Molecular Cloning and Characterization of Cytoplasmic Polyhedrosis Virus Polyhedrin and a Viable Deletion Mutant Gene

Total Page:16

File Type:pdf, Size:1020Kb

Molecular Cloning and Characterization of Cytoplasmic Polyhedrosis Virus Polyhedrin and a Viable Deletion Mutant Gene JOURNAL OF VIROLOGY, Jan. 1988, p. 211-217 Vol. 62, No. 1 0022-538X/88/010211-07$02.00/0 Copyright © 1988, American Society for Microbiology Molecular Cloning and Characterization of Cytoplasmic Polyhedrosis Virus Polyhedrin and a Viable Deletion Mutant Gene MAX ARELLA,1 CLAUDE LAVALLEIE,12 SERGE BELLONCIK,l AND YASUHIRO FURUICHI2* Department of Virology, Institut Armand-Frappier, University of Quebec, Montreal, Quebec, Canada,' and Nippon Roche Research Center, Department of Molecular Genetics, Kamakura, Japan2 Received 12 May 1987/Accepted 21 September 1987 The double-stranded RNA genome of Bombyx mori cytoplasmic polyhedrosis virus (CPV) was converted to double-stranded DNA and cloned into plasmid pBR322. The complete nucleotide sequence of cloned genome segment 10, which encodes virus polyhedrin polypeptide, was determined. The CPV polyhedrin gene consists of 942 based pairs and possesses a long open reading frame that codes for a polypeptide of 248 amino acids (molecular weight, 28,500), consistent with an apparent molecular weight of 28,000 previously determined for purffied polyhedrin. No sequence homology was found between CPV polyhedrin and polyhedrins from several nuclear polyhedrosis viruses. In addition to the polyhedrin gene, we completed the sequence analysis of a small deletion mutant gene derived from the polyhedrin gene. This mutant gene consists of two subset domains of the polyhedrin gene, i.e., the 5'-terminal 121 base pairs and the 3'-terminal 200 base pairs. An in vitro transcription demonstrated that the small mutant gene is transcribed by virion-associated RNA polymerases. These data confirm the importance of CPV terminal sequences in virus genome replication. Cytoplasmic polyhedrosis viruses (CPVs), one genus of reported previously (12). During the process, unexpectedly, the family Reoviridae, infect midgut cells of a wide range of we found in a CPV dsRNA mixture an extra subgenomic insects (22). Cytoplasmic polyhedrosis disease caused by segment of about 300 base pairs referred to here as the SP CPV infection results in the accumulation of occlusion gene (small polyhedrin gene). Since the SP gene appeared to bodies or polyhedra in the cytoplasm which are formed by be related in sequence to the polyhedrin gene, we also the crystallization of the viral polyhedrin polypeptide. In the cloned the cDNA into Escherichia coli plasmid pBR322 and late infection stage, newly formed viruses are occluded in investigated it together with the polyhedrin gene. A direct the polyhedron complex, perhaps to stabilize infectious sequencing and a comparative study clearly indicated that virus particles. Greater biological meaning of the virus the SP gene is a deletion mutant derived from the polyhedrin occlusion bodies may lie in the accurate delivery of virus to gene. This report describes the complete sequence informa- the target intestinal cells, where the occlusion bodies are tion of CPV polyhedrin as well as its deletion mutant gene. solubilized by intestinal alkaline pH and the infectious virus particles are released. MATERIALS AND METHODS The genome of CPV, like that of other members of the Preparation of CPVs and genomic dsRNAs. The type 1 Reoviridae, consists of 10 double-stranded RNA (dsRNA) CPV of B. mori was propagated by infecting fifth-instar segments (4). Each genome dsRNA segment is composed of larvae with purified CPV. The polyhedra that contain virus an mRNA (plus strand) and its complement (minus strand) in particles were isolated from infected midguts, and the virus an end-to-end base-paired configuration, except for the was purified from polyhedra as described previously (6, 27). protruding 5' cap in the plus strand (6, 7). The