Homogeneous Systems (1.5) Linear Independence and Dependence (1.7)

Total Page:16

File Type:pdf, Size:1020Kb

Homogeneous Systems (1.5) Linear Independence and Dependence (1.7) Math 20F, 2015SS1 / TA: Jor-el Briones / Sec: A01 / Handout Page 1 of3 Homogeneous systems (1.5) Homogenous systems are linear systems in the form Ax = 0, where 0 is the 0 vector. Given a system Ax = b, suppose x = α + t1α1 + t2α2 + ::: + tkαk is a solution (in parametric form) to the system, for any values of t1; t2; :::; tk. Then α is a solution to the system Ax = b (seen by seeting t1 = ::: = tk = 0), and α1; α2; :::; αk are solutions to the homoegeneous system Ax = 0. Terms you should know The zero solution (trivial solution): The zero solution is the 0 vector (a vector with all entries being 0), which is always a solution to the homogeneous system Particular solution: Given a system Ax = b, suppose x = α + t1α1 + t2α2 + ::: + tkαk is a solution (in parametric form) to the system, α is the particular solution to the system. The other terms constitute the solution to the associated homogeneous system Ax = 0. Properties of a Homegeneous System 1. A homogeneous system is ALWAYS consistent, since the zero solution, aka the trivial solution, is always a solution to that system. 2. A homogeneous system with at least one free variable has infinitely many solutions. 3. A homogeneous system with more unknowns than equations has infinitely many solu- tions 4. If α1; α2; :::; αk are solutions to a homogeneous system, then ANY linear combination of α1; α2; :::; αk is also a solution to the homogeneous system Important theorems to know Theorem. (Chapter 1, Theorem 6) Given a consistent system Ax = b, suppose α is a solution to the system. Then the solution set of Ax = b is the set of all vectors of the form x = α + t1α1 + t2α2 + ::: + tkαk, where y = t1α1 + t2α2 + ::: + tkαk is the parametric form of the solution to the homogeneous system Ax = 0. Linear Independence and Dependence (1.7) Terms you should know Linearly Dependent: A set of vectors is linearly dependent if at least one vector of the set can be expressed as alinear combination of the other vectors in that set. Note that this is equivalent to the homogeneous system having a non-zero solution. Math 20F, 2015SS1 / TA: Jor-el Briones / Sec: A01 / Handout Page 2 of3 Linearly independent: A set of vectors is linearly independent if the set is NOT linearly dependent. So NONE of the vectors may be written as a linear combination of any of the others. Note that this is equivalent to the homogeneous system having ONLY the zero solution. Important theorems to know n Theorem. (Chapter 1, Theorem 8) Let v1; v2; :::; vk be vectors in R . If k > n, then v1; v2; :::; vk are linearly dependent. Theorem. (Chapter 1, Theorem 9) If a set S = fv1; v2; :::; vkg contains the zero vector, then the set is linearly dependent. Matrix Operations and Matrix Inverses (2.1-2.2) Terms you should know I: An identity matrix I is a square matrix with 1's along the main diagonal (the ith row and ith column) and 0's for every other entry. Examples: 2 1 0 0 0 3 2 1 0 0 3 1 0 0 1 0 0 0 1 0 6 7 0 1 4 5 6 0 0 1 0 7 0 0 1 4 5 0 0 0 1 Invertibility: A matrix A is invertible if there is a matrix B such that AB = I and BA = I, where I is an identity marix. Transpose: Let A be some m × n matrix. The transpose of A, which we write as AT , is the n × m matrix where the entry in the ith column and jth row of AT is equal to the entry in the ith row and jth column of A. Example: 2 1 2 3 4 3 2 1 5 9 13 3 2 1 2 3 1 3 5 5 6 7 8 2 6 10 14 A = 3 4 AT = B = 6 7 BT = 6 7 4 5 2 4 6 6 9 10 11 12 7 6 3 7 11 15 7 5 6 4 5 4 5 13 14 15 16 4 8 12 16 Matrix Multiplication If A is an m × n matrix and B is an n × p matrix with columns b1; b2; :::; bp, then the matrix product AB is the m × p matrix whose columns are Ab1; Ab2; :::; Abp. h i h i AB = A b1 b2 ::: bp = Ab1 Ab2 ::: Abp NOTE: Matrices do NOT work exactly like numbers. You cannot "divide by" a matrix, for example. Keep in mind the following facts: Math 20F, 2015SS1 / TA: Jor-el Briones / Sec: A01 / Handout Page 3 of3 1. AB 6= BA (sometimes the two are equal, but most of the time it is not) 2. If AB = AC, it is not true in general that B = C (you can't just cancel out terms all the time). 