Dinosaur Tracks in New Jersey! Middle School
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Download the Article
A couple of partially-feathered creatures about the The Outside Story size of a turkey pop out of a stand of ferns. By the water you spot a flock of bigger animals, lean and predatory, catching fish. And then an even bigger pair of animals, each longer than a car, with ostentatious crests on their heads, stalk out of the heat haze. The fish-catchers dart aside, but the new pair have just come to drink. We can only speculate what a walk through Jurassic New England would be like, but the fossil record leaves many hints. According to Matthew Inabinett, one of the Beneski Museum of Natural History’s senior docents and a student of vertebrate paleontology, dinosaur footprints found in the sedimentary rock of the Connecticut Valley reveal much about these animals and their environment. At the time, the land that we know as New England was further south, close to where Cuba is now. A system of rift basins that cradled lakes ran right through our region, from North Carolina to Nova Scotia. As reliable sources of water, with plants for the herbivores and fish for the carnivores, the lakes would have been havens of life. While most of the fossil footprints found in New England so far are in the lower Connecticut Valley, Dinosaur Tracks they provide a window into a world that extended throughout the region. According to Inabinett, the By: Rachel Marie Sargent tracks generally fall into four groupings. He explained that these names are for the tracks, not Imagine taking a walk through a part of New the dinosaurs that made them, since, “it’s very England you’ve never seen—how it was 190 million difficult, if not impossible, to match a footprint to a years ago. -
A Dinosaur Track from New Jersey at the State Museum in Trenton
New Jersey Geological and Water Survey Information Circular What's in a Rock? A Dinosaur Track from New Jersey at the State Museum in Trenton Introduction a large dinosaur track (fig. 2) on the bottom. Most of the rock is sedimentary, sandstone from the 15,000-foot-thick Passaic A large, red rock in front of the New Jersey State Museum Formation. The bottom part is igneous, lava from the 525-foot- (NJSM) in Trenton (fig. 1) is more than just a rock. It has a thick Orange Mountain Basalt, which overspread the Passaic fascinating geological history. This three-ton slab, was excavated Formation. (The overspreading lava was originally at the top of from a construction site in Woodland Park, Passaic County. It the rock, but the rock is displayed upside down to showcase the was brought to Trenton in 2010 and placed upside down to show dinosaur footprint). The rock is about 200 million years old, from the Triassic footprints Period of geologic time. It formed in a rift valley, the Newark Passaic Formation Basin, when Africa, positioned adjacent to the mid-Atlantic states, began to pull eastward and North America began to pull westward contact to open the Atlantic Ocean. The pulling and stretching caused faults to move and the rift valley to subside along border faults including the Ramapo Fault of northeastern New Jersey, about 8 miles west of Woodland Park. Sediments from erosion of higher Collection site Orange Mountain Basalt top N Figure 1. Rock at the New Jersey State Museum. Photo by W. Kuehne Adhesion ripples DESCRIPTION OF MAP UNITS 0 1 2 mi Orange Mountain Basalt L 32 cm Jo (Lower Jurassic) 0 1 2 km W 25.4 cm contour interval 20 feet ^p Passaic Formation (Upper Triassic) Figure 3. -
) Baieiicanjizseum
)SovitatesbAieiicanJizseum PUBLISHED BY THE AMERICAN MUSEUM OF NATURAL HISTORY CENTRAL PARK WEST AT 79TH STREET, NEW YORK 24, N.Y. NUMBER 1901 JULY 22, 1958 Coelurosaur Bone Casts from the Con- necticut Valley Triassic BY EDWIN HARRIS COLBERT1 AND DONALD BAIRD2 INTRODUCTION An additional record of a coelurosaurian dinosaur in the uppermost Triassic of the Connecticut River Valley is provided by a block of sandstone bearing the natural casts of a pubis, tibia, and ribs. This specimen, collected nearly a century ago but hitherto unstudied, was brought to light by the junior author among the collections (at present in dead storage) of the Boston Society of Natural History. We are much indebted to Mr. Bradford Washburn and Mr. Chan W. Wald- ron, Jr., of the Boston Museum of Science for their assistance in mak- ing this material available for