A Type Theory for Cartesian Closed Bicategories
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Experience Implementing a Performant Category-Theory Library in Coq
Experience Implementing a Performant Category-Theory Library in Coq Jason Gross, Adam Chlipala, and David I. Spivak Massachusetts Institute of Technology, Cambridge, MA, USA [email protected], [email protected], [email protected] Abstract. We describe our experience implementing a broad category- theory library in Coq. Category theory and computational performance are not usually mentioned in the same breath, but we have needed sub- stantial engineering effort to teach Coq to cope with large categorical constructions without slowing proof script processing unacceptably. In this paper, we share the lessons we have learned about how to repre- sent very abstract mathematical objects and arguments in Coq and how future proof assistants might be designed to better support such rea- soning. One particular encoding trick to which we draw attention al- lows category-theoretic arguments involving duality to be internalized in Coq's logic with definitional equality. Ours may be the largest Coq development to date that uses the relatively new Coq version developed by homotopy type theorists, and we reflect on which new features were especially helpful. Keywords: Coq · category theory · homotopy type theory · duality · performance 1 Introduction Category theory [36] is a popular all-encompassing mathematical formalism that casts familiar mathematical ideas from many domains in terms of a few unifying concepts. A category can be described as a directed graph plus algebraic laws stating equivalences between paths through the graph. Because of this spar- tan philosophical grounding, category theory is sometimes referred to in good humor as \formal abstract nonsense." Certainly the popular perception of cat- egory theory is quite far from pragmatic issues of implementation. -
Geometric Modality and Weak Exponentials
Geometric Modality and Weak Exponentials Amirhossein Akbar Tabatabai ∗ Institute of Mathematics Academy of Sciences of the Czech Republic [email protected] Abstract The intuitionistic implication and hence the notion of function space in constructive disciplines is both non-geometric and impred- icative. In this paper we try to solve both of these problems by first introducing weak exponential objects as a formalization for predica- tive function spaces and then by proposing modal spaces as a way to introduce a natural family of geometric predicative implications based on the interplay between the concepts of time and space. This combination then leads to a brand new family of modal propositional logics with predicative implications and then to topological semantics for these logics and some weak modal and sub-intuitionistic logics, as well. Finally, we will lift these notions and the corresponding relations to a higher and more structured level of modal topoi and modal type theory. 1 Introduction Intuitionistic logic appears in different many branches of mathematics with arXiv:1711.01736v1 [math.LO] 6 Nov 2017 many different and interesting incarnations. In geometrical world it plays the role of the language of a topological space via topological semantics and in a higher and more structured level, it becomes the internal logic of any elementary topoi. On the other hand and in the theory of computations, the intuitionistic logic shows its computational aspects as a method to describe the behavior of computations using realizability interpretations and in cate- gory theory it becomes the syntax of the very central class of Cartesian closed categories. -
On the Constructive Elementary Theory of the Category of Sets