3. If the product AB is the zero matrix, you CANNOT in general say that either A = 0 or B = 0. Important theorems to know Theorem. (Chapter 2, Theorem 1) Let A, B, and C be atrices of the same size, and let r and s be numbers. Then the following hold: 1. A + B = B + A 4. r(A + B) = rA + rB 2. (A + B) + C = A + (B + C) 5. (r + s)A = rA + sA 3. A + 0 = A 6. r(sA) = (rs)A Theorem. (Chapter 2, Theorem 2) Let A be an m × n matrix and let B nd C be matrices with sizes so that the following multiplications are valid 1. A(BC) = (AB)C 4. r(AB) = (rA)B = r(AB) for any num- ber r 2. A(B + C) = AB + AC 3. (B + C)A = BA + CA 5. ImA = A = AIn Theorem. (Chapter 2, Theorem 3) Let A and B denote matrices whose sizes allow the following operations to be valid. Then the following statements are true. 1. (AT )T = A 3. For any number r, r(AT ) = rAT 2. (A + B)T = AT + BT 4. (AB)T = BT AT Theorem. (Chapter 2, Theorem 5) If A is an invertible matrix, then for each and every b in Rn, the equation Ax = b has the unique solution x = A−1b Theorem. (Chapter 2, Theorem 6) 1. If A is an invertile matrix, then its inverse A−1 is also invertible, and (A−1)−1 = A 2. If A and B are n × n invertible matrices, then so is AB, and the inverse of AB is the product of the inverses of A and B in the reverse order. That is, (AB)−1 = B−1A−1 3. If A is an invertible matrix, then so is AT , and the inverse of AT is the transpose of A−1 (AT )−1 = (A−1)T.
Recommended publications
  • Parametrizations of K-Nonnegative Matrices
    Parametrizations of k-Nonnegative Matrices Anna Brosowsky, Neeraja Kulkarni, Alex Mason, Joe Suk, Ewin Tang∗ October 2, 2017 Abstract Totally nonnegative (positive) matrices are matrices whose minors are all nonnegative (positive). We generalize the notion of total nonnegativity, as follows. A k-nonnegative (resp. k-positive) matrix has all minors of size k or less nonnegative (resp. positive). We give a generating set for the semigroup of k-nonnegative matrices, as well as relations for certain special cases, i.e. the k = n − 1 and k = n − 2 unitriangular cases. In the above two cases, we find that the set of k-nonnegative matrices can be partitioned into cells, analogous to the Bruhat cells of totally nonnegative matrices, based on their factorizations into generators. We will show that these cells, like the Bruhat cells, are homeomorphic to open balls, and we prove some results about the topological structure of the closure of these cells, and in fact, in the latter case, the cells form a Bruhat-like CW complex. We also give a family of minimal k-positivity tests which form sub-cluster algebras of the total positivity test cluster algebra. We describe ways to jump between these tests, and give an alternate description of some tests as double wiring diagrams. 1 Introduction A totally nonnegative (respectively totally positive) matrix is a matrix whose minors are all nonnegative (respectively positive). Total positivity and nonnegativity are well-studied phenomena and arise in areas such as planar networks, combinatorics, dynamics, statistics and probability. The study of total positivity and total nonnegativity admit many varied applications, some of which are explored in “Totally Nonnegative Matrices” by Fallat and Johnson [5].
    [Show full text]
  • Linear Independence, Span, and Basis of a Set of Vectors What Is Linear Independence?
