Pterocarpus Macrocarpus Kurz

Total Page:16

File Type:pdf, Size:1020Kb

Pterocarpus Macrocarpus Kurz Pterocarpus macrocarpus Kurz JOHN K. FRANCIS International Institute of Tropical Forestry, USDA Forest Service FABACEAE (BEAN FAMILY) Lingoum macrocarpum (Kurz) O. Ktze., Lingoum cambodianum Pierre, Lingoum glaucinum Pierre, Lingoum gracile Pierre, Lingoum oblongum Pierre, Lingoum parvifolium Pierre, Lingoum pedatum Pierre, Pterocarpus cambodianus Pierre var. calcicolus Craib Burma padauk, pradu, terocarpus Pterocarpus macrocarpus grows naturally throughout the Pterocarpus macrocarpus produces a timber with heart- greater part of Burma, northern Thailand, Kampuchea, and wood that varies from golden brown to brick red. It is compa- into Vietnam (Carrapiett 1960, Hundley 1956, Suvarnasuddi rable in workability to inferior quality teak. Used for furniture, 1950). It is an associate with Tectona grandis L.f. in moist to cabinetry, flooring, ship timbers, cart wheels, tool handles, house dry deciduous forests. framing, and posts (Chudnoff 1984, Hundley 1956, Rendle Pterocarpus macrocarpus is a large tree with a medium 1970), the wood is very resistant to termites and rot (Carrapi- growth rate. It develops long and relatively straight boles in ett 1960). A visually pleasing tree, P. macrocarpus is planted closed forest, but as an open-grown tree, tends to have short throughout the moist tropics as an ornamental and shade tree boles and spreading crowns. In their native range, these trees (Rojo 1972). However, older trees have large roots that run seldom exceed 30 m in height and 70 cm d.b.h. (Hundley along the surface of wet or clayey soil and have a high propen- 1956). However, as ornamentals, P. macrocarpus trees may sity to damage sidewalks and curbs (Francis and others 1996). reach impressive sizes. A tree approximately 64 years old in Flowering and fruiting usually begins in open-grown Puerto Rico measured 39 m in height and 1.7 m d.b.h. (Fran- trees between 5 and 10 years of age. The sweet-scented yellow P cis 1989c). Suitable soils include sandy loams through clays flowers are produced copiously in panicles and racemes. Indi- with pH ranging from neutral to very strongly acid. Rainfall vidual flowers measure about 1.6 cm across. They are pollinat- throughout the native range varies from about 1000 to 2000 ed by honey bees and other insects. The fruit of P. macrocarpus mm per year (Kermode and others 1975). The tree grows from is a lenticular-shaped pod with a flat wing that circles its edge. near sea level to 670 m elevation. Mean monthly temperatures These pods have a diameter of 4.5 to 7.5 cm. Large trees may are fairly uniform at about 24 °C. (Francis 1989c). Because it produce one to several quintals of pods annually. grows somewhat more slowly than its fiercely competitive At maturity, the pods dry and turn from greenish yellow associates, P. macrocarpus usually must survive years of sup- to light brown and can be clipped from low-growing trees with pression as a sapling or pole until disturbance creates a canopy pruning poles. Fruits mature about 6 months after flowering gap through which it can grow. As a result, the species makes and fall off the trees gradually over several months. Because up only a small percentage of the canopy trees in its native the fruits and their seeds do not deteriorate for several months habitat (Hundley 1956). after falling, they may be collected efficiently from the ground Pterocarpus macrocarpus is closely related to P. indicus Willd., when most of the crop has fallen. The pods are air-dried and and it is difficult to distinguish between the two species by leaf stored in plastic bags with or without refrigeration. A sample and flower morphology alone (Rojo 1977). The fruits of P. macro- of air-dried pods of P. macrocarpus collected in Puerto Rico carpus are usually larger, darker, and have more pronounced cen- yielded 1,067 pods per kg (Francis 1989c) and an average of tral veins than P. indicus, but where the native ranges merge and 2.6 seeds per pod (Francis 1989c). Air-dried seeds in their pods at the extremes of natural seed variation, differentiating be- will still germinate after 1 year of storage at room temperature. tween the species is difficult. No hybrids have been reported. The pods are tough and the seeds are fragile, making extrac- Part II—Species Descriptions • Pterocarpus macrocarpus Kurz 673 tion impossible mechanically and difficult by hand. Shelled pods about 1 to 2 weeks after planting. The remaining seeds seeds average 11,500 per kg (Francis and Rodríguez 1993). continue to germinate for several weeks. Using seeds in the The seeds are usually planted in the pods without any pods sometimes requires thinning the plants soon after emer- pretreatment. Germination is epigeous. In a comparison gence. When true leaves develop, seedlings are transplanted study, shelled seeds germinated in 5 days, with 70-percent ger- into 