CAM) and Mineral Nutrition with a Special Focus on Nitrogen
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Ecophysiological and Anatomical Responses of Vallisneria Natans to Nitrogen and Phosphorus Enrichment
Knowledge and Management of Aquatic Ecosystems (2012) 405, 05 http://www.kmae-journal.org c ONEMA, 2012 DOI: 10.1051/kmae/2012011 Ecophysiological and anatomical responses of Vallisneria natans to nitrogen and phosphorus enrichment Y. Wa n g (1,2),G.Gao(1),B.Qin(1),X.Wang(1) Received January 4, 2012 Revised March 24, 2012 Accepted April 26, 2012 ABSTRACT Key-words: Here, we describe an experiment using four nitrogen (N) and phospho- nutrient rus (P) concentrations to investigate the effects of nutrient enrichment on enrichment, the submersed macrophyte Vallisneria natans (tape grass) grown in a sand photosynthesis, culture medium. The objective of this study was to examine the influence morphological of nutrient enrichment in the water column on V. natans, especially with characteristics, regard to anatomical structures. The results showed both the absolute anatomical growth rate (AGR) and intrinsic efficiency of light energy conversion of structure, PSII (Fv/Fm) decreased with increasing nutrient levels. Root morphological Vallisneria characteristics, including the total root length (L), root surface area (SA), natans projected root area (PA), total root volume (V), average root diameter (AD), total root length per volume (LPV), total tips (T) and total forks (F), also showed a generally negative relationship with increasing nutrient concen- trations. The anatomical structures of stolons and leaves also changed with nutrient enrichment. The shrinkage of aerenchyma and disappear- ance of starches and chloroplasts were the main structural changes lead- ing to poor growth. These phenomena, especially the anatomical changes, might be the mechanism underlying the effect of nutrient enrichment on V. natans growth. -
Hoya New Volume
HOYA NEW Oh There it is ! American Samoa, trees dripping with Hoyas 1 A pdf publication devoted to the Genus Hoya ISSN 2329-7336 Volume 2 Issue 4 July 2014 Editor: Dale Kloppenburg Contents When a species is collected from the wild, I feel it is wise to identify it, propagate it and name it. In this way it will eventually get it into commercial channels, be distributed to all those interested in this genus and thus be preserved. If in the future the species is lost through natural causes or forest destruction it will still be here on earth in your collection. Corrections: Vol. 2 – 2 May 2014, Katherine Challis at IPNI has pointed out that “stemma” is a singular neuter III so the endings on the two following Eriostemma species should be (corrected) as follows. Eriostemma davaoense Kloppenburg. Eriostemma suluense Kloppenburg. The following new species are presented in PDF format with ISSN number. 1. Eriostemma guppyi Kloppenburg 2. Eriostemma smarense Kloppenburg 3. Hoya lagunaensis Kloppenburg 4. Hoya amoena subsp. bogorensis T. Green & Kloppenburg 5. Dischidia tonsuensis T. Green & Kloppenburg NOTE: please see the Website publication of these species at “www.rare- hoyas.com”. Go to end and click on “publication” to access new species publications. 2 Eriostemma guppyi Kloppenburg ISSN 2329-7336 Type description: H. Guppyi, Oliv. in Guppy, 'Solomon Islands,' p. 298 ex Hook. In Icones Plantarum 23 (1892) 2247, ramulis ultiimis parce hirtellis deinde glabratis foliis petiolatis coriaceis late ellipticis breviter acuminatis cuspidutisve basi late rotundatis subcordatisve supra glabris v. fere glabris subtus plus minus hirtellis 1-costatis nervis lateralibus primiariis subtus utrinque 7-9, umbellis pedunculatis pedunculis pedicellisque glabris, calycis parvi corollae tubo 2-4-plo brevioris carnosuli 5-partiti lobis ovatis obtusis ciliolatis, corollae rotatae lobis patentibus ovatis v. -
The Quarterly Journal of the Florida Native Plant Society
