Wax Plants Disentangled: a Phylogeny of Hoya (Marsdenieae, Apocynaceae) Inferred from Nuclear and Chloroplast DNA Sequences

Total Page:16

File Type:pdf, Size:1020Kb

Wax Plants Disentangled: a Phylogeny of Hoya (Marsdenieae, Apocynaceae) Inferred from Nuclear and Chloroplast DNA Sequences Molecular Phylogenetics and Evolution 39 (2006) 722–733 www.elsevier.com/locate/ympev Wax plants disentangled: A phylogeny of Hoya (Marsdenieae, Apocynaceae) inferred from nuclear and chloroplast DNA sequences Livia Wanntorp a,b,¤, Alexander Kocyan a, Susanne S. Renner a a Systematic Botany, Ludwig Maximilians University Munich, Menzinger Strasse 67, D-80638 Munich, Germany b Swedish Museum of Natural History, Box 50007, SE-10405 Stockholm, Sweden Received 13 September 2005; revised 29 December 2005; accepted 9 January 2006 Available online 3 March 2006 Abstract Hoya (Marsdenieae, Apocynaceae) includes at least 200 species distributed from India to the PaciWc Islands. We here infer major spe- cies groups in the genus based on combined sequences from the chloroplast atpB-rbcL spacer, the trnL region, and nuclear ribosomal DNA ITS region for 42 taxa of Hoya and close relatives. To assess levels of ITS polymorphism, ITS sequences for a third of the acces- sions were obtained by cloning. Most ITS clones grouped by species, indicating that speciation in Hoya usually predates ITS duplication. One ITS sequence of H. carnosa, however, grouped with a sequence of the morphologically similar H. pubicalyx, pointing to recent hybridization or the persistence of paralogous copies through a speciation event. The topology resulting from the combined chloroplast and nuclear data recovers some morphology-based sections, such as Acanthostemma and Eriostemma, as well as a well-supported Austra- lian/New Guinean clade. The combined data also suggest that morphological adaptations for ant-symbiosis evolved at least three times within Hoya. © 2006 Elsevier Inc. All rights reserved. Keywords: atpB-rbcL spacer; Bayesian inference; Chloroplast DNA; Hoya; Nuclear ribosomal DNA ITS region; Paralogus; Parsimony; trnL region 1. Introduction genus is generally characterized by persistent inXorescences with Xowers having rotate corollas, staminal coronas with Hoya is a taxonomically complex genus of Xowering revolute margins, pollinia with pellucid margins, and nar- plants distributed from India to the PaciWc Islands (Fig. 1). row, spindle-shaped seeds without conspicuous wings Over 500 names have been published (The Plant Names (Omlor, 1998; this study Fig. 2). Several eVorts have been Project, 1999), and at least 200 species are currently recog- made in the past to subdivide the genus based on morphol- nized (Kleijn and van Donkelaar, 2001), with new ones ogy (Hooker, 1885; Schumann, 1895; Schlechter, 1913, being added every year. The introduction of about 100 spe- 1916), but the only recent such attempts come from the hor- cies of Hoya into the horticultural trade reXects the plants’ ticultural world (Burton, 1985, 1995, 1996; Kloppenburg, large appeal, but the unbridled naming of diVerent forms 1993, 2001a). Because none of these infrageneric classiWca- has led to nomenclatural confusion and heightened the tions is complete or conclusive, many species of Hoya have need for a taxonomic revision, also based on a molecular never been assigned to sections, making appropriate sam- phylogenetic scaVold. pling of the genus for phylogenetic work diYcult. Most species of Hoya are herbaceous lianas with succu- The systematic position of Hoya in the tribe Mars- lent leaves, often growing as epiphytes in the rainforest. The denieae of the Asclepiadoideae (Apocynaceae), on the * other hand, has been settled by molecular phylogenetic Corresponding author. Present address: Department of Botany, studies (e.g., Meve and Liede, 2004; Potgieter and Albert, Stockholm University, Lilla Frescativ. 