Linear Algebra

Total Page:16

File Type:pdf, Size:1020Kb

Linear Algebra LINEAR ALGEBRA T.K.SUBRAHMONIAN MOOTHATHU Contents 1. Vector spaces and subspaces 2 2. Linear independence 5 3. Span, basis, and dimension 7 4. Linear operators 11 5. Linear functionals and the dual space 15 6. Linear operators = matrices 18 7. Multiplying a matrix left and right 22 8. Solving linear equations 28 9. Eigenvalues, eigenvectors, and the triangular form 32 10. Inner product spaces 36 11. Orthogonal projections and least square solutions 39 12. Unitary operators: they preserve distances and angles 43 13. Orthogonal diagonalization of normal and self-adjoint operators 46 14. Singular value decomposition 50 15. Determinant of a square matrix: properties 51 16. Determinant: existence and expressions 54 17. Minimal and characteristic polynomials 58 18. Primary decomposition theorem 61 19. The Jordan canonical form (JCF) 65 20. Trace of a square matrix 71 21. Quadratic forms 73 Developing effective techniques to solve systems of linear equations is one important goal of Linear Algebra. Our study of Linear Algebra will proceed through two parallel roads: (i) the theory of linear operators, and (ii) the theory of matrices. Why do we say parallel roads? Well, here is an illustrative example. Consider the following system of linear equations: 1 2 T.K.SUBRAHMONIAN MOOTHATHU 2x1 + 3x2 = 7 4x1 − x2 = 5. 2 We are interested in two questions: is there a solution (x1; x2) 2 R to the above? and if there is a solution, is the solution unique? This problem can be formulated in two other ways: 2 2 First reformulation: Let T : R ! R be T (x1; x2) = (2x1 + 3x2; 4x1 − x2). Does (7; 5) belong to the range of T ? and if so, is the pre-image T −1(7; 5) a singleton? 2 3 2 3 2 3 7 Second reformulation: Let A = 4 5 and Y = 4 5. Does there exist a real matrix 4 −1 5 2 3 x1 X = 4 5 such that AX = Y ? and if so, is X unique? x2 The first reformulation is in terms of a linear operator T and the second reformulation is in terms of a matrix A. Often, a statement in terms of linear operators has an equivalent version in terms of matrices, and vice versa. That is why we say the two theories are parallel roads. A student may keep the following challenge in mind throughout the course. When you encounter a result about linear operators, see whether you can formulate a corresponding result about matrices, and vice versa. If you are successful in translating the result, try to provide a proof also. 1. Vector spaces and subspaces We assume that the student has an elementary knowledge of groups and fields, and some famil- iarity with addition and multiplication of matrices (excluding the theory of determinants). Definition: Let F be a field. An abelian group (V; +) is said to be a vector space over F if there is a map ∗ : F × V ! V called scalar multiplication satisfying the following: (i) 1 ∗ v = v for every v 2 V , where 1 is the multiplicative identity of the field F . (ii) c ∗ (d ∗ v) = (cd) ∗ v for every v 2 V and c; d 2 F . (iii) (c + d) ∗ v = c ∗ v + d ∗ v for every v 2 V and c; d 2 F . (iv) c ∗ (u + v) = c ∗ u + c ∗ v for every u; v 2 V and c 2 F . Elements of V are called vectors and elements of F are called scalars. Remark: In the above, if F = R, then V is said to be a real vector space; and if F = C, then V is said to be a complex vector space. Example: (i) If F is a field and n 2 N, then F n is a vector space over F with respect to the coordinatewise operations given as (x1; : : : ; xn) + (y1; : : : ; yn) = (x1 + y1; : : : ; xn + yn) and n n c(x1; : : : ; xn) = (cx1; : : : ; cxn). In particular, R is a real vector space, and C is a complex vector LINEAR ALGEBRA 3 space. Also F 0 := f0g is a vector space over F . (ii) If F is a subfield of a field K, then K is a vector space over F under the natural operations. For instance, R is a vector space over Q, and C is a vector space over R. (iii) If F is a field, then the polynomial ring fall polynomials with coefficients in F g is a vector space over F under the operations (f + g)(x) = f(x) + g(x) and (cf)(x) = cf(x). Remark: Linear Algebra is mainly concerned with finite dimensional vector spaces. Later we will see that any finite dimensional vector space over a field F is isomorphic to F n for some n ≥ 0. If (G; +) is an abelian group and c 2 G, then we can define nc 2 G for any n 2 Z by the following rules: 0 · c := 0, 1 · c = c,(n + 1) · c := n · c + c and (−n) · c := n · (−c) for n 2 N. Exercise-1: Let V be a vector space over a field F , and let v 2 V , c 2 F . Then, (i) 0 ∗ v = 0 2 V and (−1) ∗ v = −v. More generally, (nc) ∗ v = c ∗ (nv) for every n 2 Z. (ii) If v =6 0 and c ∗ v = 0 2 V , then c = 0 2 F .