On the Constructive Elementary Theory of the Category of Sets Aruchchunan Surendran Ludwig-Maximilians-University Supervision: Dr. I. Petrakis August 14, 2019 1 Contents 1 Introduction 2 2 Elements of basic Category Theory 3 2.1 The category Set ................................3 2.2 Basic definitions . .4 2.3 Basic properties of Set .............................6 2.3.1 Epis and monos . .6 2.3.2 Elements as arrows . .8 2.3.3 Binary relations as monic arrows . .9 2.3.4 Coequalizers as quotient sets . 10 2.4 Membership of elements . 12 2.5 Partial and total arrows . 14 2.6 Cartesian closed categories (CCC) . 16 2.6.1 Products of objects . 16 2.6.2 Application: λ-Calculus . 18 2.6.3 Exponentials . 21 3 Constructive Elementary Theory of the Category of Sets (CETCS) 26 3.1 Constructivism . 26 3.2 Axioms of ETCS . 27 3.3 Axioms of CETCS . 28 3.4 Π-Axiom . 29 3.5 Set-theoretic consequences . 32 3.5.1 Quotient Sets . 32 3.5.2 Induction . 34 3.5.3 Constructing new relations with logical operations . 35 3.6 Correspondence to standard categorical formulations . 42 1 1 Introduction The Elementary Theory of the Category of Sets (ETCS) was first introduced by William Lawvere in [4] in 1964 to give an axiomatization of sets. The goal of this thesis is to describe the Constructive Elementary Theory of the Category of Sets (CETCS), following its presentation by Erik Palmgren in [2]. In chapter 2. we discuss basic elements of Category Theory. Category Theory was first formulated in the year 1945 by Eilenberg and Mac Lane in their paper \General theory of natural equivalences" and is the study of generalized functions, called arrows, in an abstract algebra. -
Parametrized Higher Category Theory
Parametrized higher category theory Jay Shah MIT May 1, 2017 Jay Shah (MIT) Parametrized higher category theory May 1, 2017 1 / 32 Answer: depends on the class of weak equivalences one inverts in the larger category of G-spaces. Inverting the class of maps that induce a weak equivalence of underlying spaces, X ; the homotopy type of the underlying space X , together with the homotopy coherent G-action. Can extract homotopy fixed points and hG orbits X , XhG from this. Equivariant homotopy theory Let G be a finite group and let X be a topological space with G-action (e.g. G = C2 and X = U(n) with the complex conjugation action). What is the \homotopy type" of X ? Jay Shah (MIT) Parametrized higher category theory May 1, 2017 2 / 32 Inverting the class of maps that induce a weak equivalence of underlying spaces, X ; the homotopy type of the underlying space X , together with the homotopy coherent G-action. Can extract homotopy fixed points and hG orbits X , XhG from this. Equivariant homotopy theory Let G be a finite group and let X be a topological space with G-action (e.g. G = C2 and X = U(n) with the complex conjugation action). What is the \homotopy type" of X ? Answer: depends on the class of weak equivalences one inverts in the larger category of G-spaces. Jay Shah (MIT) Parametrized higher category theory May 1, 2017 2 / 32 Equivariant homotopy theory Let G be a finite group and let X be a topological space with G-action (e.g. -
Yoneda's Lemma for Internal Higher Categories
YONEDA'S LEMMA FOR INTERNAL HIGHER CATEGORIES LOUIS MARTINI Abstract. We develop some basic concepts in the theory of higher categories internal to an arbitrary 1- topos. We define internal left and right fibrations and prove a version of the Grothendieck construction and of Yoneda's lemma for internal categories. Contents 1. Introduction 2 Motivation 2 Main results 3 Related work 4 Acknowledgment 4 2. Preliminaries 4 2.1. General conventions and notation4 2.2. Set theoretical foundations5 2.3. 1-topoi 5 2.4. Universe enlargement 5 2.5. Factorisation systems 8 3. Categories in an 1-topos 10 3.1. Simplicial objects in an 1-topos 10 3.2. Categories in an 1-topos 12 3.3. Functoriality and base change 16 3.4. The (1; 2)-categorical structure of Cat(B) 18 3.5. Cat(S)-valued sheaves on an 1-topos 19 3.6. Objects and morphisms 21 3.7. The universe for groupoids 23 3.8. Fully faithful and essentially surjective functors 26 arXiv:2103.17141v2 [math.CT] 2 May 2021 3.9. Subcategories 31 4. Groupoidal fibrations and Yoneda's lemma 36 4.1. Left fibrations 36 4.2. Slice categories 38 4.3. Initial functors 42 4.4. Covariant equivalences 49 4.5. The Grothendieck construction 54 4.6. Yoneda's lemma 61 References 71 Date: May 4, 2021. 1 2 LOUIS MARTINI 1. Introduction Motivation. In various areas of geometry, one of the principal strategies is to study geometric objects by means of algebraic invariants such as cohomology, K-theory and (stable or unstable) homotopy groups. -