5, SE-10691 Stockholm, Sweden. Fax: +46 8 162268. 2001; Sennblad and Bremer, 2002). Molecular work has E-mail address: [email protected] (L. Wanntorp). also begun to test the monophyly of Hoya (Wanntorp 1055-7903/$ - see front matter © 2006 Elsevier Inc. All rights reserved. doi:10.1016/j.ympev.2006.01.022 L. Wanntorp et al. / Molecular Phylogenetics and Evolution 39 (2006) 722–733 723 Fig. 1. Geographical distribution of Hoya. genera Absolmsia, Micholitzia, and Madangia (Wanntorp et al., in press). Although identifying some major clades within Hoya, the information from the chloroplast data obtained to date is, insuYcient to resolve species relation- ships within the genus (Fig. 3). To better resolve the infrageneric structure of Hoya, we resorted to the internal transcribed spacer of nuclear ribo- somal DNA (nrDNA), which is part of the rDNA cistron comprising 18S, ITS1, 5.8S, ITS2, and 26S. Most eukaryotes have several hundred copies of this cistron, with the copies usually undergoing concerted evolution through unequal crossing over and gene conversion, resulting in their homog- enization within individuals, populations, and species (Dover and Tautz, 1986). Studies involving cloning of ITS over the past few years, however, have revealed that incom- pletely homogenized paralogous copies can persist within species or individuals. Biological phenomena explaining the presence of paralogous copies include polyploid genomes (Muir et al., 2001; Volkov et al., 1999; Wendel et al., 1995), multiple nucleolar organizer regions (Bobola et al., 1992; Karvonen and Savolainen, 1993), and highly divergent ITS pseudogenes no longer capable of undergoing normal con- certed evolution (Buckler et al., 1997; Muir et al., 2001; Raz- aWmandimbison et al., 2004). When multiple copies are detected, the ITS region often cannot be used for phyloge- netic purposes unless it can be demonstrated that paralo- gous ITS copies coalesce within species rather than persist Fig. 2. Schematic drawing of Hoya multiXora. (A) Lateral view of Xower. through speciation events (e.g., Bellarosa et al., 2005; Buck- (B) Corona lobe and anther from the inside. (C) Lateral view of corona ler et al., 1997; RazaWmandimbison et al., 2004; Won and and gynostegium (two anthers removed). (D) Pollinarium. 1, corolla; 2, outer corona lobe; 3, inner corona lobe; 4, column; 5, anther wing; 6, Renner, 2005). When facing evidence of polymorphic ITS in anther appendage; 7, style head; 8, pollinium; 9, Caudicle; 10, Retinacu- Hoya, we decided to assess the level of intra-species poly- lum; 11, Pellucid margin. Drawn by H-E. Wanntorp. morphism by cloning the ITS1/5.8S/ITS2 region from about a third of the included accessions. We then analyzed these et al., in press) and Dischidia, one of its closest relatives sequences together with the remaining directly obtained ITS (Livshultz, 2000, 2003). Results for Hoya so far show that sequences and the available chloroplast DNA sequences the genus is paraphyletic unless it includes the monotypic using phylogenetic methods. 724 L. Wanntorp et al. / Molecular Phylogenetics and Evolution 39 (2006) 722–733 Fig. 3. Phylogram showing a 50% majority rule consensus obtained from the Bayesian analysis, based on the trnL region and the atpB-rbcL spacer with bootstrap support >75% shown above branches, and Bayesian posterior probabilities >0.97 below branches. Geographic occurrences are abbreviated as follows: Amb, Ambon; Au, Australia; Bor, Borneo; Br, Brazil; Bu, Burma; Ch, China; Him, Himalaya; In, India; Indo, Indochina; Ja, Japan; Jav, Java; Ma, Malaysia; Mol, Moluccas; NG, New Guinea; Nic, Nicobar; Ph, Philippines; Sam, Samoa; Sol, Solomon Islands; Sri, Sri Lanka; Su, Sumatra; Sul, Sulawesi; Tai, Taiwan; Th, Thailand; Tim, Timor; Van, Vanuatu. (ModiWed from Wanntorp et al., in press.) Morphological