Calciphylaxis
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Early Manifestation of Calcinosis Cutis in Pseudohypoparathyroidism Type
European Journal of Endocrinology (2005) 152 515–519 ISSN 0804-4643 CASE REPORT Early manifestation of calcinosis cutis in pseudohypoparathyroidism type Ia associated with a novel mutation in the GNAS gene Felix G Riepe, Wiebke Ahrens1, Nils Krone, Regina Fo¨lster-Holst2, Jochen Brasch2, Wolfgang G Sippell, Olaf Hiort1 and Carl-Joachim Partsch3 Department of Pediatrics, Division of Pediatric Endocrinology, Universita¨tsklinikum Schleswig-Holstein, Campus Kiel, Christian-Albrechts-Universita¨t, 24105 Kiel, Germany, 1Department of Pediatrics, Division of Pediatric Endocrinology and Diabetes, Universita¨tsklinikum Schleswig-Holstein, Campus Lu¨beck, Universita¨t zu Lu¨beck, 23538 Lu¨beck, Germany, 2Department of Dermatology, Universita¨tsklinikum Schleswig-Holstein, Campus Kiel, Christian-Albrechts-Universita¨t, 24105 Kiel, Germany and 3Children’s Hospital, Sta¨dtische Kliniken Esslingen, 73730 Esslingen a.N., Germany (Correspondence should be addressed to W G Sippell; Email: [email protected]) Abstract Objective: To clarify the molecular defect for the clinical finding of congenital hypothyroidism com- bined with the manifestation of calcinosis cutis in infancy. Case report: The male patient presented with moderately elevated blood thyrotropin levels at neonatal screening combined with slightly decreased plasma thyroxine and tri-iodothyronine concentrations, necessitating thyroid hormone substitution 2 weeks after birth. At the age of 7 months calcinosis cutis was seen and the patient underwent further investigation. Typical features of Albright’s heredi- tary osteodystrophy (AHO), including round face, obesity and delayed psychomotor development, were found. Methods and results: Laboratory investigation revealed a resistance to parathyroid hormone (PTH) with highly elevated PTH levels and a reduction in adenylyl cyclase-stimulating protein (Gsa) activity leading to the diagnosis of pseudohypoparathyroidism type Ia (PHP Ia). -
Calciphylaxis with Normal Renal and Parathyroid Function Not As Rare As Previously Believed
OBSERVATION Calciphylaxis With Normal Renal and Parathyroid Function Not as Rare as Previously Believed Andrew H. Kalajian, MD; Paula S. Malhotra, MD; Jeffrey P. Callen, MD; Lynn P. Parker, MD Background: Calciphylaxis is a life-threatening form of previously reported cases of nontraditional calciphylaxis metastatic calcification-induced microvascular occlusion identified the following patient characteristics that high- syndrome. Although traditionally observed in patients with light clinical situations potentially predisposing to calci- end-stage renal disease and/or hyperparathyroidism, the phylaxis: hypoalbuminemia, malignant neoplasm, sys- development of calciphylaxis in “nontraditional” pa- temic corticosteroid use, anticoagulation with warfarin tients having both normal renal and parathyroid func- sodium or phenprocoumon, chemotherapy, systemic in- tion has been reported. However, to date there has been flammation, hepatic cirrhosis, protein C or S deficiency, no collective analysis identifying common patient char- obesity, rapid weight loss, and infection. acteristics potentially predisposing to the development of calciphylaxis in nontraditional patients. Conclusions: Calciphylaxis is becoming increasingly common in patients with normal renal and parathyroid Observations: A 58-year-old woman with endometrial function. The observations from this study may assist der- carcinoma developed extensive calciphylaxis despite the matologists in the rapid diagnosis and prompt initiation presence of normal renal and parathyroid function. -
Soft Tissue Calcification and Ossification