1- to 2-L nursery bags filled with potting mixture. After mination within 2 weeks. Unshelled seeds began germination growing under light shade for a few months, the seedlings in 11 days with 64 seedlings per 100 pods germinating within reach about 0.5 m in height and are ready to outplant (Francis 2 months. In a test in Burma, shelled seeds gave 80- to 90-per- 1989). In Burma, seedlings in plantations grew from 0.6 to 1.2 cent germination. Moreover, seeds from pods that had lain on m the first year and added another 1.2 to 2.1 m in the second the ground for 1 year germinated better than new pods col- (Hundley 1956). In Puerto Rico, 30 planted trees in a small lected from the tree (Hundley 1956). The best temperature forest plantation that was situated on clay soil over porous regime seems to be about 30 °C day and 25 °C night (Liengsiri limestone averaged 1.3 m in height 14 months after outplanti- and Hellum 1988). ng (Francis 1989c). Seedlings intended for ornamental use are Lightly covered with a high-organic potting mix in ger- often grown in 12- to 20-L plastic pots until they reach 2 to 3 mination trays or beds, the seeds begin to grow through the m in height before outplanting. P 674 Part II—Species Descriptions • Pterocarpus macrocarpus Kurz P Part II—Species Descriptions • Pterocarpus macrocarpus Kurz 675.
Recommended publications
  • Challenges of Conservation and Sustainable Management of African Rosewood (Pterocarpus Erinaceus) in West Africa
    Chapter Challenges of Conservation and Sustainable Management of African Rosewood (Pterocarpus erinaceus) in West Africa Adjonou Kossi, Houetchegnon Towanou, Rabiou Habou, Segla Kossi Novinyo, Abotsi Komla Elikplim, Johnson Benziwa Nathalie, Alaba Pyoabalo, Ouinsavi Christine A.I. Nougbodé, Quashie Akossiwoa Marie-Luce, Kokutse Adzo Dzifa, Mahamane Ali and Kokou Kouami Abstract Pterocarpus erinaceus is an endemic and threatened plant species in arid and semiarid zones of West Africa and is highly exploited for timber, animal feeding, and various medicinal uses. The species is currently native to the Guinean forest- savannah mosaic ecoregion and reported from Senegal to Cameroon. The values of the main characteristics of the P. erinaceus forest stands (density, average diameter, À average height and average stem height) vary significantly (P < 10 3) from the Guinean zone to the Sahelian zone. It has high technological performance and can be classified as heavy and very hard wood with a density of the order of 0.80 Æ 0.07 g/cm3 and an average hardness of 12 Æ 3.7 g/cm3. The species is the subject of large-scale international traffic between West Africa and Asia, which is by far the greatest threat to the species. The various uses induce repeated mutilation and increase pressures on the species resulting in a significant reduction in its natural populations. In response to this situation, measures are proposed, including large-scale plant production strategies, the definition of minimum felling diameters, policy measures, etc., to meet the restoration needs of natural stands of P. erinaceus and the fight against climate change. Keywords: Pterocarpus erinaceus, socioeconomic services, wood properties, uncontrolled logging, sustainable management, West Africa 1.
    [Show full text]
  • Complete Index of Common Names: Supplement to Tropical Timbers of the World (AH 607)
    Complete Index of Common Names: Supplement to Tropical Timbers of the World (AH 607) by Nancy Ross Preface Since it was published in 1984, Tropical Timbers of the World has proven to be an extremely valuable reference to the properties and uses of tropical woods. It has been particularly valuable for the selection of species for specific products and as a reference for properties information that is important to effective pro- cessing and utilization of several hundred of the most commercially important tropical wood timbers. If a user of the book has only a common or trade name for a species and wishes to know its properties, the user must use the index of common names beginning on page 451. However, most tropical timbers have numerous common or trade names, depending upon the major region or local area of growth; furthermore, different species may be know by the same common name. Herein lies a minor weakness in Tropical Timbers of the World. The index generally contains only the one or two most frequently used common or trade names. If the common name known to the user is not one of those listed in the index, finding the species in the text is impossible other than by searching the book page by page. This process is too laborious to be practical because some species have 20 or more common names. This supplement provides a complete index of common or trade names. This index will prevent a user from erroneously concluding that the book does not contain a specific species because the common name known to the user does not happen to be in the existing index.