adaptations for ant-symbioses occur in press) and covers most of the geographic range and Xower several species of Hoya and Dischidia (Beccari, 1884; Jan- morphological variation on which sections have been based zen, 1974; Livshultz et al., 2005; Treseder et al., 1995). In the (Burton, 1985, 1995, 1996; Hooker, 1885; Kloppenburg, case of Dischidia, Livshultz et al. (2005) has suggested that 1993, 2001a; Schlechter, 1913, 1916). In addition to 35 myrmecophytism may be plesiomorphic, and we were species of Hoya, we included Absolmsia spartioides, Dischi- therefore interested in inferring how many times occupa- dia hirsuta, D. astephana, D. bengalensis, Gunnessia pepo, tion by ants may have arisen in Hoya. The principal goals Madangia inXata, and Micholitzia obcordata (all Mars- of this study were to further clarify intrageneric relation- denieae). Trees were rooted with Marsdenia carvalhoi based ships in Hoya, based on nuclear sequences, and to use the on earlier results (Wanntorp et al., in press). resulting phylogeny to examine the evolution of morpho- Genomic DNA was isolated from fresh or silica gel- logical characters, and of the symbiosis between ants and dried young leaves using DNeasy Plant kits according to species of Hoya. the manufacturer’s protocol (QIAGEN, Valencia, CA, USA). Polymerase change reactions (PCRs) were per- 2. Materials and methods formed with 10 M primers in 25-L reactions using “ready to go” PCR beads from Amersham-Pharmacia Biotech 2.1. Taxon sampling, DNA isolation, ampliWcation and (Uppsala, Sweden). PCRs were set at an initial denatur- sequencing ation for 5 min at 95 °C, followed by 30 cycles of 95 °C for 30 s, 50 °C for 30 s for primer annealing, 72 °C for 2 min for A list of material with voucher information and Gen- primer extension, and 72 °C for 8 min for completion of Bank Accession Nos. is presented in Table 1. The species primer extension, using the primers 18SF (Rydin et al., sample used here is the same as that of Wanntorp et al. (in 2004) and C26A (Yokota et al., 1989). Alternative settings L. Wanntorp et al. / Molecular Phylogenetics and Evolution 39
Recommended publications
  • Chapter 2.Indd
    Gardens’ Bulletin Singapore 69(1): 33–65. 2017 33 doi: 10.3850/S2010098116000039 Index of names and types of Hoya (Apocynaceae: Asclepiadoideae) of Borneo M. Rodda Herbarium, Singapore Botanic Gardens, National Parks Board, 1 Cluny Road, Singapore 259569 [email protected] ABSTRACT. Types of all Hoya species occurring in Borneo and their synonyms are indicated and clarified. Forty-six lectotypes, nine neotypes and five epitypes are designated. Keywords. Brunei, epitype, holotype, Kalimantan, lectotype, neotype, Sabah, Sarawak Introduction The present paper is a precursor to a revision of Hoya R.Br. of Borneo. Its aim is to list all Hoya taxa occurring on the island of Borneo and their synonyms, clarify and standardize type citation, select lectotypes, epitypes and neotypes when necessary and provide an extensive list of isotypes and syntypes. The earliest description of a Hoya species that occurs in Borneo, H. multiflora Blume, was described by the German born Dutch botanist Carl Ludwig Blume in 1823, based, however, on Javanese materials. The first Hoya species based on a Bornean collection, H. imperialis Lindl., was published by Lindley (1846). Later, in 1880, Bentham published a peculiar leafless species with long photosynthetic peduncles endemic to Borneo, Astrostemma spartioides Benth. (now Hoya spartioides (Benth.) Kloppenb.). Until 1921 only nine Hoya species where known to occur in Borneo (Merrill, 1921). Nutt (2001) listed 21 species in an unpublished checklist. Lamb et al. (2014) estimated 60–70 species for Sabah alone. In the past 20 years almost 40 taxa (species and subspecies) of Hoya from Borneo have been described, mostly by Ted Green and Dale Kloppenburg (USA).