Volume 27: Number 2 > Summer 2010 PalmettoThe Quarterly Journal of the Florida Native Plant Society Everglades Tree Islands ● Schizaea pennula ● Pricing the Priceless BOOK REVIEW Native Bromeliads of Florida Reviewed by Chuck McCartney Among plants adding to the bromeliads and orchids. Thus, the as well a mention of its distribution tropical ambience of much of Florida’s reader of Native Bromeliads of Florida outside Florida, plus other interesting natural landscape are members of could not ask for a more authoritative tidbits about the species. the plant family Bromeliaceae, the pair of writers on the subject. There is also a dichotomous key bromeliads. These are our so-called The book delineates Florida’s 18 to help distinguish among the three “air plants,” and they are the most native bromeliads, including the three native bromeliad genera (Catopsis, commonly seen and widespread that do not occur in the southern Guzmania and Tillandsia), with further group of epiphytes, or tree-growing end of the state – Tillandsia bartramii, keys to the three Catopsis species and plants, found in our state. the apparently endemic Tillandsia 14 tillandsias. The keys are written Bromeliaceae is sometimes called simulata, and Tillandsia x floridana, in language that’s fairly easy to under- the pineapple family because that a putative hybrid of T. bartramii and stand for the amateur, and there ground-growing species, Ananas T. fasciculata var. densispica. is a glossary in the back of the book comosus from Brazil, is the most It also discusses familiar South to help with any unfamiliar terms. familiar representative of the group. Florida species, such as the widespread But what makes this book equally But equally familiar to people who and beautiful Tillandsia fasciculata, informative is the introductory have traveled in the American South with its flame red flower spikes (even material. -
Hoya Australis Subsp. Oramicola (A Vine)
Advice to the Minister for the Environment and Heritage from the Threatened Species Scientific Committee on Amendments to the list of Threatened Species under the Environment Protection and Biodiversity Conservation Act 1999 (EPBC Act) 1. Scientific name (common name) Hoya australis subsp. oramicola (a vine) 2. Description Hoya australis subsp. oramicola is an evergreen, perennial vine with succulent leaves that grow to approximately 10cm long. Its flowers are cream coloured and fleshy, with flowering recorded during March and July. Fruiting occurs three to four months after flowering. 3. National Context Hoya australis subsp. oramicola is endemic to the Northern Territory. The subspecies is restricted to coastal monsoon vine thicket communities on Bathurst and Melville Islands, where it is known from four localities (Kerrigan et al 2004). The subspecies is currently listed as vulnerable under the Northern Territory Territory Parks and Wildlife Conservation Act 2000. 4. How judged by the Committee in relation to the EPBC Act criteria. The Committee judges the subspecies to be eligible for listing as vulnerable under the EPBC Act. The justification against the criteria is as follows: Criterion 1 – It has undergone, is suspected to have undergone or is likely to undergo in the immediate future a very severe, severe or substantial reduction in numbers. Hoya australis subsp. oramicola is endemic to the Northern Territory. The subspecies is restricted to coastal monsoon vine thicket communities on Bathurst and Melville Islands, where it is known from four localities (Kerrigan et al 2004). Very little data on abundance is available for this subspecies. Russell-Smith (1992) records this subspecies as common at Lubra Point on Bathurst Island and uncommon at Condor Point on Melville Island. -
Life Cycle Cost of Air Plant Green Roofs in Hot and Humid Climate
I J A B E R, Vol. 14, No. 10 (2016):Life 7167-7182 Cycle Cost of Air Plant Green Roofs in Hot and Humid Climate l 7167 LIFE CYCLE COST OF AIR PLANT GREEN ROOFS IN HOT AND HUMID CLIMATE Tachaya Sangkakool* and Kuaanan Techato2* Abstract: The benefitsof green roofshave beenrecognizedby many researchers worldwide.Green roofs have been wildly implemented in many countries due to the trend of green architecture, sustainable architecture and environmental friendly concept. The computational life cycle cost of air plant green roofs is classified into two parts. One is the initial investment, which compos- es of the cost of materials and installation process. Another is the cost of operation and main- tenance. This paper has investigated in the economics of green roofs by reviewing secondary data of extensive green roof and intensive green