    [Show full text]
  • Fruits and Seeds of Genera in the Subfamily Faboideae (Fabaceae)
    Fruits and Seeds of United States Department of Genera in the Subfamily Agriculture Agricultural Faboideae (Fabaceae) Research Service Technical Bulletin Number 1890 Volume I December 2003 United States Department of Agriculture Fruits and Seeds of Agricultural Research Genera in the Subfamily Service Technical Bulletin Faboideae (Fabaceae) Number 1890 Volume I Joseph H. Kirkbride, Jr., Charles R. Gunn, and Anna L. Weitzman Fruits of A, Centrolobium paraense E.L.R. Tulasne. B, Laburnum anagyroides F.K. Medikus. C, Adesmia boronoides J.D. Hooker. D, Hippocrepis comosa, C. Linnaeus. E, Campylotropis macrocarpa (A.A. von Bunge) A. Rehder. F, Mucuna urens (C. Linnaeus) F.K. Medikus. G, Phaseolus polystachios (C. Linnaeus) N.L. Britton, E.E. Stern, & F. Poggenburg. H, Medicago orbicularis (C. Linnaeus) B. Bartalini. I, Riedeliella graciliflora H.A.T. Harms. J, Medicago arabica (C. Linnaeus) W. Hudson. Kirkbride is a research botanist, U.S. Department of Agriculture, Agricultural Research Service, Systematic Botany and Mycology Laboratory, BARC West Room 304, Building 011A, Beltsville, MD, 20705-2350 (email = [email protected]). Gunn is a botanist (retired) from Brevard, NC (email = [email protected]). Weitzman is a botanist with the Smithsonian Institution, Department of Botany, Washington, DC. Abstract Kirkbride, Joseph H., Jr., Charles R. Gunn, and Anna L radicle junction, Crotalarieae, cuticle, Cytiseae, Weitzman. 2003. Fruits and seeds of genera in the subfamily Dalbergieae, Daleeae, dehiscence, DELTA, Desmodieae, Faboideae (Fabaceae). U. S. Department of Agriculture, Dipteryxeae, distribution, embryo, embryonic axis, en- Technical Bulletin No. 1890, 1,212 pp. docarp, endosperm, epicarp, epicotyl, Euchresteae, Fabeae, fracture line, follicle, funiculus, Galegeae, Genisteae, Technical identification of fruits and seeds of the economi- gynophore, halo, Hedysareae, hilar groove, hilar groove cally important legume plant family (Fabaceae or lips, hilum, Hypocalypteae, hypocotyl, indehiscent, Leguminosae) is often required of U.S.
    [Show full text]
  • Wood Research Effect of Heat Treatment and Wax
    WOOD RESEARCH doi.org/10.37763/wr.1336-4561/65.6.963974 65 (6): 2020 963-974 EFFECT OF HEAT TREATMENT AND WAX IMPREGNATION ON DIMENSIONAL STABILITY OF PTEROCARPUS MACROCARPUS WOOD Lin Yang1,2, Tianqi Han1, Yudong Fu1 1Nanjing Forestry University China 2Northeast Forestry University China (Received March 2020) ABSTRACT In order to improve dimensional stability and control deformation, heat treatment (HT) and wax impregnation (WI) were conducted to large size boards (LB) of Pterocarpus macrocarpus and the tangential swelling were compared in various relative humidity (RH) conditions. The results show that the tangential swelling and shrinking of control group and treated group performed differently corresponded to various relative humidity (RH). Comparing with control group, the swelling ratio of HT combined WI group was much less, and followed by 180°C-3h HT group. The maximum swelling ratio decreased by 31% and 29% in humidity chamber and indoor conditions respectively. The swelling ratio was affected by size of samples, LB showed smaller welling ratio than small sample. Wax filled in cell cavities and presented uneven distributions after impregnation. The rate of wood hygroscopicity was reduced after HT combined WI treatment which was an effective method on improvement of wood dimensional stability. KEYWORDS: Pterocarpus macrocarpus, heat treatment, wax impregnation, dimensional stability, modification. INTRODUCTION Pterocarpus macrocarpus mainly grows in Myanmar, Laos and Thailand, belonging to the butterfly-shaped flower Pterocarpus, Rosewood mahogany (Azratul et al. 2017), which is categorized as a red Suanzhimu class in China national standard— “Hongmu” (GB/T18107- 2017). Pterocarpus macrocarpus has straight trunk, branches few and it is excellent wood tree species.