segments are Other CPVs were prepared similarly from infected Euxoa transcribed by virus-associated RNA polymerase to form scandens (type 5 virus) and from Inachis io and Spodoptera capped mRNAs which also function as templates for a exigua (type 2 and type 11 viruses, respectively) (22) and replicase in virus-infected cells. Thus, each genome segment were kindly provided by C. C. Payne at the Glasshouse should contain recognition sites for genome transcription, Crops Research Institute, Littlehampton, United Kingdom. mRNA translation, duplex segment replication, and correct Molecular cloning of CPV polyhedrin and SP dsRNA genes. assembly into virus particles. Consistently, a terminal se- The cDNA for the polyhedrin gene was prepared from quence of denatured CPV dsRNA and cloned into E. coli plasmid m7GpppAmGUAAA-----GUUAGCC pBR322 (at the PstI site) as described previously for human U CAUUU-----CAAUCGG reovirus (2), human rotavirus (12), and wound tumor virus (1). E. coli clones that contained the recombinant plasmids was identified for segments of the prototype CPV that infects which harbor polyhedrin cDNA were detected by colony Bombyx mori, suggesting that the conserved terminal se- hybridization (8) with [32P]pCp-end-labeled segment 10 quence is important for viral replication (15). dsRNA which was purified by polyacrylamide gel electro- The polyhedrin protein is coded for by the smallest phoresis. genome segment, segment 10, and its expression appears to For SP gene cloning, SP dsRNA was first purified from the occur most extensively in the late infection stage (21). In an mixture of CPV dsRNA by polyacrylamide gel electropho- effort to understand the regulation of polyhedrin gene resis. After cDNA synthesis, it was cloned into pBR322 in expression and to characterize the genome structure, we the same way as the polyhedrin gene and the bacteria which cloned the segment 10 cDNA by the method which we have harbored a recombinant SP cDNA-pBR322 were identified by colony hybridization with [32P]pCp-end-labeled segment * Corresponding author. 10 and SP dsRNAs. 211 212 ARELLA ET AL. J. VIROL. A B RESULTS Presence in B. mori CPV of small polyhedrin-related gen- G t.- n tri to- ome segment. A mixture of genome dsRNA segments of B. '_;,'1:'.'.a% mori CPV (BmCPV) extracted from purified virus were resolved into nine discrete bands by polyacrylamide gel ' 'M electrophoresis (Fig. 1A). Recently, we found an extra, small genomic dsRNA segment in a CPV genome RNA ltx preparation (Fig. 1B). This small segment had been over- looked before, since it ran off the gel under the normal 2 .z: WmA'InIt.aNk, electrophoresis conditions, which were intended to resolve SP dsRNA high-molecular-weight segments. A preliminary 3'-terminal analysis of the [32P]pCp-end-labeled small RNA indicated that it contained 3'-ACU-OH and 3'-GCC-OH, the common '5. 3'-terminal sequences for CPV genome dsRNA segments : (data not shown). When the [32P]pCp-3'-end-labeled small RNA was isolated from gels and used for hybridization to the other individual genome dsRNA segments, which were denatured and fixed on a nitrocellulose filter, it hybridized to genome segment 10 and segments 1 to 3 (Fig. 2A). The labeled segment 10 also hybridized specifically with this small RNA (Fig. 2B). Molecular cloning of polyhedrin and its related SP genome RNAs. A mixture of duplex cDNA of CPV genome dsRNAs 7- was prepared as described before (6) except that the 3' tailing of the template dsRNAs was done by polyadenylation 9- with E. coli poly(A) polymerase as described by Cashdollar et al. (2). The cDNAs were then poly(dC) tailed with E. coli terminal deoxytransferase, annealed to poly(dG)-tailed pBR322 plasmid DNA, and cloned into E. coli RR1 cells. Clones that contained the recombinant plasmids harboring the polyhedrin cDNA gene were isolated after colony hy- bridization with 3'-[132P]pCp-labeled polyhedrin gene FIG. 1. Detection of small dsRNA molecules in CPV genome (genome segment 10) as