roofs and collecting experimental data of air plant green roofs. The investigation of life cycle cost of “Cotton Candy” air plant green roofs is around 140.21$/m2 and “Spanish moss” air plant green roofs is around 125.78 $/m2. Although the digit is lower than other types of green roofs, the benefit is almost the same. It was found from the research that life cycle cost of air plant green roof is less than other types of green roof. However, the benefits are not different from other type of the roof. Another strengthof air plant green roofs is shading to the roof of the building. These will extend the life cycle of the roof. The consideration of life cycle cost of air plant green roofs will be another tool using in making final decision. -
Water Relations of Bromeliaceae in Their Evolutionary Context
View metadata, citation and similar papers at core.ac.uk brought to you by CORE provided by Apollo Botanical Journal of the Linnean Society, 2016, 181, 415–440. With 2 figures Think tank: water relations of Bromeliaceae in their evolutionary context JAMIE MALES* Department of Plant Sciences, University of Cambridge, Downing Street, Cambridge CB2 3EA, UK Received 31 July 2015; revised 28 February 2016; accepted for publication 1 March 2016 Water relations represent a pivotal nexus in plant biology due to the multiplicity of functions affected by water status. Hydraulic properties of plant parts are therefore likely to be relevant to evolutionary trends in many taxa. Bromeliaceae encompass a wealth of morphological, physiological and ecological variations and the geographical and bioclimatic range of the family is also extensive. The diversification of bromeliad lineages is known to be correlated with the origins of a suite of key innovations, many of which relate directly or indirectly to water relations. However, little information is known regarding the role of change in morphoanatomical and hydraulic traits in the evolutionary origins of the classical ecophysiological functional types in Bromeliaceae or how this role relates to the diversification of specific lineages. In this paper, I present a synthesis of the current knowledge on bromeliad water relations and a qualitative model of the evolution of relevant traits in the context of the functional types. I use this model to introduce a manifesto for a new research programme on the integrative biology and evolution of bromeliad water-use strategies. The need for a wide-ranging survey of morphoanatomical and hydraulic traits across Bromeliaceae is stressed, as this would provide extensive insight into structure– function relationships of relevance to the evolutionary history of bromeliads and, more generally, to the evolutionary physiology of flowering plants. -
A New Species from Cerro De La Neblina, Venezuela Lucas C
ACTA AMAZONICA http://dx.doi.org/10.1590/1809-4392202000072 ORIGINAL ARTICLE Tovomita nebulosa (Clusiaceae), a new species from Cerro de la Neblina, Venezuela Lucas C. MARINHO1,2* , Manuel LUJÁN3, Pedro FIASCHI4, André M. AMORIM5,6 1 Universidade Federal do Maranhão, Centro de Ciências Biológicas e da Saúde, Departamento de Biologia, Av. dos Portugueses 1966, Bacanga 65080-805, São Luís, Maranhão, Brazil 2 Universidade Estadual de Feira de Santana, Programa de Pós-Graduação em Botânica, Av. Transnordestina s/n, Novo Horizonte 44036-900, Feira de Santana, Bahia, Brazil 3 California Academy of Sciences, 55 Music Concourse Drive, Golden Gate Park, San Francisco, California 94118, USA 4 Universidade Federal de Santa Catarina, Centro de Ciências Biológicas, Departamento de Botânica, Trindade 88040-900, Florianópolis, Santa Catarina, Brazil 5 Universidade Estadual de Santa Cruz, Departamento de Ciências Biológicas, Km 25 Rodovia Ilhéus-Itabuna 45662-900, Ilhéus, Bahia, Brazil 6 Centro de Pesquisas do Cacau, Herbário CEPEC, Km 16 Rodovia Itabuna-Ilhéus 45650-970, Itabuna, Bahia, Brazil * Corresponding author: [email protected]; https://orcid.org/0000-0003-1263-3414 ABSTRACT Although the number of recently described Tovomita species is relatively high, much more remains to be done, given that each new survey of representative Amazonian collections reveals many potentially undescribed taxa. In the treatment for Tovomita published in Flora of the Venezuelan Guayana, at least six distinct morphotypes did not match any previously described species. -