    [Show full text]
  • Germination and Salinity Tolerance of Seeds of Sixteen Fabaceae Species in Thailand for Reclamation of Salt-Affected Lands
    BIODIVERSITAS ISSN: 1412-033X Volume 21, Number 5, May 2020 E-ISSN: 2085-4722 Pages: 2188-2200 DOI: 10.13057/biodiv/d210547 Germination and salinity tolerance of seeds of sixteen Fabaceae species in Thailand for reclamation of salt-affected lands YONGKRIAT KU-OR1, NISA LEKSUNGNOEN1,2,♥, DAMRONGVUDHI ONWIMON3, PEERAPAT DOOMNIL1 1Department of Forest Biology, Faculty of Forestry, Kasetsart University. 50 Phahonyothin Rd, Lat yao, Chatuchak, Bangkok 10900, Thailand 2Center for Advanced Studies in Tropical Natural Resources, National Research University, Kasetsart University. 50 Phahonyothin Rd, Lat yao, Chatuchak, Bangkok 10900, Thailand. ♥email: [email protected] 3Department of Agronomy, Faculty of Agriculture, Kasetsart University. 50 Phahonyothin Rd, Lat Yao, Chatuchak, Bangkok 10900, Thailand. Manuscript received: 26 March 2020. Revision accepted: 24 April 2020. Abstract. Ku-Or Y, Leksungnoen N, Onwinom D, Doomnil P. 2020. Germination and salinity tolerance of seeds of sixteen Fabaceae species in Thailand for reclamation of salt-affected lands. Biodiversitas 21: 2188-2200. Over the years, areas affected by salinity have increased dramatically in Thailand, resulting in an urgent need for reclamation of salt-affected areas using salinity tolerant plant species. In this context, seed germination is an important process in plant reproduction and dispersion. This research aimed to study the ability of 16 fabaceous species to germinate and tolerate salt concentrations of at 6 different levels (concentration of sodium chloride solution, i.e., 0, 8, 16, 24, 32, and 40 dS m-1). The germination test was conducted daily for 30 days, and parameters such as germination percentage, germination speed, and germination synchrony were calculated. The electrical conductivity (EC50) was used to compare the salt-tolerant ability among the 16 species.
    [Show full text]
  • Mozambique's Charcoals: Anatomy of Nine Native Species
    BOSQUE 36(1): 105-112, 2015 DOI: 10.4067/S0717-92002015000100011 Mozambique’s charcoals: anatomy of nine native species Carbones de Mozambique: anatomía de nueve especies nativas Cláudio Manuel Ismael Afonso a, Thaís Alves Pereira Gonçalves b, Graciela Inés Bolzon de Muñiz c, Jorge Luis Monteiro de Matos c, Silvana Nisgoski c* a Ministry of Agriculture, National Directorate of Land and Forestry, Av. Josina Machel, 537, Maputo, Mozambique, Africa. b Federal University of Parana, Doctoral Student of Forest Engineering. Av. Pref. Lothário Meissner, 632, Jardim Botânico, 80.210-170, Curitiba, PR, Brazil. *Corresponding author: c Federal University of Parana, Department of Forest Engineering and Technology, Av. Pref. Lothário Meissner, 632, Jardim Botânico, 80.210-170, phone: (55) 41 – 3360-4275, Curitiba, PR, Brazil, [email protected] SUMMARY Most of the charcoal commercially produced in Mozambique is from natural forests, including high value species. This production often negatively affects the environment and one of the main reasons is the lack of sustainable forest management techniques. To facilitate forest control, we characterize the anatomy properties of charcoal made from Afzelia quanzensis, Amblygonocarpus andongensis, Combretum imberbe, Dalbergia melanoxylon, Guibourtia conjugata, Khaya nyasica, Millettia stuhlmannii, Pterocarpus angolensis and Swartzia madagascariensis. All these species possess high commercial value. The samples were carbonized at 450 °C for 1 h. Some shrinkage-related ruptures were present in charcoals, but the structure kept good definition of the cells features and did not influence the distinction of the species. The propagation of this knowledge would relieve pressure on valuable species and may also help with control of the charcoal supply chain.