    [Show full text]
  • Australia Lacks Stem Succulents but Is It Depauperate in Plants With
    Available online at www.sciencedirect.com ScienceDirect Australia lacks stem succulents but is it depauperate in plants with crassulacean acid metabolism (CAM)? 1,2 3 3 Joseph AM Holtum , Lillian P Hancock , Erika J Edwards , 4 5 6 Michael D Crisp , Darren M Crayn , Rowan Sage and 2 Klaus Winter In the flora of Australia, the driest vegetated continent, [1,2,3]. Crassulacean acid metabolism (CAM), a water- crassulacean acid metabolism (CAM), the most water-use use efficient form of photosynthesis typically associated efficient form of photosynthesis, is documented in only 0.6% of with leaf and stem succulence, also appears poorly repre- native species. Most are epiphytes and only seven terrestrial. sented in Australia. If 6% of vascular plants worldwide However, much of Australia is unsurveyed, and carbon isotope exhibit CAM [4], Australia should host 1300 CAM signature, commonly used to assess photosynthetic pathway species [5]. At present CAM has been documented in diversity, does not distinguish between plants with low-levels of only 120 named species (Table 1). Most are epiphytes, a CAM and C3 plants. We provide the first census of CAM for the mere seven are terrestrial. Australian flora and suggest that the real frequency of CAM in the flora is double that currently known, with the number of Ellenberg [2] suggested that rainfall in arid Australia is too terrestrial CAM species probably 10-fold greater. Still unpredictable to support the massive water-storing suc- unresolved is the question why the large stem-succulent life — culent life-form found amongst cacti, agaves and form is absent from the native Australian flora even though euphorbs.
    [Show full text]
  • Botanic Endeavour 250 Trail Botanic Endeavour Trail - 600M | Botanic Explorers Trail - 900M
    Botanic Endeavour 250 Trail Botanic Endeavour Trail - 600m | Botanic Explorers Trail - 900m Botanic Gardens Australia and New Zealand celebrates 250 years of the discovery of the flora of Australia’s east coast and New Zealand by western science in 1770 and over 40,000 years of traditional knowledge. Be an epic voyager for the day and discover some of the plants that Banks and Solander collected during their voyage along the east coast of Australia. Look out for the Botanic Endeavour 250 symbol to find what other plants were discovered during the voyage as you wander through the gardens. Botanic Endeavour 250 Our plants, our future Botanic Gardens and Arboreta throughout Australia and New Zealand (BGANZ) commemorate the anniversary ‘voyage of discovery’ onboard the barque Endeavour, during which Joseph Banks and Daniel Solander made a comprehensive collection of flora. Captain James Cook mapped the entire coastline of New Zealand in 1769 before traversing the east coast of Australia in 1770 from Point Hicks to Cape York. Pressings of over 520 new taxa unknown to western science were collected along the route up the east coast of Australia and these, along with thousands of botanical illustrations, somehow made it back to England in the face of shipwreck, waterlogging and the dank and humid conditions below decks. The rich abundance of diverse flora excited the botanic world and ultimately led to the settlement of the new colony. In Australia, 2020 marks the 250th anniversary of these discoveries. New Zealand celebrated this anniversary in 2019. Our Australian Indigenous heritage Prior to 1770, the Traditional Custodians of Australia lived in harmony with the land for over 40,000 years and discovered the ethnobotanic use for Australia’s native flora for food, medicine, tools, clothing and building materials.