study. The source and history of this block of stone are revealed in brief notices published at the time of its discovery. The Proceedings of the Boston Society of Natural History (vol. 10, p. 42) record that on June 1, 1864, Prof. William B. Rogers "presented an original cast in sand- stone of bones from the Mesozoic rocks of Middlebury, Ct. The stone was probably the same as that used in the construction of the Society's Museum; it was found at Newport among the stones used in the erec- tion of Fort Adams, and he owed his possession of it to the kindness of Capt. Cullum." S. H. Scudder, custodian of the museum, listed the 1 Curator of Fossil Reptiles and Amphibians, the American Museum of Natural History. -
The Widespread Distribution of a Late Jurassic Theropod with Well-Padded Feet
GAIA N°15, LlSBOAlLISBON, DEZEMBRO/DECEMBER 1998, pp. 339-353 (ISSN: 0871-5424) THERANGOSPODUS: TRACKWAY EVIDENCE FOR THE WIDESPREAD DISTRIBUTION OF A LATE JURASSIC THEROPOD WITH WELL-PADDED FEET Martin G. LOCKLEY Geology Department, Campus Box 172, University of Colorado at Denver. P.O. Box 173364, DENVER, COLORADO 80217-3364. USA E-mail: [email protected] Christian A. MEYER Universitat Basel, Geologisch-palaontologisches Institut. Bernoullistrasse, 32, BASEL, CH-4056. SWITZERLAND E-mail: [email protected] Joaquin J. MORATALLA Unidad de Paleontologia, Departamento Biologia, Universidad Aut6noma de Madrid. CANTOBLANCO 28049, MADRID. SPAIN ABSTRACT: Assemblages of distinctive, medium·sized theropod tracks indicative of animals with well-padded feet are known from large Upper Jurassic samples of well-preserved mate rial from North America and Asia. These tracks, herein named Therangospodus pandemi cus, always reveal a lack of distinct, separate digital pads, regardless of whether they are preserved as casts or molds. We interpret this as consistent ichnological evidence of a fleshy fool. Similar tracks from the ?Upper Jurassic-?Lower Cretaceous of Spain, first na med Therangospodus onca/ensis, are also formally described. Although the fleshy nature of the foot of this trackmaker, makes it's individual digits appear comparable with those of ornithopod trackmakers, the elongate track and asymmetric postero-medial indentation and narrow trackway, indicate that it is probably of theropod an affinity. Tracks of this type provide an instructive lesson for ichnologists and paleontologist in general because they reveal that tracks are a record of flesh on foot bones, and need not necessarily be an accura te reflection of the morphology of foot skeletons. -
Sauropod and Small Theropod Tracks from the Lower Jurassic Ziliujing Formation of Zigong City, Sichuan, China, with an Overview
Ichnos, 21:119–130, 2014 Copyright Ó Taylor & Francis Group, LLC ISSN: 1042-0940 print / 1563-5236 online DOI: 10.1080/10420940.2014.909352 Sauropod and Small Theropod Tracks from the Lower Jurassic Ziliujing Formation of Zigong City, Sichuan, China, with an Overview of Triassic–Jurassic Dinosaur Fossils and Footprints of the Sichuan Basin Lida Xing,1 Guangzhao Peng,2 Yong Ye,2 Martin G. Lockley,3 Hendrik Klein,4 W. Scott Persons IV,5 Jianping Zhang,1 Chunkang Shu,2 and Baoqiao Hao2 1School of the Earth Sciences and Resources, China University of Geosciences, Beijing, China 2Zigong Dinosaur Museum, Zigong, Sichuan, China 3Dinosaur Trackers Research Group, University of Colorado, Denver, Colorado, USA 4Saurierwelt Palaontologisches€ Museum, Neumarkt, Germany 5Department of Biological Sciences, University of Alberta, Edmonton, Alberta, Canada Keywords Grallator, Parabrontopodus, Hejie tracksite, Ma’anshan A dinosaur footprint assemblage from the Lower Jurassic Member, Zigong Ziliujing Formation of Zigong City, Sichuan, China, comprises about 300 tracks of small tridactyl theropods and large sauropods preserved as concave epireliefs (natural molds). The INTRODUCTION theropod footprints show similarities with both the ichnogenera Zigong is famous for the Middle Jurassic Shunosaurus Grallator and Jialingpus. Three different morphotypes are fauna and the Late Jurassic Mamenchisaurus fauna. However, present, probably related to different substrate conditions and extramorphological variation. A peculiar preservational feature fossils from the Early Jurassic and the Late Triassic are com- in a morphotype that reflects a gracile trackmaker with paratively rare. Previously reported Early Jurassic fossils extremely slender digits, is the presence of a convex epirelief that include fragmentary prosauropod and sauropod skeletal occurs at the bottom of the concave digit impressions. -