a probe. The CPV polyhedrin cDNA RNA. CPV genome RNA was prepared from purified virus, and the was excised with PstI as a single band which migrated 3' termini were radiolabeled with [32P]pCp with RNA ligase as slightly slower than genome segment 10 (Fig. 3). described before (28). The labeled CPV genome segments were For cloning of SP dsRNA, the mixture of CPV genome separated by 5% polyacrylamide gel electrophoresis in 50 mM Tris-phosphate buffer (pH 8) containing 5 mM EDTA at approxi- RNA was first resolved by polyacrylamide gel electrophore- mately 5 to 7 V/cm. Electrophoresis was run for 4 h (lane B) and 18 sis and the SP dsRNA was extracted from the gel to avoid h (lane A). contamination of the polyhedrin gene. A small amount (approximately 100 ng) of purified SP dsRNA was 3' poly- adenylated, and the cDNA was prepared as the polyhedrin gene was. Clones containing the SP cDNA gene were Determination of nucleotide sequence. Cloned polyhedrin detected with [32P]pCp-labeled polyhedrin and SP RNAs. and SP cDNA genes were excised from the recombinant Several cDNA clones that contained the full length were pBR322 DNA by digestion with endonuclease PstI and their obtained for SP RNA genes as determined by agarose gel nucleotide sequences were analyzed by the Maxam-Gilbert (18) and M13 chain termination procedures (26). Sequence analysis was done for both plus and minus strands. GENOME SEGmE\TS CPV in vitro transcription. CPV mRNAs were synthesized in the in vitro transcription reaction as described before (5, 2 28). Purified CPV (-10 pg) was incubated at 30°C in a 1 3 4 5 6 7 a 9 C transcription reaction mixture (100 Rl) consisting of 10 mM Tris hydrochloride (pH 8.0), 10 mM MgCl2, 1 mM each ATP, A *. * 0, - CTP, and GTP, 0.4 mM UTP, 10 pLCi of [a-32P]UTP (specific activity, 3,000 Ci/mmol; Amersham Corp., Arlington Heights, Ill.), 1 mM S-adenosylmethionine, and 50 units of B . RNasin (catalog no. 121800; Promega Biotec, Madison, Wis.) per ml. After 1 h, the reaction mixture was diluted FIG. 2. Characterization of small dsRNA by dot-blot hybridiza- fivefold with 50 mM Tris hydrochloride buffer (pH 8.0) and tion.
Recommended publications
  • Recombinant DNA and Elements Utilizing Recombinant DNA Such As Plasmids and Viral Vectors, and the Application of Recombinant DNA Techniques in Molecular Biology
    Fact Sheet Describing Recombinant DNA and Elements Utilizing Recombinant DNA Such as Plasmids and Viral Vectors, and the Application of Recombinant DNA Techniques in Molecular Biology Compiled and/or written by Amy B. Vento and David R. Gillum Office of Environmental Health and Safety University of New Hampshire June 3, 2002 Introduction Recombinant DNA (rDNA) has various definitions, ranging from very simple to strangely complex. The following are three examples of how recombinant DNA is defined: 1. A DNA molecule containing DNA originating from two or more sources. 2. DNA that has been artificially created. It is DNA from two or more sources that is incorporated into a single recombinant molecule. 3. According to the NIH guidelines, recombinant DNA are molecules constructed outside of living cells by joining natural or synthetic DNA segments to DNA molecules that can replicate in a living cell, or molecules that result from their replication. Description of rDNA Recombinant DNA, also known as in vitro recombination, is a technique involved in creating and purifying desired genes. Molecular cloning (i.e. gene cloning) involves creating recombinant DNA and introducing it into a host cell to be replicated. One of the basic strategies of molecular cloning is to move desired genes from a large, complex genome to a small, simple one. The process of in vitro recombination makes it possible to cut different strands of DNA, in vitro (outside the cell), with a restriction enzyme and join the DNA molecules together via complementary base pairing. Techniques Some of the molecular biology techniques utilized during recombinant DNA include: 1.