    [Show full text]
  • An Investigation on Some Physical and Mechanical Properties of Plantation Grown Paduak
    GOVERNMENT OF THE UNION OF MYANMAR MINISTRY OF FORESTRY FOREST DEPARTMENT An Investigation on Some Physical and Mechanical Properties of Plantation Grown Paduak Thandar Aye Asst. Lecturer University of Forestry Prof. Win Kyi-1 University of Forestry Khin Maung Sint Asst. Manager Myanma Timber Enterprise November, 2007 Contents Page pmwrf;tusOf;csKyf i Abstract ii 1. Introduction 1 2. Literature Review 4 3. Materials and Methods 5 4. Results and Discussion 10 5. Conclusions and Recommendations 41 References - i - pkdufcif;ydawmuf\ ½lyESihf tiftm;qkdif&m *kPfowdåtcsKdUudk prf;oyfavhvmjcif; oEÅmat;? M.Sc. (Physcis); M.Sc. (Wood Tech.) vufaxmufuxdu &lyaA'Xme? opfawmwuúodkvf/ ygarmu©OD;0if;Munf(1)? B.Sc.(Hons) D.S.; M.S. (Virginia Tech.) opfawmwuúokdvf ESifh cifarmifqifh? B.Sc. (For.); M.Sc. (Goettingen) vufaxmufrefae*sm? jrefrmhopfvkyfief;/ pmwrf;tusOf;csKyf ,ckokawoevkyfief;wGif (22) ESpfom; ydawmufpkdufcif;rS yifMuyfEIwfrnhf tyifrsm; teuf ydawmufyif (10) yifudk usyef;a&G;cs,fí prf;oyfxm;jcif;jzpfygonf/ tqdkyg ydawmufpdkufcif;onf wyfukef;NrdKUe,f? &rnf;oif;c&dkif? rEÅav;wkdif;&Sd ivdkufBuKd;0kdif; uGuftrSwf (72)wGif wnf&Sdygonf/ ckwfvJprf;oyfcJhonfh opfyif (10)yif\ ysrf;rQ &ifpkdY vkH;ywfESifh ysrf;rQtjrifhonf 0.78rDwm (2.53ay) ESifh 20.09rDwm (65.09ay) toD;oD; &SdMu ygonf/ odyfonf;jcif;? a&csdefodyfonf;q? usKHUrIESifh ykHo@efwnfNrJrI ponfh &ly *kPfowdå tcsKdUESifh wnfNidrfauG;nTwftm;? zdcHEdkiftm;ESifh rmausmrIponfh tiftm;qdkif&m *kPfowdå tcsKdUudk a&qif;? opfawmokawoeXme? opf*kPfowdåESifhtokH;csrIXmepk&Sd opf&lyESihf opftiftm; "gwfcJGcef;rsm;wGif
    [Show full text]
  • Pharmacological Profile of Pterocarpus Marsupium with a Note on Its Therapeutic Activity: a Review
    ISSN 2395-3411 Available online at www.ijpacr.com 32 ______________________________________________________________Review Article Pharmacological Profile of Pterocarpus marsupium with a note on its Therapeutic Activity: A Review Abhishek N* and Karunakar Hegde Department of Pharmacology, Srinivas College of Pharmacy, Valachil, Post- Farangipete, Mangalore- 574 143, Karnataka, India. _________________________________________________________________________ ABSTRACT Pterocarpus marsupium (Leguminosae), commonly known as Bijayasara or Asana in Bengali, Bijasal in Hindi, Indian kino or Malabar kino in English, is a large deciduous tree widely distributed in the central, Western and Southern regions of India. It is an important medicinal plant of Indian traditional system of medicines and has been used in India for several medicinal purposes. It is a good source of tannins and hence used as powerful astringent, cooling, constipating, anodyne, alternant, rejuvenating agent and also in treatment of fractures, bruises, leprosy, leucoderma, diarrhea and dysentery, passive haemorrhage, toothache and in diabetes. It is also used as anti-inflammatory, anthelmintic, analgesic and in treatment of indigestion, diabetic anaemia, gout, Rheumatoid arthritis, cough, asthma, bronchitis, greyness of hair, elephantiasis, erysipelas, urethrorrhea and ophthalmic complications. This paper reports on its pharmacognostic properties such as antidiabetic, antioxidant, analgesic, antibacterial, hepato-protective, anti-inflammatory and memory enhancing activities of
    [Show full text]
  • A Study on Usefulness of Some Woody Plants in Mon State.Pdf (5491