[Hint: (i) 0 ∗ v = (0 + 0) ∗ v = 0 ∗ v + 0 ∗ v and use the cancellation law in the group (V; +). Next, 0 = 0 ∗ v = (1 + (−1)) ∗ v. (ii) Multiply by c−1.] Remark: From now onwards we drop the ∗ symbol and just write cv instead of c ∗ v. Also it is convenient to use the following notations: if V is a vector space over a field F , v 2 V , and W; Z ⊂ V , let F v = fcv : c 2 F g, v + W = fv + w : w 2 W g, FW = fcw : c 2 F; w 2 W g, and W + Z = fw + z : w 2 W; z 2 Zg. In particular, we have W + W = fw1 + w2 : w1; w2 2 W g. Next we talk about ways to form new vector spaces. In Group Theory, three easy methods to produce new groups are: take subgroups, form quotient groups, and form the product of some groups. Similarly, in Linear Algebra, three easy methods to produce new vector spaces are: take vector subspaces, form quotient vector spaces, and form the product of some vector spaces. Definition: Let (V; +) be a vector space over a field F . A subgroup W of (V; +) is said to be a vector subspace of V if FW ⊂ W . Generally, we will use the equivalent condition (ii) given below. Exercise-2: Let (V; +) be a vector space over a field F and W ⊂ V be a nonempty set. Then the following are equivalent: (i) W is a vector subspace of V . (ii) W + W ⊂ W and FW ⊂ W , i.e., w1 + w2 2 W and cw1 2 W for every w1; w2 2 W and c 2 F . (iii) FW + W ⊂ W , i.e., cw1 + w2 2 W for every w1; w2 2 W and c 2 F . (iv) FW + FW ⊂ W , i.e., cw1 + dw2 2 W for every w1; w2 2 W and c; d 2 F . Example: Any line passing through the origin and any plane containing the origin are proper vector subspaces of R3. The remaining vector subspaces of R3 are the trivial ones, f0g and R3. Exercise-3: Let V is a vector space over a field F . Then, 4 T.K.SUBRAHMONIAN MOOTHATHU (i) If v 2 V , then F v is a vector subspace of V . (ii) The intersection of any collection of vector subspaces of V is again a vector subspace of V . What about the union? (iii) If W1;:::;Wn ⊂ V are vector subspaces of V , then W1 + ··· + Wn is a vector subspace of V . In finite dimension, vector subspaces are related to homogeneous systems of linear equations, whereas various function spaces have infinite dimensional vector subspaces; see below. Definition: Let F be a field and consider a system of m linear equations in n variables over F (here, `over F ' means the constants aij; yi below are from F ): a11x1 + ··· + a1nxn = y1 a21x1 + ··· + a2nxn = y2 . a x + ··· + a x = y . m1 1 mn n m 2 3 2 3 6x17 6 y1 7 6 7 6 7 6 . 7 6 . 7 In matrix form, this is AX = Y , where A = [aij]m×n, X = 4 . 5, and Y = 4 . 5. Often it is xn ym n m convenient to make the identifications X ∼ x = (x1; : : : ; xn) 2 F and Y ∼ y = (y1; : : : ; ym) 2 F . Then we may write Ax = y for AX = Y . The set fx 2 F n : Ax = yg is the solution space of the system AX = Y . The system AX = Y is homogeneous if Y = 0, and non-homogeneous if Y =6 0. Example:[Finite dimensional] Let F be a field and AX = 0 be a homogeneous system of m linear equations in n variables over F . Verify that the solution space W := fx 2 F n : Ax = 0g is a vector subspace of F n. Later we will see that every vector subspace of F n is of this form. A general principle: We are yet to define dimension, but the following remark can be kept in mind. Typically (but not always) each linear equation reduces the dimension of the solution space by 1. If AX = 0 is a homogeneous system of m linear equations in n variables over a field F , and if m ≤ n, then typically (but not always) the solution space W will have dimension n − m.