Soft Tissue Calcification and Ossification Soft-tissue Calcification Metastatic Calcification =deposit of calcium salts in previously normal tissue (1) as a result of elevation of Ca x P product above 60-70 (2) with normal Ca x P product after renal transplant Location:lung (alveolar septa, bronchial wall, vessel wall), kidney, gastric mucosa, heart, peripheral vessels Cause: (a)Skeletal deossification 1.1° HPT 2.Ectopic HPT production (lung / kidney tumor) 3.Renal osteodystrophy + 2° HPT 4.Hypoparathyroidism (b)Massive bone destruction 1.Widespread bone metastases 2.Plasma cell myeloma 3.Leukemia Dystrophic Calcification (c)Increased intestinal absorption =in presence of normal serum Ca + P levels secondary to local electrolyte / enzyme alterations in areas of tissue injury 1.Hypervitaminosis D Cause: 2.Milk-alkali syndrome (a)Metabolic disorder without hypercalcemia 3.Excess ingestion / IV administration of calcium salts 1.Renal osteodystrophy with 2° HPT 4.Prolonged immobilization 2.Hypoparathyroidism 5.Sarcoidosis 3.Pseudohypoparathyroidism (d)Idiopathic hypercalcemia 4.Pseudopseudohypoparathyroidism 5.Gout 6.Pseudogout = chondrocalcinosis 7.Ochronosis = alkaptonuria 8.Diabetes mellitus (b) Connective tissue disorder 1.Scleroderma 2.Dermatomyositis 3.Systemic lupus erythematosus (c)Trauma 1.Neuropathic calcifications 2.Frostbite 3.Myositis ossificans progressiva 4.Calcific tendinitis / bursitis (d)Infestation 1.Cysticercosis Generalized Calcinosis 2.Dracunculosis (guinea worm) (a)Collagen vascular disorders 3.Loiasis 1.Scleroderma -
Tumoral Calcinosis and Calciphylaxis Treated with Subtotal Parathyroidectomy and Sodium Thiosulphate
CASE REPORT eISSN 2384-0293 Yeungnam Univ J Med 2016;33(1):68-71 http://dx.doi.org/10.12701/yujm.2016.33.1.68 Tumoral calcinosis and calciphylaxis treated with subtotal parathyroidectomy and sodium thiosulphate Hyunjeong Cho1, Yongjin Yi1, Eunjeong Kang1, Seokwoo Park1, Eun Jin Cho2, Sung Tae Cho3, Rho Won Chun3, Kyu Eun Lee4, Kook-Hwan Oh1 1Department of Internal Medicine, Seoul National University College of Medicine, Seoul; 2Department of Internal Medicine, Hongseong Medical Center, Hongseong; 3Dr. Chun & Cho`s Medical Clinic & Dialysis Center; 4Department of Surgery, Seoul National University College of Medicine, Seoul, Korea Tumoral calcinosis (TC) is a condition resulting from extensive calcium phosphate precipitation, primarily in the periarticular tissues around major joints. Calciphylaxis is a fatal ischemic vasculopathy mainly affecting dermal blood vessels and subcutaneous fat. This syndrome is rare and predominantly occurs in patients with end-stage renal disease. Here, we report on a rare case involving a patient with TC complicated with calciphylaxis. Our patient was a 31-year-old man undergoing hemodialysis who presented with masses on both shoulders and necrotic cutaneous ulcers, which were associated with secondary hyperparathyroidism, on his lower legs. He underwent subtotal parathyroidectomy, and sodium thiosulfate (STS) was administered for 27 weeks. Twenty months after beginning the STS treatment course, he experienced dramatic relief of his TC and calciphylaxis. Keywords: Tumoral calcinosis; Calciphylaxis; Parathyroidectomy; Sodium thiosulphate INTRODUCTION reported to range from 0.5-3% [2]. The pathomechanisms of these two disorders are poorly understood, but believed to Calcinosis cutis is characterized by the deposition of in- be related to disturbances in mineral metabolism. -
A Case of Calciphylaxis with an Unfavorable Outcome