    [Show full text]
  • Cloning of Gene Coding Glyceraldehyde-3-Phosphate Dehydrogenase Using Puc18 Vector
    Available online a t www.pelagiaresearchlibrary.com Pelagia Research Library European Journal of Experimental Biology, 2015, 5(3):52-57 ISSN: 2248 –9215 CODEN (USA): EJEBAU Cloning of gene coding glyceraldehyde-3-phosphate dehydrogenase using puc18 vector Manoj Kumar Dooda, Akhilesh Kushwaha *, Aquib Hasan and Manish Kushwaha Institute of Transgene Life Sciences, Lucknow (U.P), India _____________________________________________________________________________________________ ABSTRACT The term recombinant DNA technology, DNA cloning, molecular cloning, or gene cloning all refers to the same process. Gene cloning is a set of experimental methods in molecular biology and useful in many areas of research and for biomedical applications. It is the production of exact copies (clones) of a particular gene or DNA sequence using genetic engineering techniques. cDNA is synthesized by using template RNA isolated from blood sample (human). GAPDH (Glyceraldehyde 3-phosphate dehydrogenase) is one of the most commonly used housekeeping genes used in comparisons of gene expression data. Amplify the gene (GAPDH) using primer forward and reverse with the sequence of 5’-TGATGACATCAAGAAGGTGGTGAA-3’ and 5’-TCCTTGGAGGCCATGTGGGCCAT- 3’.pUC18 high copy cloning vector for replication in E. coli, suitable for “blue-white screening” technique and cleaved with the help of SmaI restriction enzyme. Modern cloning vectors include selectable markers (most frequently antibiotic resistant marker) that allow only cells in which the vector but necessarily the insert has been transfected to grow. Additionally the cloning vectors may contain color selection markers which provide blue/white screening (i.e. alpha complementation) on X- Gal and IPTG containing medium. Keywords: RNA isolation; TRIzol method; Gene cloning; Blue/white screening; Agarose gel electrophoresis.
    [Show full text]
  • The Effect of Increasing Plasmid Size on Transformation Efficiency in Escherichia Coli
    Journal of Experimental Microbiology and Immunology (JEMI) Vol. 2:207-223 Copyright April 2002, M&I UBC The Effect of Increasing Plasmid Size on Transformation Efficiency in Escherichia coli VICKY CHAN, LISA F. DREOLINI, KERRY A. FLINTOFF, SONJA J. LLOYD, AND ANDREA A. MATTENLEY Department of Microbiology and Immunology, UBC Based on the observation that the transformation of Escherchia coli was more efficient with pUC19 than with the larger plasmid pBR322, we hypothesized that transformation frequency is somehow affected by size. To test this hypothesis, we attempted to insert a 1.7kb lambda NdeI fragment into pUC19 to generate a plasmid (pHEL) of the same size as pBR322. The two plasmids of equal size were then to be used to transform E. coli in order to compare transformation efficiencies. After two rounds of cloning, we were unable to generate pHEL. In lieu of using pHEL and pBR322, E. coli were transformed with previously prepared plasmids of varying sizes: pUC8 (2.6 kb), pUC8 0-690 (4.3 kb), and pUC8 0-690::pKT210 (16.1 kb). The results of these transformations indicate that increasing plasmid size correlates with a decrease in transformation efficiency. Transformation is an important technique in molecular cloning for transferring genetic material to bacteria. It can be done by either heat shock or electroporation. The former involves the preparation of competent cells, incubation of the cells with DNA at 0oC and the completion of DNA uptake by heat pulse. Competent cells are capable of taking up DNA. They can be prepared by cold treatment with calcium chloride.