Recommended publications
  • Modeling, Inference and Clustering for Equivalence Classes of 3-D Orientations Chuanlong Du Iowa State University
    Iowa State University Capstones, Theses and Graduate Theses and Dissertations Dissertations 2014 Modeling, inference and clustering for equivalence classes of 3-D orientations Chuanlong Du Iowa State University Follow this and additional works at: https://lib.dr.iastate.edu/etd Part of the Statistics and Probability Commons Recommended Citation Du, Chuanlong, "Modeling, inference and clustering for equivalence classes of 3-D orientations" (2014). Graduate Theses and Dissertations. 13738. https://lib.dr.iastate.edu/etd/13738 This Dissertation is brought to you for free and open access by the Iowa State University Capstones, Theses and Dissertations at Iowa State University Digital Repository. It has been accepted for inclusion in Graduate Theses and Dissertations by an authorized administrator of Iowa State University Digital Repository. For more information, please contact [email protected]. Modeling, inference and clustering for equivalence classes of 3-D orientations by Chuanlong Du A dissertation submitted to the graduate faculty in partial fulfillment of the requirements for the degree of DOCTOR OF PHILOSOPHY Major: Statistics Program of Study Committee: Stephen Vardeman, Co-major Professor Daniel Nordman, Co-major Professor Dan Nettleton Huaiqing Wu Guang Song Iowa State University Ames, Iowa 2014 Copyright c Chuanlong Du, 2014. All rights reserved. ii DEDICATION I would like to dedicate this dissertation to my mother Jinyan Xu. She always encourages me to follow my heart and to seek my dreams. Her words have always inspired me and encouraged me to face difficulties and challenges I came across in my life. I would also like to dedicate this dissertation to my wife Lisha Li without whose support and help I would not have been able to complete this work.
    [Show full text]
  • Linear Independence, Span, and Basis of a Set of Vectors What Is Linear Independence?
    LECTURENOTES · purdue university MA 26500 Kyle Kloster Linear Algebra October 22, 2014 Linear Independence, Span, and Basis of a Set of Vectors What is linear independence? A set of vectors S = fv1; ··· ; vkg is linearly independent if none of the vectors vi can be written as a linear combination of the other vectors, i.e. vj = α1v1 + ··· + αkvk. Suppose the vector vj can be written as a linear combination of the other vectors, i.e. there exist scalars αi such that vj = α1v1 + ··· + αkvk holds. (This is equivalent to saying that the vectors v1; ··· ; vk are linearly dependent). We can subtract vj to move it over to the other side to get an expression 0 = α1v1 + ··· αkvk (where the term vj now appears on the right hand side. In other words, the condition that \the set of vectors S = fv1; ··· ; vkg is linearly dependent" is equivalent to the condition that there exists αi not all of which are zero such that 2 3 α1 6α27 0 = v v ··· v 6 7 : 1 2 k 6 . 7 4 . 5 αk More concisely, form the matrix V whose columns are the vectors vi. Then the set S of vectors vi is a linearly dependent set if there is a nonzero solution x such that V x = 0. This means that the condition that \the set of vectors S = fv1; ··· ; vkg is linearly independent" is equivalent to the condition that \the only solution x to the equation V x = 0 is the zero vector, i.e. x = 0. How do you determine if a set is lin.