    Univcnities Research Journal 2008, Vol. I, No. 1 Universities Research Jouma120Q8 VoLl, No. 1 Editorial Board Editors in Chief Prof. Dr. Kyaw Kyaw Khaung, Head ofDepartment of Botany, University ofYangon Prof. Dr. Aye Phay, Department ofBotany, University ofYangon Prof. Dr. Nu Nu Yi, Department ofBotany, University ofMandalay Editors Prof. Maung Maung Myint, Head of Department of Botany, University of Mawlamyine Prof. Aye Pwa, Head ofDepartment 'of Botany, University of'Patnein Prof. Daw Sam Khing, Head of' Department of BOtany, University of Sittway Prof. Dr. Than Than Htay, Head of Department of Botany, University of Taungoo Prof. Khin Po Po. Head ofDepartment ofBotany, University of'Pyay Daw Mar Mar Aung, Head ofDepartment ofBotany, University ofDawei Prof. Dr. Thandar 00, Head of Department of Botany, University of West Yangon 'Prof. Dr. San Aye, Head ofDepartment ofBotany, University of'Hinthada Prof. Daw Marlar, Head ofDepartment ofBotany. University ofMyeik Prof. Dr. Hla Hla Tin, Head ofDepartment ofBotany, University ofBago Prof. Dr. Khin Thidar, Head of Department of Botany, University of Mandalay Prof. Dr. Vee Vee Win, Head of Department of Botany, University of Taunggyi . Prof. May Than Su, Head ofDepartment ofBotany, University ofMagway Universities Research louma12008, Vol. 1, No.1 Prof. Daw Thai Thai Aye, Head of Department of Botany, University of Yadanabon Prof. DawTin Ye, Head ofDepartrnent ofBotany, University ofMeiktila Prof. Nay Win, Head ofDepartment ofBotany, UniversityofKyaukse Prof. U Aung Myint Thein, Head of Department of Botany, University of Kalay Prof. Swe Mar Tin, Head ofDepartment of Botany, University ofLashio Asso. Prof. Dr. San San Aye, Head ofDepartment ofBotany, University of Kyainge Tong Universities Research Journal 2008, Vol.
    [Show full text]
  • Wood and Paper-Based Products
    Wood and www.SustainableForestProds.org Paper-Based Products Sustainable Procurement of Sustainable Procurement of Wood and Guide and resource kit Paper-based Products World Business Council for Sustainable Development – WBCSD Guide and resource kit Chemin de Conches 4, 1231 Conches-Geneva, Switzerland Version 2 Update June 2011 Tel: (41 22) 839 31 00, Fax: (41 22) 839 31 31, E-mail: [email protected], Web: www.wbcsd.org VAT nr. 644 905 WBCSD US, Inc. 1500 K Street NW, Suite 850, Washington, DC 20005, US Tel: +1 202 383 9505, E-mail: [email protected] World Resources Institute – WRI 10 G Street, NE (Suite 800), Washington DC 2002, United States Tel: (1 202) 729 76 00, Fax: (1 202) 729 76 10, E-mail: [email protected], Web: www.wri.org www.SustainableForestProds.org Sourcing and legality aspects Origin Where do the products come from? Information accuracy Is information about the products credible? Legality Have the products been legally produced? Environmental aspects Social aspects Sustainability Local communities Have forests been sustainably and indigenous peoples managed? Have the needs of local communities or indigenous peoples Special places been addressed? Have special places, including sensitive ecosystems, been protected? Climate change Have climate issues been addressed? Environmental protection Have appropriate environmental controls been applied? Recycled fiber Has recycled fiber been used appropriately? Other resources Have other resources been used appropriately? Contributing Authors Partnership Disclaimer Disclaimer Ordering
    [Show full text]
  • Pterocarpus Indicus (Narra)