The Category of Sheaves Is a Topos Part 2
The category of sheaves is a topos part 2 Patrick Elliott Recall from the last talk that for a small category C, the category PSh(C) of presheaves on C is an elementary topos. Explicitly, PSh(C) has the following structure: • Given two presheaves F and G on C, the exponential GF is the presheaf defined on objects C 2 obC by F G (C) = Hom(hC × F; G); where hC = Hom(−;C) is the representable functor associated to C, and the product × is defined object-wise. • Writing 1 for the constant presheaf of the one object set, the subobject classifier true : 1 ! Ω in PSh(C) is defined on objects by Ω(C) := fS j S is a sieve on C in Cg; and trueC : ∗ ! Ω(C) sends ∗ to the maximal sieve t(C). The goal of this talk is to refine this structure to show that the category Shτ (C) of sheaves on a site (C; τ) is also an elementary topos. To do this we must make use of the sheafification functor defined at the end of the first talk: Theorem 0.1. The inclusion functor i : Shτ (C) ! PSh(C) has a left adjoint a : PSh(C) ! Shτ (C); called sheafification, or the associated sheaf functor. Moreover, this functor commutes with finite limits. Explicitly, a(F) = (F +)+, where + F (C) := colimS2τ(C)Match(S; F); where Match(S; F) is the set of matching families for the cover S of C, and the colimit is taken over all covering sieves of C, ordered by reverse inclusion. -
Exposé I – Elements of Parametrized Higher Category Theory
PARAMETRIZED HIGHER CATEGORY THEORY AND HIGHER ALGEBRA: EXPOSÉ I – ELEMENTS OF PARAMETRIZED HIGHER CATEGORY THEORY CLARK BARWICK, EMANUELE DOTTO, SAUL GLASMAN, DENIS NARDIN, AND JAY SHAH Abstract. We introduce the basic elements of the theory of parametrized ∞-categories and functors between them. These notions are defined as suitable fibrations of ∞-categories and functors between them. We give as many examples as we are able at this stage. Simple operations, such as the formation of opposites and the formation of functor ∞-categories, become slightly more involved in the parametrized setting, but we explain precisely how to perform these constructions. All of these constructions can be performed explicitly, without resorting to such acts of desperation as straightening. The key results of this Exposé are: (1) a universal characterization of the 푇-∞-category of 푇-objects in any ∞-category, (2) the existence of an internal Hom for 푇-∞-categories, and (3) a parametrized Yoneda lemma. Contents 1. Parametrized ∞-categories 1 2. Examples of parametrized ∞-categories 3 3. Parametrized opposites 7 4. Parametrized subcategories 7 5. Constructing 푇-∞-categories via pairings 8 6. A technical result: the strong pushforward 9 7. 푇-objects in ∞-categories 11 8. Parametrized fibrations 14 9. Parametrized functor categories 15 10. The parametrized Yoneda embedding 19 Appendix A. Notational glossary 20 References 21 1. Parametrized ∞-categories Suppose 퐺 a finite group. At a minimum, a 퐺-∞-category should consist of an ∞- category 퐶 along with a weak action 휌 of 퐺. In particular, for every element 푔 ∈ 퐺, one should have an equivalence 휌(푔)∶ 퐶 ∼ 퐶, and for every 푔, ℎ ∈ 퐺, one should have a natu- ral equivalence 휌(푔ℎ) ≃ 휌(푔) ∘ 휌(ℎ), and these natural equivalences should then in turn be constrained by an infinite family of homotopies that express the higher associativity of 휌. -
Categories for Me, and You?