    [Show full text]
  • Sometimes Only Square Matrices Can Be Diagonalized 19
    PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY Volume 52, October 1975 SOMETIMESONLY SQUARE MATRICESCAN BE DIAGONALIZED LAWRENCE S. LEVY ABSTRACT. It is proved that every SQUARE matrix over a serial ring is equivalent to some diagonal matrix, even though there are rectangular matri- ces over these rings which cannot be diagonalized. Two matrices A and B over a ring R are equivalent if B - PAQ for in- vertible matrices P and Q over R- Following R. B. Warfield, we will call a module serial if its submodules are totally ordered by inclusion; and we will call a ring R serial it R is a direct sum of serial left modules, and also a direct sum of serial right mod- ules. When R is artinian, these become the generalized uniserial rings of Nakayama LE-GJ- Note that, in serial rings, finitely generated ideals do not have to be principal; for example, let R be any full ring of lower triangular matrices over a field. Moreover, it is well known (and easily proved) that if aR + bR is a nonprincipal right ideal in any ring, the 1x2 matrix [a b] is not equivalent to a diagonal matrix. Thus serial rings do not have the property that every rectangular matrix can be diagonalized. 1. Background. Serial rings are clearly semiperfect (P/radR is semisim- ple artinian and idempotents can be lifted modulo radP). (1.1) Every indecomposable projective module over a semiperfect ring R is S eR for some primitive idempotent e of R. (See [M].) A double-headed arrow -» will denote an "onto" homomorphism.
    [Show full text]
  • Discover Linear Algebra Incomplete Preliminary Draft
    Discover Linear Algebra Incomplete Preliminary Draft Date: November 28, 2017 L´aszl´oBabai in collaboration with Noah Halford All rights reserved. Approved for instructional use only. Commercial distribution prohibited. c 2016 L´aszl´oBabai. Last updated: November 10, 2016 Preface TO BE WRITTEN. Babai: Discover Linear Algebra. ii This chapter last updated August 21, 2016 c 2016 L´aszl´oBabai. Contents Notation ix I Matrix Theory 1 Introduction to Part I 2 1 (F, R) Column Vectors 3 1.1 (F) Column vector basics . 3 1.1.1 The domain of scalars . 3 1.2 (F) Subspaces and span . 6 1.3 (F) Linear independence and the First Miracle of Linear Algebra . 8 1.4 (F) Dot product . 12 1.5 (R) Dot product over R ................................. 14 1.6 (F) Additional exercises . 14 2 (F) Matrices 15 2.1 Matrix basics . 15 2.2 Matrix multiplication . 18 2.3 Arithmetic of diagonal and triangular matrices . 22 2.4 Permutation Matrices . 24 2.5 Additional exercises . 26 3 (F) Matrix Rank 28 3.1 Column and row rank . 28 iii iv CONTENTS 3.2 Elementary operations and Gaussian elimination . 29 3.3 Invariance of column and row rank, the Second Miracle of Linear Algebra . 31 3.4 Matrix rank and invertibility . 33 3.5 Codimension (optional) . 34 3.6 Additional exercises . 35 4 (F) Theory of Systems of Linear Equations I: Qualitative Theory 38 4.1 Homogeneous systems of linear equations . 38 4.2 General systems of linear equations . 40 5 (F, R) Affine and Convex Combinations (optional) 42 5.1 (F) Affine combinations .