Cómo Se Formaron? ¿Cuáles Fueron
DinosaurAH!torium Foundation 2180 East Riverside Drive, St. George. UT 84790 En el museo de SGDS Ud. verá unas rarísimas huellas extraordinarias y otra evidencia de VISITANDO EL SITIO una época de hace 195 -198 millones de años. Esta época se halla al principio de lo que Horas de verano científicos llaman el Período Jurásico. Durante ese tiempo la tierra en estas partes estaba 10 a.m. a 6 p.m. casi al nivel del mar y mucho más cerca del ecuador. Arroyos y lagos cubrían entonces De lunes a domingo partes del sur de Utah y del noroeste de Arizona depositando las rocas que se ven hoy. Las específicas formaciones rocosas representadas aquí se encuentran dentro de la Días de fiesta casi Formación Moenave. La Formación Moenave contiene fajas de piedra de cieno, piedra de siempre abierto barro y esquisto. El Moenave se encuentra sobre la Formación Chinle del Triásico Superior y debajo de la Formación Kayenta del Jurásico Inferior que forma los acantilados rojos Para más información alrededor de St. George. Mientras la Formación Moenave se depositaba en el sur de Utah, visítenos en el internet un gran desierto parecido al Sahara moderno cubría Utah hacia el norte y el este de St. www.UtahDinosaurs.com www.facebook.com/StGeorge George formando los que hoy son los masivos acantilados del Wingate Sandstone DinosaurDiscoveryMuseum [Arenisca Wingate]. La Formación Wingate se reconoce en las ondulaciones de San Rafael Swell, Moab, Capitol Reef y las regiones del lago Powell. Espectaculares moldes de huellas - - ¿Cómo se formaron? El Museo de SGDS incluye no sólo las imprentas de huellas ordinarias halladas en otras localidades de esta región, sino también un gran número de espectaculares moldes naturales de huellas. -
Underground Dinosaur Tracksite Inside a Karst of Southern France: Early Jurassic Tridactyl Traces from the Dolomitic Formation O
International Journal of Speleology 47 (1) 29-42 Tampa, FL (USA) January 2018 Available online at scholarcommons.usf.edu/ijs International Journal of Speleology Off icial Journal of Union Internationale de Spéléologie Underground dinosaur tracksite inside a karst of southern France: Early Jurassic tridactyl traces from the Dolomitic Formation of the Malaval Cave (Lozère) Jean-David Moreau1,2*, Vincent Trincal3, Daniel André4, Louis Baret5, Alain Jacquet5, and Michel Wienin6 1CNRS UMR 6282 Biogéosciences, Université de Bourgogne Franche-Comté, 6, boulevard Gabriel, 21000 Dijon, France 2Centre d’étude et de conservation Jean Mazel-Musée du Gévaudan, allée Raymond Fages, 48000 Mende, France 3IMT Lille Douai, Université de Lille, Département GCE, Ecole des Mines, 764, boulevard Lahure, 59508 Douai, France 4Association Malaval, La Lèche, 48320 Ispagnac, France 5Association Paléontologique des Hauts Plateaux du Languedoc, 14, chemin des Ecureuils, 48000 Mende, France 6Parc National des Cévennes, Place du Palais, 48400 Florac, France Abstract: Although underground dinosaur tracksites inside anthropic cavities such as mines or tunnels are well-known throughout the world, footprints inside natural karstic caves remain extremely rare. The Malaval Cave (Lozère, southern France) is well-known by speleologists for the abundance and the exceptional quality of acicular and helictite aragonite speleothems. Recent palaeontological prospecting inside this cave allowed the discovery of tridactyl dinosaur tracks. Here, a detailed study of theropod footprints was for the first time conducted inside a natural karstic cave, using photogrammetric imaging technique. Tracks from the Malaval Cave are located inside the “Super-Blanches” galleries. More than 26 footprints were identified. They are Hettangian in age (Lower Jurassic) and preserved as both in situ convex hyporeliefs and ex situ concave epireliefs. -
Dinosaur Ichnotaxa from the Lower Jurassic of Hungary
