade de São Paulo Escola de Engenharia de São Carlos Departamento de Engenharia Mecânica Programa de Pós-Graduação em Engenharia Mecânica – Aeronaves Luiz Otávio Furtado Ferreira Investigações experimentais de estabilidade e efeitos de interferência aerodinâmica de um dirigível convencional com cauda em x Versão Corrigida (Versão original encontra-se na unidade que aloja o Programa de Pós-Graduação) Dissertação apresentada à Escola de Engenharia de São Carlos, Universidade de São Paulo, como requisito parcial para a obtenção do título de Mestre em Engenharia Mecânica. Área de Concentração: Aeronaves Orientador: Prof. Tit. Fernando Martini Catalano São Carlos 2018 I AUTHORIZE TOTAL OR PARTIAL REPRODUCTION OF THIS WORK BY ANY CONVENTIONAL OR ELECTRONIC MEANS, FOR RESEARCH PURPOSES, SO LONG AS THE SOURCE IS CITED. Ferreira, Luiz Otávio Furtado F383e Experimental investigations of stability and Aerodynamic interference effects of an x-tail conventional airship / Luiz Otávio Furtado Ferreira; advisor Fernando Martini Catalano. São Carlos, 2018. Master (Thesis) - Graduate Program in Mechanical Engineering and Subject area in Aircraft -- São Carlos School of Engineering, at University of São Paulo, 2018. Corrected version. 1. Airship. 2. Aerodynamic
    [Show full text]
  • Kite Launch Using an Aerostat
    Kite launch using an aerostat Ir. J. Breukels Delft University of Technology Faculty of Aerospace Engineering The Netherlands ________________________________________________________________________ 1 Kite launch using an aerostat Ir. J. Breukels ASSET Chair Faculty of Aerospace Engineering Delft University of Technology, the Netherlands Kluyverweg 1 2629HS Delft The Netherlands Tel: 0152585571 [email protected] Delft, August 21st 2007 ________________________________________________________________________ 2 Table of contents Table of contents 3 Nomenclature 1. Introduction 5 2. Requirements 6 2.1 Operational requirements 6 2.2 Docking and release requirements 6 2.3 Ground handling requirements 6 2.4 Safety requirements 6 2.5 Meteorological requirements 7 3. The aerostat 7 3.1 Operating the aerostat 9 3.2 Aerostatics 9 3.3 Aerodynamics 10 4. The kite release system 13 4.1 Chin docking 13 4.2 Piggy-back docking 14 5. Kite and aerostat combined 16 6. Observations during testing 16 6.1 July 25th 2007 16 6.2 July 26th 2007 17 6.3 August 14th 2007 17 6.4 August 17th 2007 17 7. Conclusions and recommendations 18 References 19 ________________________________________________________________________ 3 Nomenclature B - The upward buoyancy force acting on a body Cd - Drag coefficient Cf - Friction coefficient d - Diameter of the aerostat Df - Friction drag Dp - Preddure drag Ld - Disposable or net lift Lg - Gross or total buoyancy lift of the enclosed gas Re - Reynolds number Swetted - Wetted surface of the body V - Volume W - Total weight of the system W0 - The weight of the envelope ρa - Air density of the local atmosphere ρg - Air density of the internal gas volume ________________________________________________________________________ 4 1.