    [Show full text]
  • Hoya New Volume
    HOYA NEW Oh There it is ! American Samoa, trees dripping with Hoyas 1 A pdf publication devoted to the Genus Hoya ISSN 2329-7336 Volume 2 Issue 4 July 2014 Editor: Dale Kloppenburg Contents When a species is collected from the wild, I feel it is wise to identify it, propagate it and name it. In this way it will eventually get it into commercial channels, be distributed to all those interested in this genus and thus be preserved. If in the future the species is lost through natural causes or forest destruction it will still be here on earth in your collection. Corrections: Vol. 2 – 2 May 2014, Katherine Challis at IPNI has pointed out that “stemma” is a singular neuter III so the endings on the two following Eriostemma species should be (corrected) as follows. Eriostemma davaoense Kloppenburg. Eriostemma suluense Kloppenburg. The following new species are presented in PDF format with ISSN number. 1. Eriostemma guppyi Kloppenburg 2. Eriostemma smarense Kloppenburg 3. Hoya lagunaensis Kloppenburg 4. Hoya amoena subsp. bogorensis T. Green & Kloppenburg 5. Dischidia tonsuensis T. Green & Kloppenburg NOTE: please see the Website publication of these species at “www.rare- hoyas.com”. Go to end and click on “publication” to access new species publications. 2 Eriostemma guppyi Kloppenburg ISSN 2329-7336 Type description: H. Guppyi, Oliv. in Guppy, 'Solomon Islands,' p. 298 ex Hook. In Icones Plantarum 23 (1892) 2247, ramulis ultiimis parce hirtellis deinde glabratis foliis petiolatis coriaceis late ellipticis breviter acuminatis cuspidutisve basi late rotundatis subcordatisve supra glabris v. fere glabris subtus plus minus hirtellis 1-costatis nervis lateralibus primiariis subtus utrinque 7-9, umbellis pedunculatis pedunculis pedicellisque glabris, calycis parvi corollae tubo 2-4-plo brevioris carnosuli 5-partiti lobis ovatis obtusis ciliolatis, corollae rotatae lobis patentibus ovatis v.
    [Show full text]
  • Hoya Australis Subsp. Oramicola (A Vine)
    Advice to the Minister for the Environment and Heritage from the Threatened Species Scientific Committee on Amendments to the list of Threatened Species under the Environment Protection and Biodiversity Conservation Act 1999 (EPBC Act) 1. Scientific name (common name) Hoya australis subsp. oramicola (a vine) 2. Description Hoya australis subsp. oramicola is an evergreen, perennial vine with succulent leaves that grow to approximately 10cm long. Its flowers are cream coloured and fleshy, with flowering recorded during March and July. Fruiting occurs three to four months after flowering. 3. National Context Hoya australis subsp. oramicola is endemic to the Northern Territory. The subspecies is restricted to coastal monsoon vine thicket communities on Bathurst and Melville Islands, where it is known from four localities (Kerrigan et al 2004). The subspecies is currently listed as vulnerable under the Northern Territory Territory Parks and Wildlife Conservation Act 2000. 4. How judged by the Committee in relation to the EPBC Act criteria. The Committee judges the subspecies to be eligible for listing as vulnerable under the EPBC Act. The justification against the criteria is as follows: Criterion 1 – It has undergone, is suspected to have undergone or is likely to undergo in the immediate future a very severe, severe or substantial reduction in numbers. Hoya australis subsp. oramicola is endemic to the Northern Territory. The subspecies is restricted to coastal monsoon vine thicket communities on Bathurst and Melville Islands, where it is known from four localities (Kerrigan et al 2004). Very little data on abundance is available for this subspecies. Russell-Smith (1992) records this subspecies as common at Lubra Point on Bathurst Island and uncommon at Condor Point on Melville Island.
