A Hardware-Aware Debugger for the Opengl Shading Language

Total Page:16

File Type:pdf, Size:1020Kb

A Hardware-Aware Debugger for the Opengl Shading Language Graphics Hardware (2007) Timo Aila and Mark Segal (Editors) A Hardware-Aware Debugger for the OpenGL Shading Language Magnus Strengert, Thomas Klein, and Thomas Ertl Institute for Visualization and Interactive Systems Universität Stuttgart Abstract The enormous flexibility of the modern GPU rendering pipeline as well as the availability of high-level shader languages have led to an increased demand for sophisticated programming tools. As the application domain for GPU-based algorithms extends beyond traditional computer graphics, shader programs become more and more complex. The turn-around time for debugging, profiling, and optimizing GPU-based algorithms is now a critical factor in application development which is not addressed adequately by the tools available. In this paper we present a generic, minimal intrusive, and application-transparent solution for debugging OpenGL Shading Language programs, which for the first time fully supports GLSL 1.2 vertex and fragment shaders plus the recent geometry shader extension. By transparently instrumenting the shader program we retrieve information directly from the hardware pipeline and provide data for visual debugging and program analysis. Categories and Subject Descriptors (according to ACM CCS): I.3.4 [Computer Graphics]: Graphics Utilities – Soft- ware Support I.3.8 [Computer Graphics]: Methodology and Techniques – Languages D.2.5 [Software]: Software Engineering – Testing and Debugging 1. Introduction bugging and code analysis tools, did not keep up with the rapid advances of the hardware and software interface. As Graphics processing units have evolved into highly flex- a result, developers typically spend quite a large amount of ible, massively parallel computing architectures and have time locating and debugging programming errors. Thus, the reached a level of programmability roughly resembling their availability of effective debugging means is essential for fast CPU counterparts. Recent advances include full integer and efficient shader code development. arithmetics, unlimited program instruction count, and gen- uine dynamic flow control. Simultaneously, this progress in In comparison to a traditional debugger for sequential hardware technology was followed by the introduction of CPU programs, the special characteristics of graphics hard- suitable high level shading languages, i.e. HLSL, Cg, and ware pose additional challenges for a shader debugger. Most GLSL, nearly as powerful as traditional CPU programming important, there is no direct access to the hardware, i.e. there languages. In addition, they offer also advanced features, is no specific low-level debugging interface. Second, it has like vector and matrix data types, reflecting the underly- to deal with the intrinsic parallelism of the graphics hard- ing SIMD architecture of the GPU. The high computational ware that requires to deal with thousands or even millions of power of modern graphics processors combined with the threads running in parallel. ease of these high level programming languages allow for In general, current solutions for shader debugging can be more and more complex algorithms to be implemented on divided into two basic approaches: software emulation and the GPU as well as enabling a widening range of applica- shader code instrumentation. The former uses a software im- tions to benefit from the use of graphics hardware as a nu- plementation of the rendering pipeline in order to emulate merical co-processing unit. Accordingly, shaders tend to be- the execution of shader programs according to the specifica- come more and more complex. tion of the shading language. This allows for direct control However, the development environment, in particular de- of program execution and provides access to arbitrary data Copyright c 2007 by the Association for Computing Machinery, Inc. Permission to make digital or hard copies of part or all of this work for personal or classroom use is granted without fee provided that copies are not made or distributed for commercial advantage and that copies bear this notice and the full citation on the first page. Copyrights for components of this work owned by others than ACM must be honored. Abstracting with credit is permitted. To copy otherwise, to republish, to post on servers, or to redistribute to lists, requires prior specific permission and/or a fee. Re- quest permissions from Permissions Dept, ACM Inc., fax +1 (212) 869-0481 or e-mail [email protected]. GH 2007, San Diego, California, August 04 - 05, 2007 c 2007 ACM 978-1-59593-625-7/07/0008 $ 5.00 M. Strengert, T. Klein, & T. Ertl / A Hardware-Aware Debugger for GLSL content. The main drawback of this approach is that debug- be roughly