    [Show full text]
  • Molecular Cloning: a Laboratory Manual, 4Th Edition
    This is a free sample of content from Molecular Cloning: A Laboratory Manual, 4th edition. Click here for more information or to buy the book. VOLUME 1 Molecular Cloning A LABORATORY MANUAL FOURTH EDITION © 2012 by Cold Spring Harbor Laboratory Press This is a free sample of content from Molecular Cloning: A Laboratory Manual, 4th edition. Click here for more information or to buy the book. OTHER TITLES FROM CSHL PRESS LABORATORY MANUALS Antibodies: A Laboratory Manual Imaging: A Laboratory Manual Live Cell Imaging: A Laboratory Manual, 2nd Edition Manipulating the Mouse Embryo: A Laboratory Manual, 3rd Edition RNA: A Laboratory Manual HANDBOOKS Lab Math: A Handbook of Measurements, Calculations, and Other Quantitative Skills for Use at the Bench Lab Ref, Volume 1: A Handbook of Recipes, Reagents, and Other Reference Tools for Use at the Bench Lab Ref, Volume 2: A Handbook of Recipes, Reagents, and Other Reference Tools for Use at the Bench Statistics at the Bench: A Step-by-Step Handbook for Biologists WEBSITES Molecular Cloning, A Laboratory Manual, 4th Edition, www.molecularcloning.org Cold Spring Harbor Protocols, www.cshprotocols.org © 2012 by Cold Spring Harbor Laboratory Press This is a free sample of content from Molecular Cloning: A Laboratory Manual, 4th edition. Click here for more information or to buy the book. VOLUME 1 Molecular Cloning A LABORATORY MANUAL FOURTH EDITION Michael R. Green Howard Hughes Medical Institute Programs in Gene Function and Expression and in Molecular Medicine University of Massachusetts Medical School Joseph Sambrook Peter MacCallum Cancer Centre and the Peter MacCallum Department of Oncology The University of Melbourne, Australia COLD SPRING HARBOR LABORATORY PRESS Cold Spring Harbor, New York † www.cshlpress.org © 2012 by Cold Spring Harbor Laboratory Press This is a free sample of content from Molecular Cloning: A Laboratory Manual, 4th edition.
    [Show full text]
  • Molecular Cloning Plasmid-Based Cloning Vectors
    Page: 1 Molecular Cloning A glaring problem in most areas of biochemical research is obtaining sufficient amounts of the substance of interest. For example, a 10 L culture of E. coli grown to its maximum titer will only contain about 7 mg of DNA polymerase I, and many other proteins in much lesser amounts. Furthermore, only rarely can as much as half of any protein originally present in an organism be recovered in pure form. Eucaryotic proteins are even more difficult to obtain because tissue samples are usually only available in small quantities. With regards to the amount of DNA present, the 10 L E. coli culture would contain about 0.1mg of any 1000 bp length chromosomal DNA but its purification in the presence of the rest of the chromosomal DNA would be a very difficult task. These difficulties have been greatly reduced through the development of molecular cloning techniques. These methods, which are also referred to as genetic engineering and recombinant DNA technology, deserve much of the credit for the enormous progress in biochemistry and the dramatic rise of the biotechnology industry. The main idea of molecular cloning is to insert a DNA segment of interest into an autonomously replicating DNA molecule, a so-called cloning vector, so that the DNA segment is replicated with the vector. Cloning such a chimeric vector in a suitable host organism such as E. coli or yeast results in the production of large amounts of the inserted DNA segment. If a cloned gene is flanked by the properly positioned control sequences for RNA and protein synthesis, the host may also produce large quantities of the mRNA and protein specified by that gene.
    [Show full text]
  • Molecular Cloning and Characterization of the STE7 and Steli Genes of Saccharomyces Cerevisiae DEBORAH T
    MOLECULAR AND CELLULAR BIOLOGY, Aug. 1985, p. 1878-1886 Vol. 5, No. 8 0270-7306/85/081878-09$02.00/0 Copyright © 1985, American Society for Microbiology Molecular Cloning and Characterization of the STE7 and STElI Genes of Saccharomyces cerevisiae DEBORAH T. CHALEFFt* AND KELLY TATCHELL Department ofBiology, University ofPennsylvania, Philadelphia, Pennsylvania 19104 Received 31 December 1984/Accepted 30 April 1985 In the yeast Saccharomyces cerevisiae, haploid cells occur in one of the two cell types, a or a. The alele present at the mating type (MAT) locus plays a prominent role in the control of cell type expression. An important consequence of the elaboration of ceUl type is the ability of cells of one mating type to conjugate with ceUs of the opposite mating type, resulting in yet a third cell type, an a/a diploid. Numerous genes that are involved in the expression of cel type and the conjugation process have been identified by standard genetic techniques. Molecular analysis has shown that expression of several of these genes is subject to control on the transcriptional level by the MAT locus. Two genes, STE7 and STEII, are required for mating in both haploid ceUl types; ste7 and stell mutants are sterile. We report here the molecular cloning of STE7 and STEII genes and show that expression of these genes is not regulated transcriptionally by the MAT locus. We also have genetically mapped the STEII gene to chromosome XII, 40 centimorgans from ura4. Haploid cells of the yeast Saccharomyces cerevisiae exist tation of a gene whose expression is not mating-type depen- as one of the two cell types, a or a.
