J Cryptol (2019) 32:941–972 https://doi.org/10.1007/s00145-018-9301-4 Oblivious Network RAM and Leveraging Parallelism to Achieve Obliviousness Dana Dachman-Soled Department of Electrical and Computer Engineering, University of Maryland, College Park, USA University of Maryland Institute for Advanced Computer Studies (UMIACS), College Park, USA
[email protected] Chang Liu University of California, Berkeley, USA
[email protected] Charalampos Papamanthou Department of Electrical and Computer Engineering, University of Maryland, College Park, USA University of Maryland Institute for Advanced Computer Studies (UMIACS), College Park, USA
[email protected] Elaine Shi Cornell University, Ithaca, USA
[email protected] Uzi Vishkin Department of Electrical and Computer Engineering, University of Maryland, College Park, USA University of Maryland Institute for Advanced Computer Studies (UMIACS), College Park, USA
[email protected] Communicated by Alon Rosen. Received 13 December 2016 / Revised 7 May 2018 Online publication 9 August 2018 Abstract. Oblivious RAM (ORAM) is a cryptographic primitive that allows a trusted CPU to securely access untrusted memory, such that the access patterns reveal nothing about sensitive data. ORAM is known to have broad applications in secure processor design and secure multiparty computation for big data. Unfortunately, due to a logarith- mic lower bound by Goldreich and Ostrovsky (J ACM 43(3):431–473, 1996), ORAM is bound to incur a moderate cost in practice. In particular, with the latest developments in ORAM constructions, we are quickly approaching this limit, and the room for perfor- mance improvement is small. In this paper, we consider new models of computation in which the cost of obliviousness can be fundamentally reduced in comparison with the standard ORAM model.