divided into two distinct groups: graphics calls ging is not performed on the target hardware and results may and state debuggers, and dedicated shader debuggers. therefore not correspond to actual hardware values. In con- The first group includes Microsoft's Direct3D profiling trast, shader code instrumentation will provide true hardware and debugging tool PIX [Mic07] and a number of OpenGL values, but access to the data is complicated. Since there is state machine debuggers, namely spyGLass [Mag02], Bu- no direct access to the individual processing elements, the GLe [Mer04], GLIntercept [Tre04] and the commercial only possibility to get data back from the GPU is to read back gDEBugger [Gra04]. While all of these tools provide the the final result of a shader invocation, i.e. vertex attributes or ability of API call tracing and logging as well as breakpoint- pixel color. Accordingly, it is common practice in shader de- ing (PIX and gDEBugger further allow to display various velopment to use printf-style visual debugging by manually performance counters and other profiling information), only rewriting the (fragment) shader to return the value of interest the PIX tool provides the possibility of shader debugging. as its final output and to interpret the resulting images. How- However, for shader debugging PIX relies on the software ever, in the context of multi-pass algorithms involving off- emulation of the Direct3D reference rasterizer, i.e. no ac- screen render targets or if debugging full floating-point pre- tual hardware values are debugged. In case of OpenGL some cision data, the direct display of intermediate results is often of the above mentioned solutions provide Edit&Continue not sufficient and a fair amount of code changes to the host shader editing, but currently no tool that we know of fea- program is required to permit readback of rendering results tures a full-fledged shader debugger. to main memory. This is even worse for vertex and geometry processing units, as they do not output directly displayable On the other hand there are solutions that are specifi- content and debugging those shaders may require additional cally geared towards shader debugging. The Apple OpenGL changes in subsequent stages of the rendering pipeline. Fur- Shader Builder [App02] provides mechanisms to develop thermore, this manual Edit&Continue style of debugging is and debug ARB vertex and fragment shaders in a closed en- tedious and error prone. vironment. The first tool to automate fragment shader de- bugging in the context of the target application was Shade- An efficient shader debugging tool therefore must be able smith [PS03]. It introduced the so-called interactive deepen- to automatically instrument the shader code and host pro- ing method, a technique for automatically generating a se- gram in an application-transparent manner. In particular, it quence of truncated debug programs for singlestep execution has to work without explicit code changes, i.e. does not re- of ARB assembly fragment programs without flow control. quire modification and re-compilation of the host program. Using Shadesmith requires slight source code modifications In this paper we present a generic, minimal intrusive, of the host program. Furthermore, its frame level debugging and light-weight solution for debugging OpenGL Shading approach did not allow for debugging multi-pass algorithms. Language programs directly on the target hardware, that Another approach that allows the analysis of the com- operates completely application-transparent. It supports the plete rendering pipeline including vertex and fragment pro- ∗ full GLSL 1.2 specification for vertex and fragment shaders grams was proposed by Duca et al. [DNB 05]. Their system ∗ including the recently introduced extension for geometry is based on the Chromium [HHN 02] system to intercept shaders [NVI06]. Shader debugging is performed on a per and record the OpenGL command stream and stores data draw call level and allows singlestepping and the inspection from the pipeline in a relational database. This allows subse- of arbitrary variable content. quent queries for arbitrary elements of the captured OpenGL state using a specialized query language. Debugging high- level Cg shaders is facilitated by instrumenting shaders fol- 2. Related Work lowing an extented interactive deepening approach that al- Basic requirements for a versatile GPU debugger have been lows for handling dynamic flow control. Up to now, the pro- defined by Purcell [Pur05] and more recently by Owens et posed system is the most complete solution for the analy- ∗ al. [OLG 07]. They conclude that a practical tool for GPU sis of OpenGL programs. The availability of the complete debugging should provide essentially the same basic features OpenGL stream offers ample opportunities for debugging as a traditional debugger.