CASE LETTER 671 However, the present patient exhibited the peculiarity References of an intense inflammatory infiltrate in the dermis rarely seen previously. According to this case, an atypical intense 1. Sitaru C, Zillikens D. Mechanisms of blister induction by autoan- inflammation could be a distinct histopathological feature tibodies. Exp Dermatol. 2005;14:861---75. of trauma-induced pemphigus. Further research is neces- 2. Sagi L, Trau H. The Koebner phenomenon. Clin Dermatol. sary to ascertain if greater inflammation in dermis is more 2011;29:231---6. related to trauma-induced pemphigus as opposed to those 3. Jang HW, Chun SH, Lee JM, Jeon J, Hashimoto T, Kim IH. Radiotherapy-induced pemphigus vulgaris. J Dermatol. not related to trauma. 2014;41:851---2. In conclusion, this report describes a presumably new 4. Daneshpazhooh M, Fatehnejad M, Rahbar Z, Balighi K, case of trauma-induced pemphigus. To the author’s knowl- Ghandi N, Ghiasi M, et al. Trauma-induced pemphigus: a edge, there are no prior reports of pemphigus involving case series of 36 patients. J Dtsch Dermatol Ges. 2016;14: predominantly the breasts with such a peculiar dispo- 166---71. sition. It is proposed that a hypothetical continuous 5. Balighi K, Daneshpazhooh M, Azizpour A, Lajevardi V, trauma with the bra could explain this unique loca- Mohammadi F, Chams-Davatchi C. Koebner phenomenon tion. in pemphigus vulgaris patients. JAAD Case Rep. 2016;2: 419---21. Financial support Fernando Garcia-Souto None declared. Department of Dermatology, Valme University Hospital, Seville, Spain Author’s contributions E-mail: [email protected] Received 14 November 2019; accepted 5 March 2020 Fernando Garcia-Souto: Conception and planning of the manuscript; writing and critical revision of the manuscript; https://doi.org/10.1016/j.abd.2020.03.010 approval of the final version. -
Electrolyte Disorders in Cancer Patients: a Systematic Review
Berardi et al. J Cancer Metastasis Treat 2019;5:79 Journal of Cancer DOI: 10.20517/2394-4722.2019.008 Metastasis and Treatment Review Open Access Electrolyte disorders in cancer patients: a systematic review Rossana Berardi, Mariangela Torniai, Edoardo Lenci, Federica Pecci, Francesca Morgese, Silvia Rinaldi Clinica Oncologica, Università Politecnica delle Marche, Azienda Ospedaliero-Universitaria Ospedali Riuniti Umberto I - GM Lancisi - G Salesi, Ancona 60126, Italy. Correspondence to: Prof. Rossana Berardi, Clinica Oncologica, Università Politecnica delle Marche, Azienda Ospedaliero- Universitaria Ospedali Riuniti di Ancona, Via Conca 71, Ancona 60126, Italy. E-mail: [email protected] How to cite this article: Berardi R, Torniai M, Lenci E, Pecci F, Morgese F, Rinaldi S. Electrolyte disorders in cancer patients: a systematic review. J Cancer Metastasis Treat 2019;5:79. http://dx.doi.org/10.20517/2394-4722.2019.008 Received: 26 Apr 2019 First Decision: 26 Jul 2019 Revised: 20 Nov 2019 Accepted: 20 Nov 2019 Published: 9 Dec 2019 Science Editor: Stephen J. Ralph Copy Editor: Jing-Wen Zhang Production Editor: Jing Yu Abstract Electrolyte disorders are very common complications in cancer patients. They might be associated to a worsening outcome, influencing quality of life, possibility to receive anticancer drugs, and conditioning survival. In fact, they might provoke important morbidity, with dysfunction of multiple organs and rarely causing life-threatening conditions. Moreover, recent studies showed that they might worsen cancer patients’ outcome, while a prompt correction seems to have a positive impact. Furthermore, there is evidence of a correlation between electrolyte alterations and poorer performance status, delays in therapy commencement and continuation, and negative treatment outcomes. -
Extensive Skin Necrosis Ulcers and Systemic Vascular Insufficiency Syndrome with Calciphylaxis: a Case Report