    [Show full text]
  • Life Cycle Cost of Air Plant Green Roofs in Hot and Humid Climate
    I J A B E R, Vol. 14, No. 10 (2016):Life 7167-7182 Cycle Cost of Air Plant Green Roofs in Hot and Humid Climate l 7167 LIFE CYCLE COST OF AIR PLANT GREEN ROOFS IN HOT AND HUMID CLIMATE Tachaya Sangkakool* and Kuaanan Techato2* Abstract: The benefitsof green roofshave beenrecognizedby many researchers worldwide.Green roofs have been wildly implemented in many countries due to the trend of green architecture, sustainable architecture and environmental friendly concept. The computational life cycle cost of air plant green roofs is classified into two parts. One is the initial investment, which compos- es of the cost of materials and installation process. Another is the cost of operation and main- tenance. This paper has investigated in the economics of green roofs by reviewing secondary data of extensive green roof and intensive green roofs and collecting experimental data of air plant green roofs. The investigation of life cycle cost of “Cotton Candy” air plant green roofs is around 140.21$/m2 and “Spanish moss” air plant green roofs is around 125.78 $/m2. Although the digit is lower than other types of green roofs, the benefit is almost the same. It was found from the research that life cycle cost of air plant green roof is less than other types of green roof. However, the benefits are not different from other type of the roof. Another strengthof air plant green roofs is shading to the roof of the building. These will extend the life cycle of the roof. The consideration of life cycle cost of air plant green roofs will be another tool using in making final decision.
    [Show full text]
  • Epilist 1.0: a Global Checklist of Vascular Epiphytes
    Zurich Open Repository and Archive University of Zurich Main Library Strickhofstrasse 39 CH-8057 Zurich www.zora.uzh.ch Year: 2021 EpiList 1.0: a global checklist of vascular epiphytes Zotz, Gerhard ; Weigelt, Patrick ; Kessler, Michael ; Kreft, Holger ; Taylor, Amanda Abstract: Epiphytes make up roughly 10% of all vascular plant species globally and play important functional roles, especially in tropical forests. However, to date, there is no comprehensive list of vas- cular epiphyte species. Here, we present EpiList 1.0, the first global list of vascular epiphytes based on standardized definitions and taxonomy. We include obligate epiphytes, facultative epiphytes, and hemiepiphytes, as the latter share the vulnerable epiphytic stage as juveniles. Based on 978 references, the checklist includes >31,000 species of 79 plant families. Species names were standardized against World Flora Online for seed plants and against the World Ferns database for lycophytes and ferns. In cases of species missing from these databases, we used other databases (mostly World Checklist of Selected Plant Families). For all species, author names and IDs for World Flora Online entries are provided to facilitate the alignment with other plant databases, and to avoid ambiguities. EpiList 1.0 will be a rich source for synthetic studies in ecology, biogeography, and evolutionary biology as it offers, for the first time, a species‐level overview over all currently known vascular epiphytes. At the same time, the list represents work in progress: species descriptions of epiphytic taxa are ongoing and published life form information in floristic inventories and trait and distribution databases is often incomplete and sometimes evenwrong.
    [Show full text]
  • Hoya Australis Subsp. Australis Click on Images to Enlarge
    Species information Abo ut Reso urces Hom e A B C D E F G H I J K L M N O P Q R S T U V W X Y Z Hoya australis subsp. australis Click on images to enlarge Family Apocynaceae Scientific Name Hoya australis R.Br. ex J.Traill subsp. australis Flowers. Copyright Australian Plant Image Index (APII). Hill, K.D. (1989) Telopea 3(2): 250. Photographer: M. Fagg. Common name Wax Flower; Common Hoya; Native Hoya; Hoya, Native; Hoya, Common; Hoya Stem Climbs mainly by adventitious roots. A slender vine not exceeding a stem diameter of 2 cm. Leaves Twigs, petioles and leaves produce a milky exudate. Leaf blades thick and fleshy, about 2.4-8 x 1.8-4.5 cm, Copyright CSIRO petioles about 0.6-2 cm long. Colleters (small finger-like glands) present on the upper surface of the midrib near its junction with the petiole. Upper and lower leaf blade surfaces clothed in hairs. Flowers Inflorescence an umbelliform raceme which produces flowers over a long period of time. Calyx lobes about 4 mm long, outer surface clothed in hairs. Corolla lobes about 7 mm long. Corona 5-lobed, about 7 mm diam., formed from staminal outgrowths about 3 mm long. Fruit Individual fruiting carpels about 7-18 x 0.4-0.6 cm. Seeds numerous, each seed about 3-4 mm long. Plumes about 15-25 mm long, attached to one end of the seed. Embryo about 3-3.5 mm long, cotyledons about 2 Scale bar 10mm. Copyright CSIRO mm long.