Recommended publications
  • GLSL 4.50 Spec
    The OpenGL® Shading Language Language Version: 4.50 Document Revision: 7 09-May-2017 Editor: John Kessenich, Google Version 1.1 Authors: John Kessenich, Dave Baldwin, Randi Rost Copyright (c) 2008-2017 The Khronos Group Inc. All Rights Reserved. This specification is protected by copyright laws and contains material proprietary to the Khronos Group, Inc. It or any components may not be reproduced, republished, distributed, transmitted, displayed, broadcast, or otherwise exploited in any manner without the express prior written permission of Khronos Group. You may use this specification for implementing the functionality therein, without altering or removing any trademark, copyright or other notice from the specification, but the receipt or possession of this specification does not convey any rights to reproduce, disclose, or distribute its contents, or to manufacture, use, or sell anything that it may describe, in whole or in part. Khronos Group grants express permission to any current Promoter, Contributor or Adopter member of Khronos to copy and redistribute UNMODIFIED versions of this specification in any fashion, provided that NO CHARGE is made for the specification and the latest available update of the specification for any version of the API is used whenever possible. Such distributed specification may be reformatted AS LONG AS the contents of the specification are not changed in any way. The specification may be incorporated into a product that is sold as long as such product includes significant independent work developed by the seller. A link to the current version of this specification on the Khronos Group website should be included whenever possible with specification distributions.
    [Show full text]
  • Slang: Language Mechanisms for Extensible Real-Time Shading Systems
    Slang: language mechanisms for extensible real-time shading systems YONG HE, Carnegie Mellon University KAYVON FATAHALIAN, Stanford University TIM FOLEY, NVIDIA Designers of real-time rendering engines must balance the conicting goals and GPU eciently, and minimizing CPU overhead using the new of maintaining clear, extensible shading systems and achieving high render- parameter binding model oered by the modern Direct3D 12 and ing performance. In response, engine architects have established eective de- Vulkan graphics APIs. sign patterns for authoring shading systems, and developed engine-specic To help navigate the tension between performance and maintain- code synthesis tools, ranging from preprocessor hacking to domain-specic able/extensible code, engine architects have established eective shading languages, to productively implement these patterns. The problem is design patterns for authoring shading systems, and developed code that proprietary tools add signicant complexity to modern engines, lack ad- vanced language features, and create additional challenges for learning and synthesis tools, ranging from preprocessor hacking, to metapro- adoption. We argue that the advantages of engine-specic code generation gramming, to engine-proprietary domain-specic languages (DSLs) tools can be achieved using the underlying GPU shading language directly, [Tatarchuk and Tchou 2017], for implementing these patterns. For provided the shading language is extended with a small number of best- example, the idea of shader components [He et al. 2017] was recently practice principles from modern, well-established programming languages. presented as a pattern for achieving both high rendering perfor- We identify that adding generics with interface constraints, associated types, mance and maintainable code structure when specializing shader and interface/structure extensions to existing C-like GPU shading languages code to coarse-grained features such as a surface material pattern or enables real-time renderer developers to build shading systems that are a tessellation eect.
    [Show full text]
  • Webgl™ Optimizations for Mobile
    WebGL™ Optimizations for Mobile Lorenzo Dal Col Senior Software Engineer, ARM 1 Agenda 1. Introduction to WebGL™ on mobile . Rendering Pipeline . Locate the bottleneck 2. Performance analysis and debugging tools for WebGL . Generic optimization tips 3. PlayCanvas experience . WebGL Inspector 4. Use case: PlayCanvas Swooop . ARM® DS-5 Streamline . ARM Mali™ Graphics Debugger 5. Q & A 2 Bring the Power of OpenGL® ES to Mobile Browsers What is WebGL™? Why WebGL? . A cross-platform, royalty free web . It brings plug-in free 3D to the web, standard implemented right into the browser. Low-level 3D graphics API . Major browser vendors are members of . Based on OpenGL® ES 2.0 the WebGL Working Group: . A shader based API using GLSL . Apple (Safari® browser) . Mozilla (Firefox® browser) (OpenGL Shading Language) . Google (Chrome™ browser) . Opera (Opera™ browser) . Some concessions made to JavaScript™ (memory management) 3 Introduction to WebGL™ . How does it fit in a web browser? . You use JavaScript™ to control it. Your JavaScript is embedded in HTML5 and uses its Canvas element to draw on. What do you need to start creating graphics? . Obtain WebGLrenderingContext object for a given HTMLCanvasElement. It creates a drawing buffer into which the API calls are rendered. For example: var canvas = document.getElementById('canvas1'); var gl = canvas.getContext('webgl'); canvas.width = newWidth; canvas.height = newHeight; gl.viewport(0, 0, canvas.width, canvas.height); 4 WebGL™ Stack What is happening when a WebGL page is loaded . User enters URL . HTTP stack requests the HTML page Browser . Additional requests will be necessary to get Space User JavaScript™ code and other resources WebKit JavaScript Engine .