Urology & Nephrology Open Access Journal Case Report Open Access Extensive skin necrosis ulcers and systemic vascular insufficiency syndrome with calciphylaxis: a case report Abstract Volume 5 Issue 4 - 2017 Calciphylaxis is a part of systemic vascular calcification that is commonly seen in patients 1 2,3 with end stage renal disease. It presents as skin ischemia and necrosis due to calcification Alexander M Swan, Nancy J Fried, 2,3 2 of dermal arterioles. There is no consensus on optimal treatment and the condition is Charisma Lee, Thein Aung, Zaw Nyein associated with a high mortality rate. Here we report a patient on peritoneal dialysis with Aye,2 Deepthi Gunasekaran2 a high calcium-phosphorus product and extensive calciphylaxis involving the extremities, 1Wilkes University, USA back and scalp. We used a multi-interventional approach to treat this patient with a good 2Nephrology Hypertension Renal transplant and Renal Therapy, outcome. The underlying pathology of systemic vascular calcification and insufficiency USA 3 may involve other vascular beds such as the coronary and cerebral vasculature. Early Rutgers New Jersey Medical School, USA detection of these conditions may improve outcomes in these patents. Correspondence: Alexander M Swan, AA Prof of Medicine, Keywords: necrotic ulcer of skin, calciphylaxis, calcium-phosphorus product, vascular Rutgers New Jersey Medical School, 185 S Orange Ave, Newark, calcification, systemic vascular insufficiency NJ 07103, President, Garden State Kidney Center, 345 Main Street, Woodbridge, NJ 07095, USA, Tel 732-750-5555, Fax 732- 750-5550, Email Received: November 10, 2017 | Published: October 26, 2017 Abbreviations: ESRD, end-stage renal disease; CUA, calcific secondary to hypertension and peritoneal dialys is was initiated 5years uremic arterilopathy; LMWH, low molecular weight heparin ago after multiple access problems with hemodialysis. -
Section XI Extraskeletal (Ectopic) Calcification and Ossification
Section XI Extraskeletal (Ectopic) Calcification and Ossification Michael P. Whyte Division of Bone and Mineral Diseases, Washington University School of Medicine at Barnes-Jewish Hospital and Center for Metabolic Bone Disease and Molecular Research, Shriners Hospitals for Children, St. Louis, Missouri INTRODUCTION somewhat higher value because they have greater serum phos- phate concentrations compared with adults. However, this is A significant number and variety of disorders cause extraskel- not well established.(5) etal deposition of calcium and phosphate (Table 1). In some, The material that comprises metastatic calcification may be mineral is precipitated as amorphous calcium phosphate or as amorphous calcium phosphate initially, but hydroxyapatite is crystals of hydroxyapatite; in others, osseous tissue is formed. deposited soon after.(2) The anatomic pattern of deposition The pathogenesis of ectopic mineralization is generally attrib- varies somewhat between hypercalcemia and hyperphos- uted to one of three mechanisms (Table 1). First, a supranormal phatemia, but occurs irrespective of the specific underlying “calcium-phosphate solubility product” in extracellular fluid condition or mechanism for the disturbed mineral homeostasis. can cause metastatic calcification. Second, mineral may be Additionally, there is a predilection for certain tissues. deposited as dystrophic calcification into metabolically im- Hypercalcemia is typically associated with mineral deposits paired or dead tissue despite normal serum levels of calcium in the kidneys, lungs, and fundus of the stomach. In these and phosphate. Third, ectopic ossification (or true bone forma- “acid-secreting” organs, a local alkaline milieu may account tion) occurs in a few disorders for which the pathogenesis is for the calcium deposition. In addition, the media of large becoming increasingly understood. -
Fluid and Electrolyte Balance