    LECTURENOTES · purdue university MA 26500 Kyle Kloster Linear Algebra October 22, 2014 Linear Independence, Span, and Basis of a Set of Vectors What is linear independence? A set of vectors S = fv1; ··· ; vkg is linearly independent if none of the vectors vi can be written as a linear combination of the other vectors, i.e. vj = α1v1 + ··· + αkvk. Suppose the vector vj can be written as a linear combination of the other vectors, i.e. there exist scalars αi such that vj = α1v1 + ··· + αkvk holds. (This is equivalent to saying that the vectors v1; ··· ; vk are linearly dependent). We can subtract vj to move it over to the other side to get an expression 0 = α1v1 + ··· αkvk (where the term vj now appears on the right hand side. In other words, the condition that \the set of vectors S = fv1; ··· ; vkg is linearly dependent" is equivalent to the condition that there exists αi not all of which are zero such that 2 3 α1 6α27 0 = v v ··· v 6 7 : 1 2 k 6 . 7 4 . 5 αk More concisely, form the matrix V whose columns are the vectors vi. Then the set S of vectors vi is a linearly dependent set if there is a nonzero solution x such that V x = 0. This means that the condition that \the set of vectors S = fv1; ··· ; vkg is linearly independent" is equivalent to the condition that \the only solution x to the equation V x = 0 is the zero vector, i.e. x = 0. How do you determine if a set is lin.
    [Show full text]
  • Discover Linear Algebra Incomplete Preliminary Draft
    Discover Linear Algebra Incomplete Preliminary Draft Date: November 28, 2017 L´aszl´oBabai in collaboration with Noah Halford All rights reserved. Approved for instructional use only. Commercial distribution prohibited. c 2016 L´aszl´oBabai. Last updated: November 10, 2016 Preface TO BE WRITTEN. Babai: Discover Linear Algebra. ii This chapter last updated August 21, 2016 c 2016 L´aszl´oBabai. Contents Notation ix I Matrix Theory 1 Introduction to Part I 2 1 (F, R) Column Vectors 3 1.1 (F) Column vector basics . 3 1.1.1 The domain of scalars . 3 1.2 (F) Subspaces and span . 6 1.3 (F) Linear independence and the First Miracle of Linear Algebra . 8 1.4 (F) Dot product . 12 1.5 (R) Dot product over R ................................. 14 1.6 (F) Additional exercises . 14 2 (F) Matrices 15 2.1 Matrix basics . 15 2.2 Matrix multiplication . 18 2.3 Arithmetic of diagonal and triangular matrices . 22 2.4 Permutation Matrices . 24 2.5 Additional exercises . 26 3 (F) Matrix Rank 28 3.1 Column and row rank . 28 iii iv CONTENTS 3.2 Elementary operations and Gaussian elimination . 29 3.3 Invariance of column and row rank, the Second Miracle of Linear Algebra . 31 3.4 Matrix rank and invertibility . 33 3.5 Codimension (optional) . 34 3.6 Additional exercises . 35 4 (F) Theory of Systems of Linear Equations I: Qualitative Theory 38 4.1 Homogeneous systems of linear equations . 38 4.2 General systems of linear equations . 40 5 (F, R) Affine and Convex Combinations (optional) 42 5.1 (F) Affine combinations .
    [Show full text]
  • Linear Independence, the Wronskian, and Variation of Parameters
    LINEAR INDEPENDENCE, THE WRONSKIAN, AND VARIATION OF PARAMETERS JAMES KEESLING In this post we determine when a set of solutions of a linear differential equation are linearly independent. We first discuss the linear space of solutions for a homogeneous differential equation. 1. Homogeneous Linear Differential Equations We start with homogeneous linear nth-order ordinary differential equations with general coefficients. The form for the nth-order type of equation is the following. dnx dn−1x (1) a (t) + a (t) + ··· + a (t)x = 0 n dtn n−1 dtn−1 0 It is straightforward to solve such an equation if the functions ai(t) are all constants. However, for general functions as above, it may not be so easy. However, we do have a principle that is useful. Because the equation is linear and homogeneous, if we have a set of solutions fx1(t); : : : ; xn(t)g, then any linear combination of the solutions is also a solution. That is (2) x(t) = C1x1(t) + C2x2(t) + ··· + Cnxn(t) is also a solution for any choice of constants fC1;C2;:::;Cng. Now if the solutions fx1(t); : : : ; xn(t)g are linearly independent, then (2) is the general solution of the differential equation. We will explain why later. What does it mean for the functions, fx1(t); : : : ; xn(t)g, to be linearly independent? The simple straightforward answer is that (3) C1x1(t) + C2x2(t) + ··· + Cnxn(t) = 0 implies that C1 = 0, C2 = 0, ::: , and Cn = 0 where the Ci's are arbitrary constants. This is the definition, but it is not so easy to determine from it just when the condition holds to show that a given set of functions, fx1(t); x2(t); : : : ; xng, is linearly independent.