    [Show full text]
  • Opengl Shading Languag 2Nd Edition (Orange Book)
    OpenGL® Shading Language, Second Edition By Randi J. Rost ............................................... Publisher: Addison Wesley Professional Pub Date: January 25, 2006 Print ISBN-10: 0-321-33489-2 Print ISBN-13: 978-0-321-33489-3 Pages: 800 Table of Contents | Index "As the 'Red Book' is known to be the gold standard for OpenGL, the 'Orange Book' is considered to be the gold standard for the OpenGL Shading Language. With Randi's extensive knowledge of OpenGL and GLSL, you can be assured you will be learning from a graphics industry veteran. Within the pages of the second edition you can find topics from beginning shader development to advanced topics such as the spherical harmonic lighting model and more." David Tommeraasen, CEO/Programmer, Plasma Software "This will be the definitive guide for OpenGL shaders; no other book goes into this detail. Rost has done an excellent job at setting the stage for shader development, what the purpose is, how to do it, and how it all fits together. The book includes great examples and details, and good additional coverage of 2.0 changes!" Jeffery Galinovsky, Director of Emerging Market Platform Development, Intel Corporation "The coverage in this new edition of the book is pitched just right to help many new shader- writers get started, but with enough deep information for the 'old hands.'" Marc Olano, Assistant Professor, University of Maryland "This is a really great book on GLSLwell written and organized, very accessible, and with good real-world examples and sample code. The topics flow naturally and easily, explanatory code fragments are inserted in very logical places to illustrate concepts, and all in all, this book makes an excellent tutorial as well as a reference." John Carey, Chief Technology Officer, C.O.R.E.
    [Show full text]
  • Opengl 4.0 Shading Language Cookbook
    OpenGL 4.0 Shading Language Cookbook Over 60 highly focused, practical recipes to maximize your use of the OpenGL Shading Language David Wolff BIRMINGHAM - MUMBAI OpenGL 4.0 Shading Language Cookbook Copyright © 2011 Packt Publishing All rights reserved. No part of this book may be reproduced, stored in a retrieval system, or transmitted in any form or by any means, without the prior written permission of the publisher, except in the case of brief quotations embedded in critical articles or reviews. Every effort has been made in the preparation of this book to ensure the accuracy of the information presented. However, the information contained in this book is sold without warranty, either express or implied. Neither the author, nor Packt Publishing, and its dealers and distributors will be held liable for any damages caused or alleged to be caused directly or indirectly by this book. Packt Publishing has endeavored to provide trademark information about all of the companies and products mentioned in this book by the appropriate use of capitals. However, Packt Publishing cannot guarantee the accuracy of this information. First published: July 2011 Production Reference: 1180711 Published by Packt Publishing Ltd. 32 Lincoln Road Olton Birmingham, B27 6PA, UK. ISBN 978-1-849514-76-7 www.packtpub.com Cover Image by Fillipo ([email protected]) Credits Author Project Coordinator David Wolff Srimoyee Ghoshal Reviewers Proofreader Martin Christen Bernadette Watkins Nicolas Delalondre Indexer Markus Pabst Hemangini Bari Brandon Whitley Graphics Acquisition Editor Nilesh Mohite Usha Iyer Valentina J. D’silva Development Editor Production Coordinators Chris Rodrigues Kruthika Bangera Technical Editors Adline Swetha Jesuthas Kavita Iyer Cover Work Azharuddin Sheikh Kruthika Bangera Copy Editor Neha Shetty About the Author David Wolff is an associate professor in the Computer Science and Computer Engineering Department at Pacific Lutheran University (PLU).