    [Show full text]
  • MOLECULAR CLONING PROCEDURE Psc1o1 PLASMID Eco RI FOREIGN DNA SITE
    MOLECULAR CLONING PROCEDURE pSC1O1 PLASMID Eco RI FOREIGN DNA SITE @ 1 ANNEALING REPLICATOR REPLICAT@ LIGASE @ @- COVER LEGEND. bacterial species, Staphylococcus aureus , were also successfully introduced into E. coil, and later (Proc. Nati. Acad. Sci. U. S., 71: 1743-1747, 1974) some genes from the toad Xenopus laevis were MOLECLAAM CIONNG @ _@‘.‘@; inserted into E. coil cells. The developments are recorded by Cohen in his articles on gene man ipu It lation that appeared in the July, 1975, issue of Scientific American and the April 15, 1976, issue of @ @.i' New England Journal of Medicine. Stanley N. Cohen was born in 1935 in New Jersey ((s) and was educated at Rutgers University and the University of Pennsylvania School of Medicine, where he receivedhisM.D. degreein1960.He has been a faculty member of the Department of Medi cine of Stanford University School of Medicine since 1968, rising to full professor in 1975. Herbert W. Boyer was born in 1936 in Pittsburgh, Pennsylvania, and was educated at the University of Pittsburgh, where he received his Ph.D. in bac teriology in 1963. Following a postdoctoral fellow Recombination of DNA was made possible by ship at Yale University, he joined the University of four discoveries during the last decade: breaking California at San Francisco, rising to full professor and joining DNA molecules; gene carriers that can in 1976. replicate themselves and link foreign DNA seg The practical and theoretical implications of re ments;introductionof DNA intoforeigncells;and combinant DNA have made it a topic of national selection of clones of molecular chimeras.
    [Show full text]
  • Molecular Cloning and Functional Analysis of a Novel Cadmium-Responsive Proto-Oncogene
    [CANCER RESEARCH 62, 703–707, February 1, 2002] Molecular Cloning and Functional Analysis of a Novel Cadmium-responsive Proto-oncogene Pius Joseph,1 Yi-Xiong Lei, Wen-Zong Whong, and Tong-man Ong Molecular Epidemiology Laboratory, Toxicology and Molecular Biology Branch, National Institute for Occupational Safety and Health, Morgantown, West Virginia 26505 ABSTRACT nication provide for the first time experimental evidence that cell transformation and tumorigenesis caused by exposure to Cd result in The molecular mechanisms potentially responsible for cell transforma- the overexpression of mouse TIF32 (GenBank accession number tion and tumorigenesis induced by cadmium, a human carcinogen, were AF271072).3 Furthermore, we provide experimental evidence to show investigated by differential gene expression analysis of BALB/c-3T3 cells that TIF3 is a novel proto-oncogene whose overexpression is respon- transformed with cadmium chloride (CdCl2). Differential display analysis of gene expression revealed consistent overexpression of mouse translation sible for cell transformation and tumorigenesis induced by Cd. initiation factor 3 (TIF3; GenBank accession number AF271072) in the cells transformed with CdCl2 when compared with nontransformed cells. The predicted protein encoded by TIF3 cDNA exhibited 99% similarity to MATERIALS AND METHODS human eukaryotic initiation factor 3 p36 protein. A Mr 36,000 protein was detected in cells transfected with an expression vector containing TIF3 Cell Culture and Isolation of RNA. Morphological transformation of ␮ cDNA. Transfection of NIH3T3 cells with an expression vector containing contact-inhibited BALB/c-3T3 cells with CdCl2 (6–12 M) and development TIF3 cDNA resulted in overexpression of the encoded protein, and this of cell lines from the transformed foci were done previously in our laboratory was associated with cell transformation, as evidenced by the appearance of (5).