    [Show full text]
  • Linear Independence, the Wronskian, and Variation of Parameters
    LINEAR INDEPENDENCE, THE WRONSKIAN, AND VARIATION OF PARAMETERS JAMES KEESLING In this post we determine when a set of solutions of a linear differential equation are linearly independent. We first discuss the linear space of solutions for a homogeneous differential equation. 1. Homogeneous Linear Differential Equations We start with homogeneous linear nth-order ordinary differential equations with general coefficients. The form for the nth-order type of equation is the following. dnx dn−1x (1) a (t) + a (t) + ··· + a (t)x = 0 n dtn n−1 dtn−1 0 It is straightforward to solve such an equation if the functions ai(t) are all constants. However, for general functions as above, it may not be so easy. However, we do have a principle that is useful. Because the equation is linear and homogeneous, if we have a set of solutions fx1(t); : : : ; xn(t)g, then any linear combination of the solutions is also a solution. That is (2) x(t) = C1x1(t) + C2x2(t) + ··· + Cnxn(t) is also a solution for any choice of constants fC1;C2;:::;Cng. Now if the solutions fx1(t); : : : ; xn(t)g are linearly independent, then (2) is the general solution of the differential equation. We will explain why later. What does it mean for the functions, fx1(t); : : : ; xn(t)g, to be linearly independent? The simple straightforward answer is that (3) C1x1(t) + C2x2(t) + ··· + Cnxn(t) = 0 implies that C1 = 0, C2 = 0, ::: , and Cn = 0 where the Ci's are arbitrary constants. This is the definition, but it is not so easy to determine from it just when the condition holds to show that a given set of functions, fx1(t); x2(t); : : : ; xng, is linearly independent.
    [Show full text]
  • Span, Linear Independence and Basis Rank and Nullity
    Remarks for Exam 2 in Linear Algebra Span, linear independence and basis The span of a set of vectors is the set of all linear combinations of the vectors. A set of vectors is linearly independent if the only solution to c1v1 + ::: + ckvk = 0 is ci = 0 for all i. Given a set of vectors, you can determine if they are linearly independent by writing the vectors as the columns of the matrix A, and solving Ax = 0. If there are any non-zero solutions, then the vectors are linearly dependent. If the only solution is x = 0, then they are linearly independent. A basis for a subspace S of Rn is a set of vectors that spans S and is linearly independent. There are many bases, but every basis must have exactly k = dim(S) vectors. A spanning set in S must contain at least k vectors, and a linearly independent set in S can contain at most k vectors. A spanning set in S with exactly k vectors is a basis. A linearly independent set in S with exactly k vectors is a basis. Rank and nullity The span of the rows of matrix A is the row space of A. The span of the columns of A is the column space C(A). The row and column spaces always have the same dimension, called the rank of A. Let r = rank(A). Then r is the maximal number of linearly independent row vectors, and the maximal number of linearly independent column vectors. So if r < n then the columns are linearly dependent; if r < m then the rows are linearly dependent.
    [Show full text]
  • The Intersection of Some Classical Equivalence Classes of Matrices Mark Alan Mills Iowa State University
    Iowa State University Capstones, Theses and Retrospective Theses and Dissertations Dissertations 1999 The intersection of some classical equivalence classes of matrices Mark Alan Mills Iowa State University Follow this and additional works at: https://lib.dr.iastate.edu/rtd Part of the Mathematics Commons Recommended Citation Mills, Mark Alan, "The intersection of some classical equivalence classes of matrices " (1999). Retrospective Theses and Dissertations. 12153. https://lib.dr.iastate.edu/rtd/12153 This Dissertation is brought to you for free and open access by the Iowa State University Capstones, Theses and Dissertations at Iowa State University Digital Repository. It has been accepted for inclusion in Retrospective Theses and Dissertations by an authorized administrator of Iowa State University Digital Repository. For more information, please contact [email protected]. INFORMATION TO USERS This manuscript has been reproduced from the microfilm master. UMI films the text directly fi'om the original or copy submitted. Thus, some thesis and dissertation copies are in typewriter face, while others may be from any type of computer printer. The quality of this reproduction is dependent upon the quality of the copy submitted. Broken or indistinct print, colored or poor quality illustrations and photographs, print bleedthrough, substandard margins, and improper alignment can adversely affect reproduction. In the unlikely event that the author did not send UMI a complete manuscript and there are missing pages, these will be noted. Also, if unauthorized copyright material had to be removed, a note will indicate the deletion. Oversize materials (e.g., maps, drawings, charts) are reproduced by sectioning the original, beginning at the upper left-hand comer and continuing firom left to right in equal sections with small overlaps.