Geological Quarterly, Vol.40,No.l,1996,p.1l9- 128 Gerard GIERLrNSKI Dinosaur ichnotaxa from the Lower Jurassic of Hungary The Early Jurassic strata of the Mecsek Coal Fonnatioo of southern Hungary revealed new dinosaur tracks. Two ichnospecies of Gralla/or /uberosus (Hitchcock 1836) Weems 1992 and Kayen/aplIS soltykovensis (Gierliriski 1991) comb. nov. have been recognized. The iCMotaxonomy of Kayelilaplis is emended and supplemented by a ichnotaxon previously designated as "Gralla/or (Eubrontes) soltykovensis". INTRODUCTION Occurrence of dinosaur tracks in Hungary is restricted to the Early Liassic deposits of the Mecsek Coal Formation, in the Pecs area. The first discoveries were reported from the Vasas mine and Komlo CA. Tasnadi Kubacska, 1967, 1968. 1970; L. Kordos. 1983). Later. dinosaur tracks were also found in the Pecsbanya mine (K. Hips et aI., i989). New material described herein was collected in September, 1995. in the Vasas and Pecsbanya opencast coal mines. Contrary to L. Kordos (1983), the features of hitherto discovered ichnites from Hungary indicate their theropod affinity (not ornithischian, as L. Kordos postulated). The tracks resemble well known cosmopolitan theropod ichnotaxa of Grallator and Kayentapus. Abbreviation used in the text: te - third digit projection beyond the lateral toes; fl - pes length; fw - pes width; Muz. PIG - Geological Museum of the Polish Geological Institute, Warsaw. Poland; LO - Geological Institute of the Lund University, Lund. Sweden; UCMP - University of California Museum of Paleontology ,Berkeley. California, USA; MNA - Paleontological Locality Files of the Museum of Northern Arizona, Flagstaff. Arizona, USA. 120 Gerard Gidiitski SYSTEMATIC DESCRIPTIONS Suborder Theropoda Marsh 188 1 IchnofarniIy GraIlatoridae Lull 1904 Ichnogenus Graitator Hitchcock 1858 Grallator tuberoxus (Hitchcock 1835) Weems I992 (PI, I, Figs- 2,3) M a r e r i a 1 :Muz. -
The Late Triassic Sauropod Track Reconrd Comes Into Focus: Old Legacies and New Paradigms Martin G
New Mexico Geological Society Downloaded from: http://nmgs.nmt.edu/publications/guidebooks/52 The Late Triassic sauropod track reconrd comes into focus: Old legacies and new paradigms Martin G. Lockley, Joanna L. Wright, Adrian P. Hunt, and Spencer G. Lucas, 2001, pp. 181-190 in: Geology of Llano Estacado, Lucas, Spencer G.;Ulmer-Scholle, Dana; [eds.], New Mexico Geological Society 52nd Annual Fall Field Conference Guidebook, 340 p. This is one of many related papers that were included in the 2001 NMGS Fall Field Conference Guidebook. Annual NMGS Fall Field Conference Guidebooks Every fall since 1950, the New Mexico Geological Society (NMGS) has held an annual Fall Field Conference that explores some region of New Mexico (or surrounding states). Always well attended, these conferences provide a guidebook to participants. Besides detailed road logs, the guidebooks contain many well written, edited, and peer-reviewed geoscience papers. These books have set the national standard for geologic guidebooks and are an essential geologic reference for anyone working in or around New Mexico. Free Downloads NMGS has decided to make peer-reviewed papers from our Fall Field Conference guidebooks available for free download. Non-members will have access to guidebook papers two years after publication. Members have access to all papers. This is in keeping with our mission of promoting interest, research, and cooperation regarding geology in New Mexico. However, guidebook sales represent a significant proportion of our operating budget. Therefore, only research papers are available for download. Road logs, mini-papers, maps, stratigraphic charts, and other selected content are available only in the printed guidebooks. -
A Minute Dinosaur Trackway from Southern Africa
Darting towards Storm Shelter: A minute dinosaur AUTHOR: Emese M. Bordy1 trackway from southern Africa AFFILIATION: 1Department of Geological Sciences, Theropod dinosaurs are considered the main terrestrial carnivores in the Jurassic and Cretaceous. Their University of Cape Town, Cape Town, rise to dominance has been linked to, among others, body size changes in their early history, especially South Africa across the Triassic–Jurassic boundary. However, to qualitatively assess such temporal trends, robust CORRESPONDENCE TO: skeletal and trace fossil data sets are needed globally. The richly fossiliferous southern African continental Emese Bordy rock record in the main Karoo Basin offers an unparalleled perspective for such investigations. Herein, by documenting a newly discovered Early Jurassic trackway of very small, functionally tridactyl tracks near EMAIL: [email protected] Storm Shelter (Eastern Cape) in South Africa, the track record can be expanded. Based on ichnological measurements at the ichnosite and digital 3D models, the