    [Show full text]
  • Molecular Cloning and Biological Characterization of Full-Length HIV-1 Subtype C from Botswana
    Virology 278, 390–399 (2000) doi:10.1006/viro.2000.0583, available online at http://www.idealibrary.com on View metadata, citation and similar papers at core.ac.uk brought to you by CORE provided by Elsevier - Publisher Connector Molecular Cloning and Biological Characterization of Full-Length HIV-1 Subtype C from Botswana Thumbi Ndung’u,* Boris Renjifo,* Vladimir A. Novitsky,* Mary Fran McLane,* Sarah Gaolekwe,† and Max Essex*,1 *Harvard AIDS Institute and Department of Immunology and Infectious Diseases, Harvard School of Public Health, Boston, Massachusetts 02115; and †National Health Laboratory, Private Bag 0057, Gaborone, Botswana Received May 18, 2000; returned to author for revision June 26, 2000; accepted August 15, 2000 Human immunodeficiency virus type 1 (HIV-1) subtype C is now responsible for more than half of all HIV-1 infections in the global epidemic and for the high levels of HIV-1 prevalence in southern Africa. To facilitate studies of the biological nature and the underlying molecular determinants of this virus, we constructed eight full-length proviral clones from two asymp- tomatic and three AIDS patients infected with HIV-1 subtype C from Botswana. Analysis of viral lysates showed that Gag, Pol, and Env structural proteins were present in the virions. In four clones, the analysis suggested inefficient envelope glycoprotein processing. Nucleotide sequence analysis of the eight clones did not reveal frameshifts, deletions, premature truncations, or translational stop codons in any structural, regulatory, or accessory genes. None of the subtype C clones were replication competent in donor peripheral blood mononuclear cells (PBMCs), macrophages, Jurkattat cells, or U87.CD4.CCR5 cells.
    [Show full text]
  • Genetic Engineering
    Sengamala Thayaar Educational Trust Women’s College (Affiliated to Bharathidasan University) (Accredited with ‘A’ Grade {3.45/4.00} By NAAC) (An ISO 9001: 2015 Certified Institution) Sundarakkottai, Mannargudi-614 016. Thiruvarur (Dt.), Tamil Nadu, India. GENETIC ENGINEERING Dr. R. ANURADHA ASSISTANT PROFESSOR & HEAD PG & RESEARCH DEPARTMENT OF BIOCHEMISTRY II M.Sc., BIOCHEMISTRY Semester : III ELECTIVE III -GENETIC ENGINEERING-P16BCE3 Inst. Hours/Week : 5 Credit : 5 Objective: To understand and learn the emergence and early development and application of technology. UNIT I Introduction to genetic engineering and rDNA technology, gene cloning, specialized tools and techniques, benefits of gene cloning. Isolation and purification of DNA: Preparation of total Cellular DNA, plasmid DNA, bacteriophage DNA, plant cell DNA, isolation of mRNA from mammalian cells. UNIT II Vectors and enzymes in cloning: Cloning and Expression vectors- Plasmids pBR, pUC, phages (M3, λ), yeast vectors, cosmids, phagemids, agrobacterium, PAC, BAC, YAC, MAC, HAC vectors, Plant and Animal viruses as vector, binary and shuttle vectors, expression vectors for prokaryotes and eukaryotes, expression cassettes. Restriction endonucleases, ligases, S1 nuclease, reverse transcriptase, polymerase, alkaline phosphatase, terminal transferase, methods of ligation. UNIT III Construction of genomic and cDNA libraries, selection and screening of recombinants, probes- types, synthesis and uses of probes. Blotting techniques (Southern, Northern and Western), PCR- types and applications, Sequencing: DNA and RNA, site directed mutagenesis. Chromosome walking, jumping, DNA finger printing and foot printing. UNIT IV Methods of gene transfer: Microinjection, electroporation, particle bombardment gun (biolistic), ultrasonication, liposome mediated and direct transfer. Restriction analysis of DNA, molecular markers- RFLP, RAPD, VNTR, SSR, AFLP, STS, SCAR, SNP.