    [Show full text]
  • Graphics Shaders Mike Hergaarden January 2011, VU Amsterdam
    Graphics shaders Mike Hergaarden January 2011, VU Amsterdam [Source: http://unity3d.com/support/documentation/Manual/Materials.html] Abstract Shaders are the key to finalizing any image rendering, be it computer games, images or movies. Shaders have greatly improved the output of computer generated media; from photo-realistic computer generated humans to more vivid cartoon movies. Furthermore shaders paved the way to general-purpose computation on GPU (GPGPU). This paper introduces shaders by discussing the theory and practice. Introduction A shader is a piece of code that is executed on the Graphics Processing Unit (GPU), usually found on a graphics card, to manipulate an image before it is drawn to the screen. Shaders allow for various kinds of rendering effect, ranging from adding an X-Ray view to adding cartoony outlines to rendering output. The history of shaders starts at LucasFilm in the early 1980’s. LucasFilm hired graphics programmers to computerize the special effects industry [1]. This proved a success for the film/ rendering industry, especially at Pixars Toy Story movie launch in 1995. RenderMan introduced the notion of Shaders; “The Renderman Shading Language allows material definitions of surfaces to be described in not only a simple manner, but also highly complex and custom manner using a C like language. Using this method as opposed to a pre-defined set of materials allows for complex procedural textures, new shading models and programmable lighting. Another thing that sets the renderers based on the RISpec apart from many other renderers, is the ability to output arbitrary variables as an image—surface normals, separate lighting passes and pretty much anything else can be output from the renderer in one pass.” [1] The term shader was first only used to refer to “pixel shaders”, but soon enough new uses of shaders such as vertex and geometry shaders were introduced, making the term shaders more general.
    [Show full text]
  • The Opengl Shading Language
    The OpenGL Shading Language Bill Licea-Kane ATI Research, Inc. 1 OpenGL Shading Language Today •Brief History • How we replace Fixed Function • OpenGL Programmer View • OpenGL Shaderwriter View • Examples 2 OpenGL Shading Language Today •Brief History • How we replace Fixed Function • OpenGL Programmer View • OpenGL Shaderwriter View • Examples 3 Brief History 1968 “As far as generating pictures from data is concerned, we feel the display processor should be a specialized device, capable only of generating pictures from read- only representations in core.” [Myer, Sutherland] On the Design of Display Processors. Communications of the ACM, Volume 11 Number 6, June, 1968 4 Brief History 1978 THE PROGRAMMING LANGUAGE [Kernighan, Ritchie] The C Programming Language 1978 5 Brief History 1984 “Shading is an important part of computer imagery, but shaders have been based on fixed models to which all surfaces must conform. As computer imagery becomes more sophisticated, surfaces have more complex shading characteristics and thus require a less rigid shading model." [Cook] Shade Trees SIGGRAPH 1984 6 Brief History 1985 “We introduce the concept of a Pixel Stream Editor. This forms the basis for an interactive synthesizer for designing highly realistic Computer Generated Imagery. The designer works in an interactive Very High Level programming environment which provides a very fast concept/implement/view iteration cycle." [Perlin] An Image Synthesizer SIGGRAPH 1985 7 Brief History 1990 “A shading language provides a means to extend the shading and lighting formulae used by a rendering system." … "…because it is based on a simple subset of C, it is easy to parse and implement, but, because it has many high-level features that customize it for shading and lighting calulations, it is easy to use." [Hanrahan, Lawson] A Language for Shading and Lighting Calculations SIGGRAPH 1990 8 Brief History June 30, 1992 “This document describes the OpenGL graphics system: what it is, how it acts, and what is required to implement it.” “OpenGL does not provide a programming language.