footprint dimensions (length, width, splay), DATES: locomotor parameters (step length, stride, speed), and body size estimates of the trackmaker are Received: 01 Nov. 2020 Revised: 09 Dec. 2020 presented. In comparison to other similar tracks, these footprints are not only the smallest Grallator-like Accepted: 11 Dec. 2020 tracks in the Clarens Formation, but also the most elongated dinosaur footprints in southern Africa to Published: 28 May 2021 date. The tracks also show that the small-bodied bipedal trackmaker dashed across the wet sediment surface at an estimated running speed of ~12.5 km/h. During the dash, either as a predator or as a prey, HOW TO CITE: Bordy EM. -
Triassic and Jurassic Formations of the Newark Basin
TRIASSIC AND JURASSIC FORMATIONS OF THE NEWARK BASIN PAUL E. OLSEN Bingham Laboratories, Department of Biology, Yale University, New Haven, Connecticut Abstract Newark Supergroup deposits of the Newark Basin 1946), makes this deposit ideal for studying time-facies (New York, New Jersey and Pennsylvania) are divided relationships and evolutionary phenomena. These into nine formations called (from bottom up): Stockton recent discoveries have focused new interest on Newark Formation (maximum 1800 m); Lockatong Formation strata. (maximum 1150 m); Passaic Formation (maximum 6000 m); Orange Mountain Basalt (maximum 200 m); The Newark Basin (Fig. 1 and 2) is the largest of the Feltville Formation (maximum 600 m); Preakness exposed divisions of the Newark Supergroup, covering Basalt (maximum + 300 m); Towaco Formation (max- about 7770 km2 and stretching 220 km along its long imum 340 m); Hook Mountain Basalt (maximum 110 axis. The basin contains the thickest sedimentary se- m); and Boonton Formation (maximum + 500 m). Each quence of any exposed Newark Supergroup basin and formation is characterized by its own suite of rock correspondingly covers the greatest continuous amount - types, the differences being especially obvious in the of time. Thus, the Newark Basin occupies a central posi- number, thickness, and nature of their gray and black tion in the study of the Newark Supergroup as a whole. sedimentary cycles (or lack thereof). In well over a century of study the strata of Newark Fossils are abundant in the sedimentary formations of Basin have received a relatively large amount of atten- the Newark Basin and provide a means of correlating tion. By 1840, the basic map relations were worked out the sequence with other early Mesozoic areas. -
Early Jurassic Dinosaur Footprints from the Mecsek Moutains, Southern
HETTANGIAN (EARLY JURASSIC) DINOSAUR TRACKSITES FROM THE MECSEK MOUNTAINS, HUNGARY Attila Ősi1, József Pálfy1, 2, László Makádi3, Zoltán Szentesi3, Péter Gulyás3, Márton Rabi3, Gábor Botfalvai3 and Kinga Hips4 1Hungarian Academy of Sciences–Hungarian Natural History Museum, Research Group for Paleontology, Budapest, Hungary 2Eötvös University, Department of Physical and Applied Geology, Budapest, Hungary 3Eötvös University, Department of Paleontology, Budapest, Hungary 4Geological, Geophysical and Space Science Research Group of the Hungarian Academy of Sciences, Eötvös University, Budapest, Hungary Keywords: Hettangian, trackways, Komlosaurus, morphological variability, Hungary RH: Hettangian dinosaur tracks from Hungary Address correspondence to Attila Ösi: Hungarian Academy of Sciences–Hungarian Natural History Museum, (Research Group for Palaeontology, Ludovika tér 2, 1083) Budapest, Hungary (e-mail: [email protected]; Tel: +36-1-2101075/2317, Fax: +36-1-3382728. 1 Abstract—Isolated theropod dinosaur tracks were first collected in Hungary from Hettangian (Lower Jurassic) beds of the Mecsek Coal Formation in 1966 and described as Komlosaurus carbonis Kordos, 1983. Our study is based on newly collected material from additional track-bearing beds. The description of the two largest preserved surfaces, containing a total of 102 tracks that can be referred to 21 trackways, is provided here. This represents the first attempt to measure, map and compare the tracks of these bipedal, functionally tridactyl dinosaurs in several associated trackways. Significant morphological variability can be observed (e.g. depth, presence or absence of a metatarsal impression, digit length, digit divarication angle) that is explained by differences in physical parameters of the substrate. The mean of pes length is 16.3 cm in tracksite PB1 and 19.9 cm in tracksite PB2.