    [Show full text]
  • Section 2.4–2.5 Partitioned Matrices and LU Factorization
    Section 2.4{2.5 Partitioned Matrices and LU Factorization Gexin Yu [email protected] College of William and Mary Gexin Yu [email protected] Section 2.4{2.5 Partitioned Matrices and LU Factorization One approach to simplify the computation is to partition a matrix into blocks. 2 3 0 −1 5 9 −2 3 Ex: A = 4 −5 2 4 0 −3 1 5. −8 −6 3 1 7 −4 This partition can also be written as the following 2 × 3 block matrix: A A A A = 11 12 13 A21 A22 A23 3 0 −1 In the block form, we have blocks A = and so on. 11 −5 2 4 partition matrices into blocks In real world problems, systems can have huge numbers of equations and un-knowns. Standard computation techniques are inefficient in such cases, so we need to develop techniques which exploit the internal structure of the matrices. In most cases, the matrices of interest have lots of zeros. Gexin Yu [email protected] Section 2.4{2.5 Partitioned Matrices and LU Factorization 2 3 0 −1 5 9 −2 3 Ex: A = 4 −5 2 4 0 −3 1 5. −8 −6 3 1 7 −4 This partition can also be written as the following 2 × 3 block matrix: A A A A = 11 12 13 A21 A22 A23 3 0 −1 In the block form, we have blocks A = and so on. 11 −5 2 4 partition matrices into blocks In real world problems, systems can have huge numbers of equations and un-knowns.
    [Show full text]
  • Span, Linear Independence and Basis Rank and Nullity
    Remarks for Exam 2 in Linear Algebra Span, linear independence and basis The span of a set of vectors is the set of all linear combinations of the vectors. A set of vectors is linearly independent if the only solution to c1v1 + ::: + ckvk = 0 is ci = 0 for all i. Given a set of vectors, you can determine if they are linearly independent by writing the vectors as the columns of the matrix A, and solving Ax = 0. If there are any non-zero solutions, then the vectors are linearly dependent. If the only solution is x = 0, then they are linearly independent. A basis for a subspace S of Rn is a set of vectors that spans S and is linearly independent. There are many bases, but every basis must have exactly k = dim(S) vectors. A spanning set in S must contain at least k vectors, and a linearly independent set in S can contain at most k vectors. A spanning set in S with exactly k vectors is a basis. A linearly independent set in S with exactly k vectors is a basis. Rank and nullity The span of the rows of matrix A is the row space of A. The span of the columns of A is the column space C(A). The row and column spaces always have the same dimension, called the rank of A. Let r = rank(A). Then r is the maximal number of linearly independent row vectors, and the maximal number of linearly independent column vectors. So if r < n then the columns are linearly dependent; if r < m then the rows are linearly dependent.
    [Show full text]
  • Math 217: True False Practice Professor Karen Smith 1. a Square Matrix Is Invertible If and Only If Zero Is Not an Eigenvalue. Solution Note: True
    (c)2015 UM Math Dept licensed under a Creative Commons By-NC-SA 4.0 International License. Math 217: True False Practice Professor Karen Smith 1. A square matrix is invertible if and only if zero is not an eigenvalue. Solution note: True. Zero is an eigenvalue means that there is a non-zero element in the kernel. For a square matrix, being invertible is the same as having kernel zero. 2. If A and B are 2 × 2 matrices, both with eigenvalue 5, then AB also has eigenvalue 5. Solution note: False. This is silly. Let A = B = 5I2. Then the eigenvalues of AB are 25. 3. If A and B are 2 × 2 matrices, both with eigenvalue 5, then A + B also has eigenvalue 5. Solution note: False. This is silly. Let A = B = 5I2. Then the eigenvalues of A + B are 10. 4. A square matrix has determinant zero if and only if zero is an eigenvalue. Solution note: True. Both conditions are the same as the kernel being non-zero. 5. If B is the B-matrix of some linear transformation V !T V . Then for all ~v 2 V , we have B[~v]B = [T (~v)]B. Solution note: True. This is the definition of B-matrix. 21 2 33 T 6. Suppose 40 2 05 is the matrix of a transformation V ! V with respect to some basis 0 0 1 B = (f1; f2; f3). Then f1 is an eigenvector. Solution note: True. It has eigenvalue 1. The first column of the B-matrix is telling us that T (f1) = f1.