    [Show full text]
  • A Review of Matrix Scaling and Sinkhorn's Normal Form for Matrices
    A review of matrix scaling and Sinkhorn’s normal form for matrices and positive maps Martin Idel∗ Zentrum Mathematik, M5, Technische Universität München, 85748 Garching Abstract Given a nonnegative matrix A, can you find diagonal matrices D1, D2 such that D1 AD2 is doubly stochastic? The answer to this question is known as Sinkhorn’s theorem. It has been proved with a wide variety of methods, each presenting a variety of possible generalisations. Recently, generalisations such as to positive maps between matrix algebras have become more and more interesting for applications. This text gives a review of over 70 years of matrix scaling. The focus lies on the mathematical landscape surrounding the problem and its solution as well as the generalisation to positive maps and contains hardly any nontrivial unpublished results. Contents 1. Introduction3 2. Notation and Preliminaries4 3. Different approaches to equivalence scaling5 3.1. Historical remarks . .6 3.2. The logarithmic barrier function . .8 3.3. Nonlinear Perron-Frobenius theory . 12 3.4. Entropy optimisation . 14 3.5. Convex programming and dual problems . 17 3.6. Topological (non-constructive) approaches . 20 arXiv:1609.06349v1 [math.RA] 20 Sep 2016 3.7. Other ideas . 21 3.7.1. Geometric proofs . 22 3.7.2. Other direct convergence proofs . 23 ∗[email protected] 1 4. Equivalence scaling 24 5. Other scalings 27 5.1. Matrix balancing . 27 5.2. DAD scaling . 29 5.3. Matrix Apportionment . 33 5.4. More general matrix scalings . 33 6. Generalised approaches 35 6.1. Direct multidimensional scaling . 35 6.2. Log-linear models and matrices as vectors .
    [Show full text]
  • Math 623: Matrix Analysis Final Exam Preparation
    Mike O'Sullivan Department of Mathematics San Diego State University Spring 2013 Math 623: Matrix Analysis Final Exam Preparation The final exam has two parts, which I intend to each take one hour. Part one is on the material covered since the last exam: Determinants; normal, Hermitian and positive definite matrices; positive matrices and Perron's theorem. The problems will all be very similar to the ones in my notes, or in the accompanying list. For part two, you will write an essay on what I see as the fundamental theme of the course, the four equivalence relations on matrices: matrix equivalence, similarity, unitary equivalence and unitary similarity (See p. 41 in Horn 2nd Ed. He calls matrix equivalence simply \equivalence."). Imagine you are writing for a fellow master's student. Your goal is to explain to them the key ideas. Matrix equivalence: (1) Define it. (2) Explain the relationship with abstract linear transformations and change of basis. (3) We found a simple set of representatives for the equivalence classes: identify them and sketch the proof. Similarity: (1) Define it. (2) Explain the relationship with abstract linear transformations and change of basis. (3) We found a set of representatives for the equivalence classes using Jordan matrices. State the Jordan theorem. (4) The proof of the Jordan theorem can be broken into two parts: (1) writing the ambient space as a direct sum of generalized eigenspaces, (2) classifying nilpotent matrices. Sketch the proof of each. Explain the role of invariant spaces. Unitary equivalence (1) Define it. (2) Explain the relationship with abstract inner product spaces and change of basis.
    [Show full text]
  • Homogeneous Systems (1.5) Linear Independence and Dependence (1.7)
    Math 20F, 2015SS1 / TA: Jor-el Briones / Sec: A01 / Handout Page 1 of3 Homogeneous systems (1.5) Homogenous systems are linear systems in the form Ax = 0, where 0 is the 0 vector. Given a system Ax = b, suppose x = α + t1α1 + t2α2 + ::: + tkαk is a solution (in parametric form) to the system, for any values of t1; t2; :::; tk. Then α is a solution to the system Ax = b (seen by seeting t1 = ::: = tk = 0), and α1; α2; :::; αk are solutions to the homoegeneous system Ax = 0. Terms you should know The zero solution (trivial solution): The zero solution is the 0 vector (a vector with all entries being 0), which is always a solution to the homogeneous system Particular solution: Given a system Ax = b, suppose x = α + t1α1 + t2α2 + ::: + tkαk is a solution (in parametric form) to the system, α is the particular solution to the system. The other terms constitute the solution to the associated homogeneous system Ax = 0. Properties of a Homegeneous System 1. A homogeneous system is ALWAYS consistent, since the zero solution, aka the trivial solution, is always a solution to that system. 2. A homogeneous system with at least one free variable has infinitely many solutions. 3. A homogeneous system with more unknowns than equations has infinitely many solu- tions 4. If α1; α2; :::; αk are solutions to a homogeneous system, then ANY linear combination of α1; α2; :::; αk is also a solution to the homogeneous system Important theorems to know Theorem. (Chapter 1, Theorem 6) Given a consistent system Ax = b, suppose α is a solution to the system.