Hoya Australis Subsp. Australis Click on Images to Enlarge
Species information Abo ut Reso urces Hom e A B C D E F G H I J K L M N O P Q R S T U V W X Y Z Hoya australis subsp. australis Click on images to enlarge Family Apocynaceae Scientific Name Hoya australis R.Br. ex J.Traill subsp. australis Flowers. Copyright Australian Plant Image Index (APII). Hill, K.D. (1989) Telopea 3(2): 250. Photographer: M. Fagg. Common name Wax Flower; Common Hoya; Native Hoya; Hoya, Native; Hoya, Common; Hoya Stem Climbs mainly by adventitious roots. A slender vine not exceeding a stem diameter of 2 cm. Leaves Twigs, petioles and leaves produce a milky exudate. Leaf blades thick and fleshy, about 2.4-8 x 1.8-4.5 cm, Copyright CSIRO petioles about 0.6-2 cm long. Colleters (small finger-like glands) present on the upper surface of the midrib near its junction with the petiole. Upper and lower leaf blade surfaces clothed in hairs. Flowers Inflorescence an umbelliform raceme which produces flowers over a long period of time. Calyx lobes about 4 mm long, outer surface clothed in hairs. Corolla lobes about 7 mm long. Corona 5-lobed, about 7 mm diam., formed from staminal outgrowths about 3 mm long. Fruit Individual fruiting carpels about 7-18 x 0.4-0.6 cm. Seeds numerous, each seed about 3-4 mm long. Plumes about 15-25 mm long, attached to one end of the seed. Embryo about 3-3.5 mm long, cotyledons about 2 Scale bar 10mm. Copyright CSIRO mm long. -
Preliminary Checklist of Hoya (Asclepiadaceae) in the Flora of Cambodia, Laos and Vietnam
Turczaninowia 20 (3): 103–147 (2017) ISSN 1560–7259 (print edition) DOI: 10.14258/turczaninowia.20.3.10 TURCZANINOWIA http://turczaninowia.asu.ru ISSN 1560–7267 (online edition) УДК 582.394:581.4 Preliminary checklist of Hoya (Asclepiadaceae) in the flora of Cambodia, Laos and Vietnam L. V. Averyanov1, Van The Pham2, T. V. Maisak1, Tuan Anh Le3, Van Canh Nguyen4, Hoang Tuan Nguyen5, Phi Tam Nguyen6, Khang Sinh Nguyen2, Vu Khoi Nguyen7, Tien Hiep Nguyen8, M. Rodda9 1 Komarov Botanical Institute, Prof. Popov, 2; St. Petersburg, RF-197376, Russia E-mails: [email protected]; [email protected] 2 Institute of Ecology and Biological Resources, Vietnam Academy of Sciences and Technology, 18 Hoang Quoc Viet, Cau Giay, Ha Noi, Vietnam. E-mail: [email protected] 3Quang Tri Center of Science and Technology, Mientrung Institute for Scientific Research, 121 Ly Thuong Kiet, Dong Ha, Quang Tri, Vietnam. E-mail: [email protected] 4 3/12/3 Vo Van Kiet Street, Buon Ma Thuot City, Dak Lak province, Vietnam. E-mail: [email protected] 5Department of Pharmacognosy, Hanoi University of Pharmacy, 15 Le Thanh Tong, Hoan Kiem, Hanoi, Vietnam E-mail: [email protected] 6Viet Nam Post and Telecommunications Group – VNPT, Lam Dong 8 Tran Phu Street, Da Lat City, Lam Dong Province, Vietnam. E-mail: [email protected] 7Wildlife At Risk, 202/10 Nguyen Xi st., ward 26, Binh Thanh, Ho Chi Minh, Vietnam. E-mail: [email protected] 8Center for Plant Conservation, no. 25/32, lane 191, Lac Long Quan, Nghia Do, Cau Giay District, Ha Noi, Vietnam E-mail: [email protected] 9Herbarium, Singapore Botanic Gardens, 1 Cluny Road, Singapore 259569. -
Vallisneria Spiralis L
20/1 • 2021, 7–18 DOI: 10.2478/hacq-2020-0014 Distribution and habitat characteristics of Vallisneria spiralis L. in Croatia Anja Rimac1, Antun Alegro1,*, Vedran Šegota1, Nikola Koletić1, Igor Stanković2, Sandro Bogdanović3 & Nina Vuković1 Key words: Butoniga Reservoir, Abstract Kupa River, macrophytes, Eight new localities of the rare, strictly protected macrophyte Vallisneria spiralis Potamogetonion, Nymphaeion albae, have been recorded during a comprehensive survey of water bodies in Croatia. Southeastern Europe, river ecology. One record is located in the Mediterranean Region, in Butoniga Reservoir, while the remaining records are from the Continental Region, the majority of them Ključne besede: umetno jezero situated along the Kupa River. Vallisneria spiralis occurred in slightly basic and Butoniga, reka Kolpa, makrofiti, alkaline environments and in a wide range of nutrient availability. In Continental Potamogetonion, Nymphaeion localities, the species was present within Myriophyllo-Nupharetum luteae of the albae, jugovzhodna