Pcf theory and Woodin cardinals Moti Gitik,a Ralf Schindler,b and Saharon Shelahc;∗ aSchool of Mathematical Sciences, Tel Aviv University, Tel Aviv 69978, Israel bInstitut fur¨ Formale Logik, Universit¨at Wien, 1090 Wien, Austria cInstitute of Mathematics, The Hebrew University of Jerusalem, Jerusalem, 91904, Israel, and Department of Mathematics, Rutgers University, New Brunswick, NJ 08903, USA
[email protected],
[email protected],
[email protected] Mathematics Subject Classification. Primary 03E04, 03E45. Secondary 03E35, 03E55. Keywords: cardinal arithmetic/pcf theory/core models/large cardinals. Abstract jαj jαj+ Theorem 1.1. Let α be a limit ordinal. Suppose that 2 < @α and 2 < jαj @jαj+ , whereas @α > @jαj+ . Then for all n < ! and for all bounded X ⊂ @jαj+ , # Mn (X) exists. Theorem 1.4. Let κ be a singular cardinal of uncountable cofinality. If fα < κ j 2α = α+g is stationary as well as co-stationary then for all n < ! # and for all bounded X ⊂ κ, Mn (X) exists. Theorem 1.1 answers a question of Gitik and Mitchell (cf. [GiMi96, Question 5, p. 315]), and Theorem 1.4 yields a lower bound for an assertion discussed in [Gi1] (cf. [Gi1, Problem 4]). The proofs of these theorems combine pcf theory with core model theory. Along the way we establish some ZFC results in cardinal arithmetic, moti- vated by Silver's theorem [Si74], and we obtain results of core model theory, motivated by the task of building a \stable core model." Both sets of results are of independent interest. 1 Introduction and statements of results.