Categories for Me, and You?∗ Cl´ement Aubert† October 16, 2019 arXiv:1910.05172v2 [math.CT] 15 Oct 2019 ∗The title echoes the notes of Olivier Laurent, available at https://perso.ens-lyon.fr/olivier.laurent/categories.pdf. †e-mail: [email protected]. Some of this work was done when I was sup- ported by the NSF grant 1420175 and collaborating with Patricia Johann, http://www.cs.appstate.edu/~johannp/. This result is folklore, which is a technical term for a method of publication in category theory. It means that someone sketched it on the back of an envelope, mimeographed it (whatever that means) and showed it to three people in a seminar in Chicago in 1973, except that the only evidence that we have of these events is a comment that was overheard in another seminar at Columbia in 1976. Nevertheless, if some younger person is so presumptuous as to write out a proper proof and attempt to publish it, they will get shot down in flames. Paul Taylor 2 Contents 1. On Categories, Functors and Natural Transformations 6 1.1. BasicDefinitions ................................ 6 1.2. Properties of Morphisms, Objects, Functors, and Categories . .. .. 7 1.3. Constructions over Categories and Functors . ......... 15 2. On Fibrations 18 3. On Slice Categories 21 3.1. PreliminariesonSlices . .... 21 3.2. CartesianStructure. 24 4. On Monads, Kleisli Category and Eilenberg–Moore Category 29 4.1. Monads ...................................... 29 4.2. KleisliCategories . .. .. .. .. .. .. .. .. 30 4.3. Eilenberg–Moore Categories . ..... 31 Bibliography 41 A. Cheat Sheets 43 A.1. CartesianStructure. 43 A.2.MonadicStructure ............................... 44 3 Disclaimers Purpose Those notes are an expansion of a document whose first purpose was to remind myself the following two equations:1 Mono = injective = faithful Epi = surjective = full I am not an expert in category theory, and those notes should not be trusted2. -
A Profunctorial Scott Semantics Zeinab Galal Université De Paris, IRIF, CNRS, Paris, France [email protected]
A Profunctorial Scott Semantics Zeinab Galal Université de Paris, IRIF, CNRS, Paris, France [email protected] Abstract In this paper, we study the bicategory of profunctors with the free finite coproduct pseudo-comonad and show that it constitutes a model of linear logic that generalizes the Scott model. We formalize the connection between the two models as a change of base for enriched categories which induces a pseudo-functor that preserves all the linear logic structure. We prove that morphisms in the co-Kleisli bicategory correspond to the concept of strongly finitary functors (sifted colimits preserving functors) between presheaf categories. We further show that this model provides solutions of recursive type equations which provides 2-dimensional models of the pure lambda calculus and we also exhibit a fixed point operator on terms. 2012 ACM Subject Classification Theory of computation → Linear logic; Theory of computation → Categorical semantics Keywords and phrases Linear Logic, Scott Semantics, Profunctors Digital Object Identifier 10.4230/LIPIcs.FSCD.2020.16 Acknowledgements I thank Thomas Ehrhard, Marcelo Fiore, Chaitanya Leena Subramaniam and Christine Tasson for helpful discussions on this article and the referees for their valuable feedback. 1 Introduction 1.1 Scott semantics and linear logic Domain theory provides a mathematical structure to study computability with a notion of approximation of information. The elements of a domain represent partial stages of computation and the order relation represents increasing computational information. Among the desired properties of the interpretation of a program are monotonicity and continuity, i.e. the more a function has information on its input, the more it will provide information on its output and any finite part of the output can be attained through a finite computation. -
Locally Cartesian Closed Categories, Coalgebras, and Containers