    [Show full text]
  • 2021-07-28-Netbsd-Raspi-Earmv6hf.Img (Re: Raspberry Pi U
    京都 NetBSD 2021 Announcing NetBSD 9.2 (May 12, 2021) http://www.netbsd.org/releases/formal-9/NetBSD-9.2.html Announcing NetBSD 9.2 (May 12, 2021) Introduction The NetBSD Project is pleased to announce NetBSD 9.2 "Nakatomi Socrates", the second update of the $32,672 raised of $50,000 goal NetBSD 9 release branch. It represents a selected subset of fixes deemed important for security or stability reasons since the release Home of NetBSD 9.1 in October 2020, as well some enhancements backported from the development branch. It is Recent changes fully compatible with NetBSD 9.0. NetBSD blog Quick download links Presentations About USB stick installation images: 64-bit x86, 32-bit x86 Developers SD card live images: 64-bit ARM, ARMv7 (most 32-bit boards), ARMv6 (Raspberry Pi 1 only) CD installation images: 64-bit x86, 32-bit x86, 64-bit SPARC Gallery Other images and distribution files Ports The CD images support booting from an actual CD/DVD or virtual machine only, for everything else use the Packages other images. In order to write USB drive and SD card images, use gunzip(1) and dd(1) on Unix, or Documentation Rawrite32 on Windows. On ARM boards (not Raspberry Pi), you may also need to write U-Boot to the SD card. FAQ & HOWTOs The Guide Upgrade instructions Manual pages Wiki An existing installation can be upgraded by booting an installation image and selecting the Upgrade option. Support Unattended upgrades can be performed using the sysupgrade tool from pkgsrc. If you are using sysupgrade Community from a release earlier than 9.0, update the kernel and modules first, reboot and make sure the NetBSD 9.2 Mailing lists kernel is running, then update the rest of the system.
    [Show full text]
  • To What Extent Does Modern Technology Address the Problems of Past
    To what extent does modern technology address the problems of past airships? Ansel Sterling Barnes Today, we have numerous technologies we take for granted: electricity, easy internet access, wireless communications, vast networks of highways crossing the continents, and flights crisscrossing the globe. Flight, though, is special because it captures man’s imagination. Humankind has dreamed of flight since Paleolithic times, and has achieved it with heavier-than-air craft such as airplanes and helicopters. Both of these are very useful and have many applications, but for certain jobs, these aircraft are not the ideal option because they are loud and waste energy. Luckily, there is an alternative to energy hogs like airplanes or helicopters, a lighter-than-air craft that predates both: airships! Airships do not generate their own lift through sheer power like heavier-than-air craft. They are airborne submarines of a sort that use a different lift source: gas. They don’t need to use the force of moving air to lift them from the ground, so they require very little energy to lift off or to fly. Unfortunately, there were problems with past airships; problems that were the reason for the decline of airships after World War II: cost, pilot skill, vulnerability to weather, complex systems control, materials, size, power source, and lifting gas. This begs the question: To what extent does modern technology address the problems of past airships? With today’s technology, said problems can be managed. Most people know lighter-than-air craft by one name or another: hot air balloons, blimps, dirigibles, zeppelins, etc.
    [Show full text]
  • 08-R1283 Li-Warren
    GumPack: A Personal Health Assistant with Reconfigurable Surface Components by Kejia Li and Steve Warren Reprinted from Journal of Healthcare Engineering Vol. 4 · No. 1 · 2013 Multi-Science Publishing ISSN 1756-8250 Journal of Healthcare Engineering · Vol. 4 · No. 1 · 2013 Page 145–166 145 GumPack: A Personal Health Assistant with Reconfigurable Surface Components Kejia Li* and Steve Warren Department of Electrical & Computer Engineering, Kansas State University, Manhattan, KS 66506, USA Submitted September 2012. Accepted for publication November 2012. ABSTRACT Wearable and everyday-carry medical devices can improve quality of life for individuals that need frequent health monitoring. Such tools can supplement ubiquitous home care environments populated with medical sensors, extending the reach of these environments and increasing the freedom of their occupants. This paper presents the concept design for an everyday-carry medical device called a ‘GumPack’: a small cuboid-shaped device that offers wireless connectivity and plug-and-play surface components, where a component can be a biomedical sensor or a wireless network coordinator that manages a body area network. This geometrical layout optimizes access to surface-based medical hardware mounted on a small form factor. The device offers substantive computing power, supports local component reconfigurability, and promotes interoperability with medical device coordination environments. The GumPack is envisioned to be a personal health assistant carried in a pocket or handbag that can operate alone or interface to, e.g., a cell phone. Keywords: body area network, interoperability, personal health assistant, reconfigurability, surface component 1. INTRODUCTION Wearable and everyday-carry devices that integrate with healthcare information networks promise to increase the quality of care rendered to individuals that desire mobility yet require frequent or continuous health monitoring [1–4].
    [Show full text]