Fluid and Electrolyte Balance Done By: Faisal S. AlGhamdi Abdullah Almousa Total Body Fluids and fluids compartment: 60% in male of Total body weight 55% in female 2/3 (65%) of TBW is intracellular (ICF) 1/3 (35%) extracellular water – 25 % interstitial fluid (ISF) – 5 - 7 % in plasma (IVF intravascular fluid) – 1- 2 % in transcellular fluids – CSF, intraocular fluids, serous membranes, and in GI, respiratory and urinary tracts (third space) • Fluid compartments are separated by membranes that are freely permeable to water. • Movement of fluids due to: – Hydrostatic pressure (Fluid) – Osmotic/Oncotic pressure (tissue) In Hydrostatic pressure: As the pressure increase as the movement of fluid outside increase In Osmotic pressure: As the pressure increase as the absorption of fluid increase. Fluid balance: • Neutral balance: input = output • Positive balance: input > output • Negative balance: input < output (+ve lead to edema, and -ve lead to dehydration) Daily input should = Daily output Most of water intake in Beverages Most of water output in Urine Electrolytes: Cations – positively charged ions . Na+, K+ , Ca++, H+ Anions – negatively charged ions - - 3- . Cl , HCO3 , PO4 Intracellular fluid space: • 40% of body weight • Largest proportion is in skeletal muscle • Larger percentage of water is Intracellular in males (large muscle mass) • Cations = Potassium & Magnesium • Anions = Phosphates and Proteins Extracellular fluid space: • 20% of body weight • Interstitial 15%, Plasma 5% • Cations = Sodium • Anions = Chloride and Bicarbonate Homeostasis: • Maintained by Ion transport, Water movement and Kidney function. • Tonicity Isotonic, Hypertonic and Hypotonic (the difference btw tonicity and osmolarity that tonicity is concentration of solutions in relation to adjacent compartments *like concentration of plasma compared to interstitial space*, but osmolarity take the compartment on it’s own) Movement of body fluids: “ Where Na goes, H2O follows” Diffusion – movement of particles down a concentration gradient. -
AACE Annual Meeting 2021 Abstracts Editorial Board
June 2021 Volume 27, Number 6S AACE Annual Meeting 2021 Abstracts Editorial board Editor-in-Chief Pauline M. Camacho, MD, FACE Suleiman Mustafa-Kutana, BSC, MB, CHB, MSC Maywood, Illinois, United States Boston, Massachusetts, United States Vin Tangpricha, MD, PhD, FACE Atlanta, Georgia, United States Andrea Coviello, MD, MSE, MMCi Karel Pacak, MD, PhD, DSc Durham, North Carolina, United States Bethesda, Maryland, United States Associate Editors Natalie E. Cusano, MD, MS Amanda Powell, MD Maria Papaleontiou, MD New York, New York, United States Boston, Massachusetts, United States Ann Arbor, Michigan, United States Tobias Else, MD Gregory Randolph, MD Melissa Putman, MD Ann Arbor, Michigan, United States Boston, Massachusetts, United States Boston, Massachusetts, United States Vahab Fatourechi, MD Daniel J. Rubin, MD, MSc Harold Rosen, MD Rochester, Minnesota, United States Philadelphia, Pennsylvania, United States Boston, Massachusetts, United States Ruth Freeman, MD Joshua D. Safer, MD Nicholas Tritos, MD, DS, FACP, FACE New York, New York, United States New York, New York, United States Boston, Massachusetts, United States Rajesh K. Garg, MD Pankaj Shah, MD Boston, Massachusetts, United States Staff Rochester, Minnesota, United States Eliza B. Geer, MD Joseph L. Shaker, MD Paul A. Markowski New York, New York, United States Milwaukee, Wisconsin, United States CEO Roma Gianchandani, MD Lance Sloan, MD, MS Elizabeth Lepkowski Ann Arbor, Michigan, United States Lufkin, Texas, United States Chief Learning Officer Martin M. Grajower, MD, FACP, FACE Takara L. Stanley, MD Lori Clawges The Bronx, New York, United States Boston, Massachusetts, United States Senior Managing Editor Allen S. Ho, MD Devin Steenkamp, MD Corrie Williams Los Angeles, California, United States Boston, Massachusetts, United States Peer Review Manager Michael F. -
T PATHOLOGIC CALCIFICATION Deposition of Calcium Salts In