    [Show full text]
  • Me Me Ft-Uiowa-Math2550 Assignment Hw6fall14 Due 10/09/2014 at 11:59Pm CDT
    me me ft-uiowa-math2550 Assignment HW6fall14 due 10/09/2014 at 11:59pm CDT The columns of A could be either linearly dependent or lin- 1. (1 pt) Library/WHFreeman/Holt linear algebra/Chaps 1-4- early independent depending on the case. /2.3.40.pg Correct Answers: • B n Let S be a set of m vectors in R with m > n. Select the best statement. 3. (1 pt) Library/WHFreeman/Holt linear algebra/Chaps 1-4- /2.3.42.pg • A. The set S is linearly independent, as long as it does Let A be a matrix with more columns than rows. not include the zero vector. Select the best statement. • B. The set S is linearly dependent. • C. The set S is linearly independent, as long as no vec- • A. The columns of A are linearly independent, as long tor in S is a scalar multiple of another vector in the set. as they does not include the zero vector. • D. The set S is linearly independent. • B. The columns of A could be either linearly dependent • E. The set S could be either linearly dependent or lin- or linearly independent depending on the case. early independent, depending on the case. • C. The columns of A must be linearly dependent. • F. none of the above • D. The columns of A are linearly independent, as long Solution: (Instructor solution preview: show the student so- as no column is a scalar multiple of another column in lution after due date. ) A • E. none of the above SOLUTION Solution: (Instructor solution preview: show the student so- By theorem 2.13, a linearly independent set in n can contain R lution after due date.
    [Show full text]
  • Linear Algebra Review
    Linear Algebra Review Kaiyu Zheng October 2017 Linear algebra is fundamental for many areas in computer science. This document aims at providing a reference (mostly for myself) when I need to remember some concepts or examples. Instead of a collection of facts as the Matrix Cookbook, this document is more gentle like a tutorial. Most of the content come from my notes while taking the undergraduate linear algebra course (Math 308) at the University of Washington. Contents on more advanced topics are collected from reading different sources on the Internet. Contents 3.8 Exponential and 7 Special Matrices 19 Logarithm...... 11 7.1 Block Matrix.... 19 1 Linear System of Equa- 3.9 Conversion Be- 7.2 Orthogonal..... 20 tions2 tween Matrix Nota- 7.3 Diagonal....... 20 tion and Summation 12 7.4 Diagonalizable... 20 2 Vectors3 7.5 Symmetric...... 21 2.1 Linear independence5 4 Vector Spaces 13 7.6 Positive-Definite.. 21 2.2 Linear dependence.5 4.1 Determinant..... 13 7.7 Singular Value De- 2.3 Linear transforma- 4.2 Kernel........ 15 composition..... 22 tion.........5 4.3 Basis......... 15 7.8 Similar........ 22 7.9 Jordan Normal Form 23 4.4 Change of Basis... 16 3 Matrix Algebra6 7.10 Hermitian...... 23 4.5 Dimension, Row & 7.11 Discrete Fourier 3.1 Addition.......6 Column Space, and Transform...... 24 3.2 Scalar Multiplication6 Rank......... 17 3.3 Matrix Multiplication6 8 Matrix Calculus 24 3.4 Transpose......8 5 Eigen 17 8.1 Differentiation... 24 3.4.1 Conjugate 5.1 Multiplicity of 8.2 Jacobian......
    [Show full text]
  • A SHORT PROOF of the EXISTENCE of JORDAN NORMAL FORM Let V Be a Finite-Dimensional Complex Vector Space and Let T : V → V Be A
    A SHORT PROOF OF THE EXISTENCE OF JORDAN NORMAL FORM MARK WILDON Let V be a finite-dimensional complex vector space and let T : V → V be a linear map. A fundamental theorem in linear algebra asserts that there is a basis of V in which T is represented by a matrix in Jordan normal form J1 0 ... 0 0 J2 ... 0 . . .. . 0 0 ...Jk where each Ji is a matrix of the form λ 1 ... 0 0 0 λ . 0 0 . . .. 0 0 . λ 1 0 0 ... 0 λ for some λ ∈ C. We shall assume that the usual reduction to the case where some power of T is the zero map has been made. (See [1, §58] for a characteristically clear account of this step.) After this reduction, it is sufficient to prove the following theorem. Theorem 1. If T : V → V is a linear transformation of a finite-dimensional vector space such that T m = 0 for some m ≥ 1, then there is a basis of V of the form a1−1 ak−1 u1, T u1,...,T u1, . , uk, T uk,...,T uk a where T i ui = 0 for 1 ≤ i ≤ k. At this point all the proofs the author has seen (even Halmos’ in [1, §57]) become unnecessarily long-winded. In this note we present a simple proof which leads to a straightforward algorithm for finding the required basis. Date: December 2007. 1 2 MARK WILDON Proof. We work by induction on dim V . For the inductive step we may assume that dim V ≥ 1.