    [Show full text]
  • Preliminary Checklist of Hoya (Asclepiadaceae) in the Flora of Cambodia, Laos and Vietnam
    Turczaninowia 20 (3): 103–147 (2017) ISSN 1560–7259 (print edition) DOI: 10.14258/turczaninowia.20.3.10 TURCZANINOWIA http://turczaninowia.asu.ru ISSN 1560–7267 (online edition) УДК 582.394:581.4 Preliminary checklist of Hoya (Asclepiadaceae) in the flora of Cambodia, Laos and Vietnam L. V. Averyanov1, Van The Pham2, T. V. Maisak1, Tuan Anh Le3, Van Canh Nguyen4, Hoang Tuan Nguyen5, Phi Tam Nguyen6, Khang Sinh Nguyen2, Vu Khoi Nguyen7, Tien Hiep Nguyen8, M. Rodda9 1 Komarov Botanical Institute, Prof. Popov, 2; St. Petersburg, RF-197376, Russia E-mails: [email protected]; [email protected] 2 Institute of Ecology and Biological Resources, Vietnam Academy of Sciences and Technology, 18 Hoang Quoc Viet, Cau Giay, Ha Noi, Vietnam. E-mail: [email protected] 3Quang Tri Center of Science and Technology, Mientrung Institute for Scientific Research, 121 Ly Thuong Kiet, Dong Ha, Quang Tri, Vietnam. E-mail: [email protected] 4 3/12/3 Vo Van Kiet Street, Buon Ma Thuot City, Dak Lak province, Vietnam. E-mail: [email protected] 5Department of Pharmacognosy, Hanoi University of Pharmacy, 15 Le Thanh Tong, Hoan Kiem, Hanoi, Vietnam E-mail: [email protected] 6Viet Nam Post and Telecommunications Group – VNPT, Lam Dong 8 Tran Phu Street, Da Lat City, Lam Dong Province, Vietnam. E-mail: [email protected] 7Wildlife At Risk, 202/10 Nguyen Xi st., ward 26, Binh Thanh, Ho Chi Minh, Vietnam. E-mail: [email protected] 8Center for Plant Conservation, no. 25/32, lane 191, Lac Long Quan, Nghia Do, Cau Giay District, Ha Noi, Vietnam E-mail: [email protected] 9Herbarium, Singapore Botanic Gardens, 1 Cluny Road, Singapore 259569.
    [Show full text]
  • Canopy CO2 Concentrations and Crassulacean Acid Metabolism In
    PHOTOSYNTHETICA 44 (1): 130-135, 2006 Canopy CO2 concentrations and Crassulacean acid metabolism in Hoya carnosa in a subtropical rain forest in Taiwan: consideration of CO2 availability and the evolution of CAM in epiphytes C.-C. HSU*, T.-C. LIN**, W.-L. CHIOU*, S.-H. LIN***, K.-C. LIN*, and C.E. MARTIN+,++ Taiwan Forestry Research Institute, 53 Nan-hai Road, Taipei 100, Taiwan, Republic of China* Department of Geography, National Changhua University of Education, 1 Jin-de Road, Changhua 500, Taiwan, Republic of China** Department of Soil and Water Conservation, National Chung-Hsing University, 250 Kuo-kwang Road, Taichung 402, Taiwan, Republic of China*** Department of Ecology & Evolutionary Biology, University of Kansas, Lawrence, Kansas 66045, U.S.A.+ Abstract The potential importance of CO2 derived from host tree respiration at night as a substrate for night time CO2 uptake during CAM was investigated in the subtropical and tropical epiphytic vine Hoya carnosa in a subtropical rainforest in north-eastern Taiwan. Individuals were examined within the canopies of host trees in open, exposed situations, as well as in dense forests. Although night time CO2 concentrations were higher near the epiphytic vines at night, relative to those measured during the day, presumably the result of CO2 added to the canopy air by the host tree, no evidence for substantial use of this CO2 was found. In particular, stable carbon isotope ratios of H. carnosa were not substantially lower than those of many other CAM plants, as would be expected if host-respired CO2 were an important source of CO2 for these CAM epiphytes.