    April 2006 Species Profiles for Pacific Island Agroforestry ver. 2.1 www.traditionaltree.org Pterocarpus indicus (narra) Fabaceae (legume family) bluwota (Vanuatu); liki (Solomon Islands); narra, amboyna, rosewood, Burmese rosewood (trade names); narra, rosewood (English); New Guinea rosewood (Papua New Guinea); pinati (Samoa); santal rouge amboine (French) Lex A. J. Thomson IN BRIEF Distribution Native to Southeast and East homson Asia and to the northern and southwest Pa- t L. cific region; now distributed widely through- out the tropics. photo: Size Typically reaches 25–35 m (82–115 ft) in height with a broad canopy when grown in the open. Habitat Grows at elevations of 1–1300 m (3.3– 4300 ft) with annual rainfall of 1300–4000 mm (50–160 in). Vegetation Thrives best in riverine, closed, and secondary forests. Soils Adapted to a range of soils, growing best on deep, fertile, loamy, alluvial soils. Growth rate In optimal conditions, height growth may be 2 m/yr (6.6 ft/yr) for the first 3–4 years, slowing to about 1 m/yr (3.3 ft/yr) thereafter. Main agroforestry uses Soil stabilization, windbreaks, ornamental. Main products Timber. Yields Estimated at 5–10 m3/ha/yr (72–144 ft3/ac/yr) over a 30–40 year rotation, on opti- mal sites. Intercropping Planted as boundary and windbreak around food crops or as a living fence around pastures. Large tree, Invasive potential Has limited potential to Thurston Gar- dens, Fiji. invade undisturbed native plant communities. INTRODUCTION including southern Myanmar, Cambodia, southern China, Vietnam, Philippines, Brunei, Malaysia, and Indonesia. It Narra (Pterocarpus indicus) is a briefly deciduous, majes- extends east to the northern Pacific (Ryukyu Islands/Japan, tic tree typically growing to 25–35 m (82–115 ft) in height.
    [Show full text]
  • FSC Public Search
    CERTIFICATE Information from 2018/08/28 - 14:26 UTC Certificate Code CU-COC-816023 License Code FSC-C102167 MAIN ADDRESS Name Timber Link International Ltd. Address The Timber Office,Hazelwood Cottage,Maidstone Road,Hadlow Tonbridge TN11 0JH Kent UNITED KINGDOM Website http://www.timberlinkinternational.com CERTIFICATE DATA Status Valid First Issue Date 2010-10-16 Last Issue Date 2017-01-12 Expiry Date 2022-01-11 Standard FSC-STD-40-004 V3-0 GROUP MEMBER/SITES No group member/sites found. PRODUCTS Product Trade Species Primary Secondary Main Type Name Activity Activity Output Category W5 Solid Acer spp.; Alnus rubra var. pinnatisecta Starker; Alnus brokers/traders FSC wood serrulata; Apuleia leiocarpa; Betula spp.; Castanea sativa without physical Mix;FSC (sawn, P.Mill.; Cedrela odorata; Cedrus libani A. Rich.; Chlorocardium posession 100% chipped, rodiei (R.Schomb.) R.R.W.; Cylicodiscus gabunensis (Taub.) peeled) Harms; Dicorynia guianensis Amsh., D. paraensis Benth.; W5.2 Solid Dipterocarpus spp; Dipteryx odorata; Dryobalanops spp.; wood Dyera costulata (Miq.) Hook.f.; Entandrophragma cylindricum; boards Entandrophragma spp.; Entandrophragma utile; Eucalyptus spp; Fagus sylvatica L.; Fraxinus excelsior; Fraxinus americana; Gonystylus bancanus; Guibourtia spp.; Hymenaea courbaril; Intsia bijuga; Juglans nigra L.; Juglans regia L.; Khaya spp.; Larix sibirica; Liriodendron tulipifera L.; Lophira alata; Manilkara bidentata (A.DC.) A.Chev.; Microberlinia spp.; Milicia excelsa; Millettia laurentii; Nauclea diderrichii; Parashorea spp. (Urat mata, white seraya, gerutu); Peltogyne spp.*; Pinus rigida; Platanus occidentalis L; Prunus avium; Prunus serotina Ehrh.; Pseudotsuga menziesii; Pterocarpus soyauxii; Quercus alba; Quercus petraea; Quercus robur; Robinia pseudoacacia L.; Shorea balangeran; Shorea laevis Ridl.; Shorea spp.; Swietenia macrophylla; Tabebuia spp.; Tectona grandis; Terminalia ivorensis A.
    [Show full text]