    [Show full text]
  • From a Programmable Pipeline to an Efficient Stream Processor
    Computation on GPUs: From a Programmable Pipeline to an Efficient Stream Processor João Luiz Dihl Comba 1 Carlos A. Dietrich1 Christian A. Pagot1 Carlos E. Scheidegger1 Resumo: O recente desenvolvimento de hardware gráfico apresenta uma mu- dança na implementação do pipeline gráfico, de um conjunto fixo de funções, para programas especiais desenvolvidos pelo usuário que são executados para cada vértice ou fragmento. Esta programabilidade permite implementações de diversos algoritmos diretamente no hardware gráfico. Neste tutorial serão apresentados as principais técnicas relacionadas a implementação de algoritmos desta forma. Serão usados exemplos baseados em artigos recentemente publicados. Através da revisão e análise da contribuição dos mesmos, iremos explicar as estratégias por trás do desenvolvimento de algoritmos desta forma, formando uma base que permita ao leitor criar seus próprios algoritmos. Palavras-chave: Hardware Gráfico Programável, GPU, Pipeline Gráfico Abstract: The recent development of graphics hardware is presenting a change in the implementation of the graphics pipeline, from a fixed set of functions, to user- developed special programs to be executed on a per-vertex or per-fragment basis. This programmability allows the efficient implementation of different algorithms directly on the graphics hardware. In this tutorial we will present the main techniques that are involved in implementing algorithms in this fashion. We use several test cases based on recently published pa- pers. By reviewing and analyzing their contribution, we explain the reasoning behind the development of the algorithms, establishing a common ground that allow readers to create their own novel algorithms. Keywords: Programmable Graphics Hardware, GPU, Graphics Pipeline 1UFRGS, Instituto de Informática, Caixa Postal 15064, 91501-970 Porto Alegre/RS, Brasil e-mail: {comba, cadietrich, capagot, carlossch}@inf.ufrgs.br Este trabalho foi parcialmente financiado pela CAPES, CNPq e FAPERGS.
    [Show full text]
  • The Opengl ES Shading Language
    The OpenGL ES® Shading Language Language Version: 3.20 Document Revision: 12 246 JuneAugust 2015 Editor: Robert J. Simpson, Qualcomm OpenGL GLSL editor: John Kessenich, LunarG GLSL version 1.1 Authors: John Kessenich, Dave Baldwin, Randi Rost 1 Copyright (c) 2013-2015 The Khronos Group Inc. All Rights Reserved. This specification is protected by copyright laws and contains material proprietary to the Khronos Group, Inc. It or any components may not be reproduced, republished, distributed, transmitted, displayed, broadcast, or otherwise exploited in any manner without the express prior written permission of Khronos Group. You may use this specification for implementing the functionality therein, without altering or removing any trademark, copyright or other notice from the specification, but the receipt or possession of this specification does not convey any rights to reproduce, disclose, or distribute its contents, or to manufacture, use, or sell anything that it may describe, in whole or in part. Khronos Group grants express permission to any current Promoter, Contributor or Adopter member of Khronos to copy and redistribute UNMODIFIED versions of this specification in any fashion, provided that NO CHARGE is made for the specification and the latest available update of the specification for any version of the API is used whenever possible. Such distributed specification may be reformatted AS LONG AS the contents of the specification are not changed in any way. The specification may be incorporated into a product that is sold as long as such product includes significant independent work developed by the seller. A link to the current version of this specification on the Khronos Group website should be included whenever possible with specification distributions.
    [Show full text]
  • The Opengl ES Shading Language
    The OpenGL ES® Shading Language Language Version: 3.00 Document Revision: 6 29 January 2016 Editor: Robert J. Simpson, Qualcomm OpenGL GLSL editor: John Kessenich, LunarG GLSL version 1.1 Authors: John Kessenich, Dave Baldwin, Randi Rost Copyright © 2008-2016 The Khronos Group Inc. All Rights Reserved. This specification is protected by copyright laws and contains material proprietary to the Khronos Group, Inc. It or any components may not be reproduced, republished, distributed, transmitted, displayed, broadcast, or otherwise exploited in any manner without the express prior written permission of Khronos Group. You may use this specification for implementing the functionality therein, without altering or removing any trademark, copyright or other notice from the specification, but the receipt or possession of this specification does not convey any rights to reproduce, disclose, or distribute its contents, or to manufacture, use, or sell anything that it may describe, in whole or in part. Khronos Group grants express permission to any current Promoter, Contributor or Adopter member of Khronos to copy and redistribute UNMODIFIED versions of this specification in any fashion, provided that NO CHARGE is made for the specification and the latest available update of the specification for any version of the API is used whenever possible. Such distributed specification may be reformatted AS LONG AS the contents of the specification are not changed in any way. The specification may be incorporated into a product that is sold as long as such product includes significant independent work developed by the seller. A link to the current version of this specification on the Khronos Group website should be included whenever possible with specification distributions.