U.U.D.M. Project Report 2013:5 Locally cartesian closed categories, coalgebras, and containers Tilo Wiklund Examensarbete i matematik, 15 hp Handledare: Erik Palmgren, Stockholms universitet Examinator: Vera Koponen Mars 2013 Department of Mathematics Uppsala University Contents 1 Algebras and Coalgebras 1 1.1 Morphisms .................................... 2 1.2 Initial and terminal structures ........................... 4 1.3 Functoriality .................................... 6 1.4 (Co)recursion ................................... 7 1.5 Building final coalgebras ............................. 9 2 Bundles 13 2.1 Sums and products ................................ 14 2.2 Exponentials, fibre-wise ............................. 18 2.3 Bundles, fibre-wise ................................ 19 2.4 Lifting functors .................................. 21 2.5 A choice theorem ................................. 22 3 Enriching bundles 25 3.1 Enriched categories ................................ 26 3.2 Underlying categories ............................... 29 3.3 Enriched functors ................................. 31 3.4 Convenient strengths ............................... 33 3.5 Natural transformations .............................. 41 4 Containers 45 4.1 Container functors ................................ 45 4.2 Natural transformations .............................. 47 4.3 Strengths, revisited ................................ 50 4.4 Using shapes ................................... 53 4.5 Final remarks ................................... 56 i Introduction -
A Whirlwind Tour of the World of (∞,1)-Categories
Contemporary Mathematics A Whirlwind Tour of the World of (1; 1)-categories Omar Antol´ınCamarena Abstract. This introduction to higher category theory is intended to a give the reader an intuition for what (1; 1)-categories are, when they are an appro- priate tool, how they fit into the landscape of higher category, how concepts from ordinary category theory generalize to this new setting, and what uses people have put the theory to. It is a rough guide to a vast terrain, focuses on ideas and motivation, omits almost all proofs and technical details, and provides many references. Contents 1. Introduction 2 2. The idea of higher category theory 3 2.1. The homotopy hypothesis and the problem with strictness 5 2.2. The 3-type of S2 8 2.3. Shapes for cells 10 2.4. What does (higher) category theory do for us? 11 3. Models of (1; 1)-categories 12 3.1. Topological or simplicial categories 12 3.2. Quasi-categories 13 3.3. Segal categories and complete Segal spaces 16 3.4. Relative categories 17 3.5. A1-categories 18 3.6. Models of subclasses of (1; 1)-categories 20 3.6.1. Model categories 20 3.6.2. Derivators 21 3.6.3. dg-categories, A1-categories 22 4. The comparison problem 22 4.1. Axiomatization 24 5. Basic (1; 1)-category theory 25 5.1. Equivalences 25 5.1.1. Further results for quasi-categories 26 5.2. Limits and colimits 26 5.3. Adjunctions, monads and comonads 28 2010 Mathematics Subject Classification. Primary 18-01. -
Outline and References for Mini-Course on Higher Topos Theory (Htt–Uf Summer School: Leeds, June 2019)
OUTLINE AND REFERENCES FOR MINI-COURSE ON HIGHER TOPOS THEORY (HTT{UF SUMMER SCHOOL: LEEDS, JUNE 2019) CHARLES REZK 1. Outline The basic structure of the lecture series is as follows. Lecture 1: What is a higher topos? We give a definition, motivated as the \1-categorical generalization of topological space". Lecture 2: Homotopy theory in a higher topos. Truncation, connnectivity, homotopy sheaves, and more. Lecture 3: Descent in a higher topos. We describe various versions of \descent", leading to the \Giraud theorem" and the \object classifier”. Lecture 4: Properties of a higher topos. A grab-bag of various useful concepts, including hypercompleteness and homotopy dimenison. Lecture 5: Maps of higher topoi and classifying topoi. Discussion of the notion of geometric morphism and computation of some interesting examples. 2. References None of these references are \necessary". However, it would be good to come in (i) having some idea about what higher category theory is about, and (ii) knowing what a sheaf of sets on a topological space is. 2.1. Higher category theory: surveys. By \higher categories", I mainly mean what are usually called \1-categories" or \(1; 1)-categories". There are a number of models of these, though the main one that people actually use are \quasicategories", whose theory was developed by Andr´e Joyal and Jacob Lurie. Note: when Lurie writes \1-category", he means quasicategory, and this terminology has been taken up by many people, but not all people. There is a lot of hard work needed to set up a model of higher category theory sufficient to do actual work.