    [Show full text]
  • Linear Algebra Review
    Linear Algebra Review Kaiyu Zheng October 2017 Linear algebra is fundamental for many areas in computer science. This document aims at providing a reference (mostly for myself) when I need to remember some concepts or examples. Instead of a collection of facts as the Matrix Cookbook, this document is more gentle like a tutorial. Most of the content come from my notes while taking the undergraduate linear algebra course (Math 308) at the University of Washington. Contents on more advanced topics are collected from reading different sources on the Internet. Contents 3.8 Exponential and 7 Special Matrices 19 Logarithm...... 11 7.1 Block Matrix.... 19 1 Linear System of Equa- 3.9 Conversion Be- 7.2 Orthogonal..... 20 tions2 tween Matrix Nota- 7.3 Diagonal....... 20 tion and Summation 12 7.4 Diagonalizable... 20 2 Vectors3 7.5 Symmetric...... 21 2.1 Linear independence5 4 Vector Spaces 13 7.6 Positive-Definite.. 21 2.2 Linear dependence.5 4.1 Determinant..... 13 7.7 Singular Value De- 2.3 Linear transforma- 4.2 Kernel........ 15 composition..... 22 tion.........5 4.3 Basis......... 15 7.8 Similar........ 22 7.9 Jordan Normal Form 23 4.4 Change of Basis... 16 3 Matrix Algebra6 7.10 Hermitian...... 23 4.5 Dimension, Row & 7.11 Discrete Fourier 3.1 Addition.......6 Column Space, and Transform...... 24 3.2 Scalar Multiplication6 Rank......... 17 3.3 Matrix Multiplication6 8 Matrix Calculus 24 3.4 Transpose......8 5 Eigen 17 8.1 Differentiation... 24 3.4.1 Conjugate 5.1 Multiplicity of 8.2 Jacobian......
    [Show full text]
  • A SHORT PROOF of the EXISTENCE of JORDAN NORMAL FORM Let V Be a Finite-Dimensional Complex Vector Space and Let T : V → V Be A
    A SHORT PROOF OF THE EXISTENCE OF JORDAN NORMAL FORM MARK WILDON Let V be a finite-dimensional complex vector space and let T : V → V be a linear map. A fundamental theorem in linear algebra asserts that there is a basis of V in which T is represented by a matrix in Jordan normal form J1 0 ... 0 0 J2 ... 0 . . .. . 0 0 ...Jk where each Ji is a matrix of the form λ 1 ... 0 0 0 λ . 0 0 . . .. 0 0 . λ 1 0 0 ... 0 λ for some λ ∈ C. We shall assume that the usual reduction to the case where some power of T is the zero map has been made. (See [1, §58] for a characteristically clear account of this step.) After this reduction, it is sufficient to prove the following theorem. Theorem 1. If T : V → V is a linear transformation of a finite-dimensional vector space such that T m = 0 for some m ≥ 1, then there is a basis of V of the form a1−1 ak−1 u1, T u1,...,T u1, . , uk, T uk,...,T uk a where T i ui = 0 for 1 ≤ i ≤ k. At this point all the proofs the author has seen (even Halmos’ in [1, §57]) become unnecessarily long-winded. In this note we present a simple proof which leads to a straightforward algorithm for finding the required basis. Date: December 2007. 1 2 MARK WILDON Proof. We work by induction on dim V . For the inductive step we may assume that dim V ≥ 1.
    [Show full text]