Evropa, rečna alliance Nymphaeion-albae, while in Butoniga, it occurred within the vegetation ekologija. of the alliance Potamogetonion. Prior to our research, the species was recorded in Croatia only twice, with the older record dating back to the 19th century and the second from recent years, but neither one was confirmed in later surveys. The low number of records of V. spiralis, in spite of a wide-ranging search through hundreds of localities, confirmed the rare status of this species, although the reasons for such limited distribution remain unclear, especially bearing in mind that suitable aquatic habitats are quite widespread in the country. Izvleček Med obširnimi raziskavami vodnih teles na Hrvaškem smo odkrili osem novih lokalitet redke, strogo zavarovane makrofitske vrsteVallisneria spiralis. -
Clusia Rosea: Pitch Apple1 Edward F
ENH331 Clusia rosea: Pitch Apple1 Edward F. Gilman, Dennis G. Watson, Ryan W. Klein, Andrew K. Koeser, Deborah R. Hilbert, and Drew C. McLean2 Introduction Origin: native to Florida, the West Indies, and from Mexico to northern South America This wide-spreading, densely-foliated, rounded, 25- to UF/IFAS Invasive Assessment Status: native 30-foot-tall, evergreen tree has a short trunk and broad, Uses: trained as a standard; reclamation; street without thickened, dark green, leathery leaves, reminiscent of sidewalk; screen; specimen; espalier; deck or patio; parking Southern magnolia leaves. It is, in fact, greatly admired lot island < 100 sq ft; parking lot island 100–200 sq ft; in Cuba and the Virgin Islands as an ornamental. Leaves parking lot island > 200 sq ft; sidewalk cutout (tree pit); can be written on with a fingernail. In summer, the showy, tree lawn 3–4 feet wide; tree lawn 4–6 feet wide; tree lawn pink and white, 2- to 3-inch flowers appear at night and > 6 ft wide; urban tolerant; shade; highway median; hedge; sometimes remain open all morning on overcast days. container or planter They appear near the branch tips and are followed by a fleshy, light green, poisonous fruit, 3-inches in diameter. These persistent fruits turn black when ripe and split open, revealing bright red seeds surrounded by a black, resinous material. The seeds are very attractive to birds and other wildlife and they germinate readily in the landscape and surrounding areas. The black material surrounding these seeds was once used to caulk the seams of boats, hence its common name, ‘Pitch-apple’. -
A Preliminary List of the Vascular Plants and Wildlife at the Village Of
A Floristic Evaluation of the Natural Plant Communities and Grounds Occurring at The Key West Botanical Garden, Stock Island, Monroe County, Florida Steven W. Woodmansee [email protected] January 20, 2006 Submitted by The Institute for Regional Conservation 22601 S.W. 152 Avenue, Miami, Florida 33170 George D. Gann, Executive Director Submitted to CarolAnn Sharkey Key West Botanical Garden 5210 College Road Key West, Florida 33040 and Kate Marks Heritage Preservation 1012 14th Street, NW, Suite 1200 Washington DC 20005 Introduction The Key West Botanical Garden (KWBG) is located at 5210 College Road on Stock Island, Monroe County, Florida. It is a 7.5 acre conservation area, owned by the City of Key West. The KWBG requested that The Institute for Regional Conservation (IRC) conduct a floristic evaluation of its natural areas and grounds and to provide recommendations. Study Design On August 9-10, 2005 an inventory of all vascular plants was conducted at the KWBG. All areas of the KWBG were visited, including the newly acquired property to the south. Special attention was paid toward the remnant natural habitats. A preliminary plant list was established. Plant taxonomy generally follows Wunderlin (1998) and Bailey et al. (1976). Results Five distinct habitats were recorded for the KWBG. Two of which are human altered and are artificial being classified as developed upland and modified wetland. In addition, three natural habitats are found at the KWBG. They are coastal berm (here termed buttonwood hammock), rockland hammock, and tidal swamp habitats. Developed and Modified Habitats Garden and Developed Upland Areas The developed upland portions include the maintained garden areas as well as the cleared parking areas, building edges, and paths.