    [Show full text]
  • Floral Glands in Asclepiads: Structure, Diversity and Evolution
    Acta Botanica Brasilica - 31(3): 477-502. July-September 2017. doi: 10.1590/0102-33062016abb0432 Review Floral glands in asclepiads: structure, diversity and evolution Diego Demarco1 Received: December 7, 2016 Accepted: February 24, 2017 . ABSTRACT Species of Apocynaceae stand out among angiosperms in having very complex fl owers, especially those of asclepiads, which belong to the most derived subfamily (Asclepiadoideae). Th ese fl owers are known to represent the highest degree of fl oral synorganization of the eudicots, and are comparable only to orchids. Th is morphological complexity may also be understood by observing their glands. Asclepiads have several protective and nuptial secretory structures. Th eir highly specifi c and specialized pollination systems are associated with the great diversity of glands found in their fl owers. Th is review gathers data regarding all types of fl oral glands described for asclepiads and adds three new types (glandular trichome, secretory idioblast and obturator), for a total of 13 types of glands. Some of the species reported here may have dozens of glands of up to 11 types on a single fl ower, corresponding to the largest diversity of glands recorded to date for a single structure. Keywords: anatomy, Apocynaceae, Asclepiadoideae, diversity, evolution, fl ower, secretory structures considering its most derived subfamily Asclepiadoideae. Introduction Th e close relationship between the former families Apocynaceae and Asclepiadaceae has always been recognized Apocynaceae is an extremely diverse family in since its establishment as “Apocineae” by Jussieu (1789). morphological terms, represented by trees, shrubs, herbs and climbers, with single leaves usually opposite, rarely Although Brown (1810) divided it into two families and alternate or whorled, with stipules modifi ed in colleters in this separation had been maintained in the subsequent several species (Endress & Bruyns 2000; Capelli et al.
    [Show full text]
  • A Phylogenetic Approach Toward the Understanding of Disjunct Distributions of Plant Taxa in Western Ghats and Northeastern India
    Rheedea Vol. 26(2) 99–114 2016 ISSN: 0971 - 2313 A phylogenetic approach toward the understanding of disjunct distributions of plant taxa in Western Ghats and northeastern India R. Puri1, P. Barman1,2 and R. Geeta1* 1Department of Botany, University of Delhi, Delhi – 110007, India. 2Division of Genomic Resources, National Bureau of Plant Genetic Resources, New Delhi – 110012, India. *E-mail: [email protected] Abstract There are many Indian plant taxa with disjunct distributions in northeastern India and Western Ghats, raising several systematic and biogeographic questions. Such questions are best addressed in a phylogenetic context as presented in this review of nine genera (Arisaema Mart., Begonia L., Ceropegia L., Hoya R. Br., Impatiens L., Indigofera L., Rubus L., Strobilanthes Blume and Vitis L.). These genera were chosen because they contain species that are endemic and occur in either northeastern India or Western Ghats, and at least one species is included in global phylogenetic analyses. This review reveals that even with limited sampling within India, the phylogenetic studies are consistent with present understanding of the Indian flora: that it contains Chinese, South East Asian and African influences, and that the collision of India with Asia played a crucial role in the dispersal of some taxa into India. Some of these dispersals occurred soon after the collision (e.g., Arisaema at 45 ma), while others were more recent (Begonia at 15 ma from SE Asia). Other dispersals occurred between India and Africa (e.g., Begonia at 13.75 ma and Indigofera 13 ma). We analyzed new sequences of ITS and atpB-rbcL regions from nine species of Impatiens, combined with existing data.
    [Show full text]