    [Show full text]
  • 3D Graphics Technologies for Web Applications an Evaluation from the Perspective of a Real World Application
    Institutionen för systemteknik Department of Electrical Engineering Examensarbete 3D Graphics Technologies for Web Applications An Evaluation from the Perspective of a Real World Application Master thesis performed in information coding by Klara Waern´er LiTH-ISY-EX--12/4562--SE Link¨oping 2012-06-19 Department of Electrical Engineering Linköpings tekniska högskola Linköpings universitet Linköpings universitet SE-581 83 Linköping, Sweden 581 83 Linköping 3D Graphics Technologies for Web Applications An Evaluation from the Perspective of a Real World Application Master thesis in information coding at Link¨oping Institute of Technology by Klara Waern´er LiTH-ISY-EX--12/4562--SE Supervisors: Fredrik Bennet SICK IVP AB Jens Ogniewski ISY, Link¨opingUniversity Examiner: Ingemar Ragnemalm ISY, Link¨opingUniversity Link¨oping2012-06-19 Presentation Date Department and Division 2012-05-31 Department of Electrical Engineering Publishing Date (Electronic version) 2012-06-19 Language Type of Publication ISBN (Licentiate thesis) X English Licentiate thesis ISRN: LiTH-ISY-EX--12/4562--SE Other (specify below) X Degree thesis Thesis C-level Title of series (Licentiate thesis) Thesis D-level Report Number of Pages Other (specify below) Series number/ISSN (Licentiate thesis) 90 URL, Electronic Version http://urn.kb.se/resolve?urn=urn:nbn:se:liu:diva-78726 Publication Title 3D Graphics Technologies for Web Applications: An Evaluation from the Perspective of a Real World Application Publication Title (Swedish) Tekniker för 3D-grafik i webbapplikationer: En utvärdering sedd utifrån en riktig applikations perspektiv Author(s) Klara Waernér Abstract Web applications are becoming increasingly sophisticated and functionality that was once exclusive to regular desktop applications can now be found in web applications as well.
    [Show full text]
  • Introduction to Opengl/GLSL and Webgl
    Introduction to OpenGL/GLSL and WebGL GLSL Objectives n Give you an overview of the software that you will be using this semester n OpenGL, WebGL, and GLSL n What are they? n How do you use them? n What does the code look like? n Evolution n All of them are required to write modern graphics code, although alternatives exist What is OpenGL? n An application programming interface (API) n A (low-level) Graphics rendering API n Generate high-quality images from geometric and image primitives Maximal Portability n Display device independent n Window system independent n Operating system independent Without a standard API (such as OpenGL) - impossible to port (100, 50) Line(100,50,150,80) - device/lib 1 (150, 100) Moveto(100,50) - device/lib 2 Lineto(150,100) Brief History of OpenGL n Originated from a proprietary API called Iris GL from Silicon Graphics, Inc. n Provide access to graphics hardware capabilities at the lowest possible level that still provides hardware independence n The evolution is controlled by OpenGL Architecture Review Board, or ARB. n OpenGL 1.0 API finalized in 1992, first implementation in 1993 n In 2006, OpenGL ARB became a worKgroup of the Khronos Group n 10+ revisions since 1992 OpenGL Evolution n 1.1 (1997): vertex arrays and texture objects n 1.2 (1998): 3D textures n 1.3 (2001): cubemap textures, compressed textures, multitextures n 1.4 (2002): mipmap Generation, shadow map textures, etc n 1.5 (2003): vertex buffer object, shadow comparison functions, occlusion queries, non- power-of-2 textures OpenGL Evolution n
    [Show full text]