    [Show full text]
  • Cloning & Transgenesis DOI: 0.4172/2168-9849.1000E119 ISSN: 2168-9849
    & Trans g ge in n n e s o l i s C Kumar, Clon Transgen 2015, 4:2 Cloning & Transgenesis DOI: 0.4172/2168-9849.1000e119 ISSN: 2168-9849 Editorial open access Cloning: A Vital Tool for the Production Transgenics Awanish Kumar* Department of Biotechnology, National Institute of Technology, Raipur, Chhattisgarh, India *Corresponding author: Awanish Kumar, Department of Biotechnology, National Institute of Technology, Raipur, Chhattisgarh, India, Tel: +91-8871830586; E-mail: [email protected] Rec date: June 15, 2015; Acc date: June 15, 2015; Pub date: June 18, 2015 Copyright: © 2015 Kumar A. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. Editorial from cells of preimplantation embryos of rabbits [5], pigs [6], monkeys [7], sheep [8], cattle and some endangered species [9]. The aim of biotechnology is to understand the biochemical, cellular, and functional aspect of all the proteins encoded in the genome. Cloning may also be useful for the preservation of extinct and Molecular cloning or recombinant DNA technology (RDT) is an endangered species, production or food quality traits and in important practice in research labs that is used to create copies of a therapeutics where patients may be able to clone their own nuclei to particular gene for downstream applications, such as sequencing, make healthy tissue that could be used to replace diseased tissue mutagenesis, genotyping or heterologous expression of a protein. without the risk of immunological rejection. Treatments are also being Heterologous expression is used to produce large amounts of a protein developed for a range of some incurable human diseases, such as of interest for functional and biochemical analyses.
    [Show full text]
  • Molecular Cloning
    Now includes Recombinant Albumin Buffers Molecular Cloning TECHNICAL GUIDE be INSPIRED drive DISCOVERY stay GENUINE OVERVIEW TABLE OF CONTENTS 3 Online Tools 4–5 Cloning Workflow Comparison 6 DNA Assembly Molecular Cloning Overview 6 Overview Molecular cloning refers to the process by which recombinant DNA molecules are 6 Product Selection produced and transformed into a host organism, where they are replicated. A molecular 7 Golden Gate Assembly Kits cloning reaction is usually comprised of two components: 7 Optimization Tips 8 Technical Tips for Optimizing 1. The DNA fragment of interest to be replicated. Golden Gate Assembly Reactions 2. A vector/plasmid backbone that contains all the components for replication in the host. 9 NEBuilder® HiFi DNA Assembly 10 Protocol/Optimization Tips ® DNA of interest, such as a gene, regulatory element(s), operon, etc., is prepared for cloning 10 Gibson Assembly by either excising it out of the source DNA using restriction enzymes, copying it using 11 Cloning & Mutagenesis PCR, or assembling it from individual oligonucleotides. At the same time, a plasmid vector 11 NEB PCR Cloning Kit is prepared in a linear form using restriction enzymes (REs) or Polymerase Chain Reaction 12 Q5® Site-Directed Mutagenesis Kit (PCR). The plasmid is a small, circular piece of DNA that is replicated within the host and 12 Protocols/Optimization Tips exists separately from the host’s chromosomal or genomic DNA. By physically joining the 13–24 DNA Preparation DNA of interest to the plasmid vector through phosphodiester bonds, the DNA of interest 13 Nucleic Acid Purification becomes part of the new recombinant plasmid and is replicated by the host.
    [Show full text]