    [Show full text]
  • Review Questions for Exam 1
    EXAM 1 - REVIEW QUESTIONS LINEAR ALGEBRA Questions (answers are below) Examples. For each of the following, either provide a specific example which satisfies the given description, or if no such example exists, briefly explain why not. (1) (JW) A skew-symmetric matrix A such that the trace of A is 1 (2) (HD) A nonzero singular matrix A 2 M2×2. (3) (LL) A non-zero 2 x 2 matrix, A, whose determinant is equal to the determinant of the A−1 Note: Chap. 3 is not on the exam. But this is a great one for next time. (4) (MS) A 3 × 3 augmented matrice such that it has infinitely many solutions (5) (LS) A nonsingular skew-symmetric matrix B. (6) (BP) A symmetric matrix A, such that A = A−1. (7) (CB) A 2 × 2 singular matrix with all nonzero entries. (8) (LB) A lower triangular matrix A in RREF. 3 (9) (AP) A homogeneous system Ax = 0, where A 2 M3×3 and x 2 R , which has only the trivial solution. (10) (EA) Two n × n matrices A and B such that AB 6= BA (11) (EB) A nonsingular matrix A such that AT is singular. (12) (EF) Three 2 × 2 matrices A, B, and C such that AB = AC and A 6= C. (13) (LD) A and B are n × n matrices with no zero entries such that AB = 0. (14) (OH) A matrix A 2 M2×2 where Ax = 0 has only the trivial solution. (15) (AL) An elementary matrix such that E = E−1.
    [Show full text]
  • Lecture Notes to Be Used in Conjunction with 233 Computational
    Lecture Notes to be used in conjunction with 233 Computational Techniques Istv´an Maros Department of Computing Imperial College London V2.9e January 2008 CONTENTS i Contents 1 Introduction 1 2 Computation and Accuracy 1 2.1 MeasuringErrors ..................... 1 2.2 Floating-Point RepresentationofNumbers . 2 2.3 ArithmeticOperations . 5 3 Computational Linear Algebra 6 3.1 VectorsandMatrices . 6 3.1.1 Vectors ....................... 6 3.1.2 Matrices ...................... 10 3.1.3 More about vectors and matrices ........... 14 3.2 Norms .......................... 20 3.2.1 Vector norms .................... 21 3.2.2 Matrix norms .................... 23 3.3 VectorSpaces....................... 25 3.3.1 Linear dependence and independence ......... 25 3.3.2 Range and null spaces ................ 30 3.3.3 Singular and nonsingular matrices ........... 35 3.4 Eigenvalues, Eigenvectors, Singular Values . 37 3.4.1 Eigenvalues and eigenvectors ............. 37 3.4.2 Spectral decomposition ............... 39 3.4.3 Singular value decomposition ............. 41 3.5 Solution of Systems of Linear Equations . 41 3.5.1 Triangular systems .................. 42 3.5.2 Gaussian elimination ................. 44 3.5.3 Symmetric systems, Cholesky factorization ....... 52 CONTENTS ii 3.5.4 Gauss-Jordan elimination if m<n ........ 56 3.6 Solution of Systems of Linear Differential Equations . 59 3.7 LeastSquaresProblems. 65 3.7.1 Formulation of the least squares problem ........ 65 3.7.2 Solution of the least squares problem ......... 67 3.8 ConditionofaMathematicalProblem . 71 3.8.1 Matrix norms revisited ................ 72 3.8.2 Condition of a linear system with a nonsingular matrix . 73 3.8.3 Condition of the normal equations ........... 78 3.9 Introduction to Sparse Computing .
    [Show full text]