t PATHOLOGIC CALCIFICATION Deposition of calcium salts in tissues other than osteoid or enamel is called pathologic or heterotopic calcification. Two distinct types of pathologic calcification are recognised: Dystrophic calcification, which is characterised by deposition of calcium salts in dead or degenerated tissues with normal calcium metabolism and normal serum calcium levels. Dystrophic calcification may occur due to 2 types of causes: ● Calcification in dead tissue ● Calcification of degenerated tissue Metastatic calcification, on the other hand, occurs in apparently normal tissues and is associated with deranged calcium metabolism and hypercalcaemia. Since metastatic calcification occurs in normal tissues due to hypercalcaemia, its causes would include one of the following two conditions: ● Excessive mobilisation of calcium from the bone. ● Excessive absorption of calcium from the gut. Pathogenesis of Dystrophic Calcification The process of dystrophic calcification has been likened to the formation of normal hydroxyapatite in the bone involving 2 phases: ● Initiation and propagation: Initiation is the phase in which precipitates of calcium phosphate begin to accumulate intracellularly in the mitochondria, or extracellularly in membrane-bound vesicles. Propagation is the phase in which minerals deposited in the initiation phase are propagated to form mineral crystals. Pathogenesis of metastatic calcification Metastatic calcification occurs due to excessive binding of inorganic phosphate ions with calcium ions, which are elevated due to underlying metabolic derangement. This leads to formation of precipitates of calcium phosphate at the preferential sites. Metastatic calcification is reversible upon correction of underlying metabolic disorder. GANGRENE Gangrene is a form of necrosis of tissue with superadded putrefaction. The type of necrosis is usually coagulative due to ischaemia (e.g. -
Parenteral Nutrition Primer: Balance Acid-Base, Fluid and Electrolytes
Parenteral Nutrition Primer: Balancing Acid-Base, Fluids and Electrolytes Phil Ayers, PharmD, BCNSP, FASHP Todd W. Canada, PharmD, BCNSP, FASHP, FTSHP Michael Kraft, PharmD, BCNSP Gordon S. Sacks, Pharm.D., BCNSP, FCCP Disclosure . The program chair and presenters for this continuing education activity have reported no relevant financial relationships, except: . Phil Ayers - ASPEN: Board Member/Advisory Panel; B Braun: Consultant; Baxter: Consultant; Fresenius Kabi: Consultant; Janssen: Consultant; Mallinckrodt: Consultant . Todd Canada - Fresenius Kabi: Board Member/Advisory Panel, Consultant, Speaker's Bureau • Michael Kraft - Rockwell Medical: Consultant; Fresenius Kabi: Advisory Board; B. Braun: Advisory Board; Takeda Pharmaceuticals: Speaker’s Bureau (spouse) . Gordon Sacks - Grant Support: Fresenius Kabi Sodium Disorders and Fluid Balance Gordon S. Sacks, Pharm.D., BCNSP Professor and Department Head Department of Pharmacy Practice Harrison School of Pharmacy Auburn University Learning Objectives Upon completion of this session, the learner will be able to: 1. Differentiate between hypovolemic, euvolemic, and hypervolemic hyponatremia 2. Recommend appropriate changes in nutrition support formulations when hyponatremia occurs 3. Identify drug-induced causes of hypo- and hypernatremia No sodium for you! Presentation Outline . Overview of sodium and water . Dehydration vs. Volume Depletion . Water requirements & Equations . Hyponatremia • Hypotonic o Hypovolemic o Euvolemic o Hypervolemic . Hypernatremia • Hypovolemic • Euvolemic • Hypervolemic Sodium and Fluid Balance . Helpful hint: total body sodium determines volume status, not sodium status . Examples of this concept • Hypervolemic – too much volume • Hypovolemic – too little volume • Euvolemic – normal volume Water Distribution . Total body water content varies from 50-70% of body weight • Dependent on lean body mass: fat ratio o Fat water content is ~10% compared to ~75% for muscle mass .