Assessing the Impact of Ionising Radiation in Temperate Coastal Sand Dune Ecosystems

Total Page:16

File Type:pdf, Size:1020Kb

Assessing the Impact of Ionising Radiation in Temperate Coastal Sand Dune Ecosystems ASSESSING THE IMPACT OF IONISING RADIATION IN TEMPERATE COASTAL SAND DUNE ECOSYSTEMS: MEASUREMENT AND MODELLING Thesis submitted in accordance with the requirements of the University of Liverpool for the degree of Doctor in Philosophy by Michael David Wood January 2010 ABSTRACT Assessing the impact of ionising radiation in temperate coastal sand dune ecosystems: measurement and modelling Michael D. Wood This thesis presents the results of a 6-year research project to investigate the radioecology of temperate coastal sand dunes. Samples (n = 617) of soil, water and biota were collected from the Drigg coastal sand dunes (West Cumbria, UK) between February 2005 and October 2007. Biota groups sampled included amphibians, birds, invertebrates, mammals, reptiles, plants (including lichens and mosses) and fungi. All samples were analysed for 40K, 137Cs and 241Am. A sub-set of samples (n = 26) was analysed for 90Sr, 99Tc, 238Pu and 239+240Pu. Additional soil analyses included soil moisture, bulk density, pH, organic matter content, carbonate content and cation concentrations (Ca2+, K+, Na+ & Mg2+). The application of three publicly-available environmental radiation protection models (ERICA, R&D128/Sp1a & RESRAD-BIOTA) to an assessment of ionising radiation impacts at the Drigg coastal sand dunes site was evaluated. Soil activity concentration data were used as input data and model results compared with measured activity concentrations in sand dune biota. Radionuclide concentration ratios (CRs) were identified as an important source of variation in model predictions. For sand dune small mammals, Am, Cs and Pu CRs were found to be 1 – 2 orders of magnitude lower than those for small mammals in other terrestrial ecosystems. For reptiles, the variability could be attributed to the paucity of data on transfer to this vertebrate group. Through literature review, mining of unpublished data sets and analysis of samples collected from the Drigg coastal sand dunes, CR databases were developed for reptiles (across a range of ecosystem types) and for sand dune biota. Analysis of sand dune soil data suggested that both sea-to-land transfer and the transport of sand grains in saltation influence the soil activity concentrations in coastal sand dunes. The low CRs for sand dune biota may be due to low bioavailability of particulate-bound radionuclides. University of Liverpool, UK; E-mail address: [email protected] i (This page is left blank intentionally) ii ACKNOWLEDGMENTS I wish to thank Dr David Copplestone (Environment Agency, UK), Dr Rick Leah and Professor Alan McCarthy (both from the University of Liverpool, UK) for their supervision and support during the development of this thesis. I am indebted to all three of them. Special thanks are expressed to David for his ongoing support and friendship and to Alan for taking on the role of primary supervisor following Rick‟s sudden death in February 2009. I would like to acknowledge the additional support of Dr Nicholas Beresford (Centre for Ecology and Hydrology (CEH), UK) for his comments and advice on various sections of the manuscript. I am also grateful to my internal assessors at the University of Liverpool (Professor Alan McCarthy and Professor Andrew Plater) for their feedback on the early design and development of my research programme. For their excellent technical support at the University of Liverpool, I am grateful to Mr Mike O‟Connor, Mr Leslie Connor and Mr Keith Hatton. Mike endured many weeks of fieldwork with me on the Drigg coastal sand dunes. Without his patience and willingness to work both long days and during night-time amphibian surveys, the sampling would have been significantly less productive. Mike also took some of the photographs that are presented in Chapter 2 of this thesis. Mike, Les and Keith provided technical support for the soil property determinations and gamma spectrometry analysis. In addition, Les provided technical support for the cation analyses. I am also grateful to Ms Phillipa Hall, Ms Jessica Smallcombe and Ms Sally Wittrick from the University of Liverpool for their assistance with sample preparation. I would like to acknowledge Ms Catherine Barnett (CEH) and Dr Richard Wilson (Westlakes Scientific Consulting, UK) for their support in analysing biota samples and water samples respectively. For their help in accessing international data sets to support the reptile transfer database development presented in Chapter 7 of this thesis, I wish to acknowledge Dr John Ferris, iii Dr Matthew Johansen and Dr John Twining (all from the Australian Nuclear Science and Technology Organisation (ANSTO)), Dr Dmitry Semanov (A.N. Severtsov Institute of Ecology and Evolution, Russia) and Dr Tamara Yankovich (AREVA Resources Canada Inc., Canada). In addition to the people already acknowledged, I am grateful to Dr Brenda Howard (CEH), Professor Steve Jones, Professor Paul McDonald and Dr Jordi Vives-i-Battle (all from Westlakes Scientific Consulting Ltd) for advice received during the preparation of peer-reviewed publications from this thesis. Although the research for this part-time Ph.D. was „self-funded‟, I would like to acknowledge the financial contributions from the EC 6th Framework Programme, the Environment Agency and English Nature (now Natural England, UK) for research project funding which has, in part, helped to cover some of the sampling and analysis costs associated with the development of this thesis. I also acknowledge the Hereptological Conservation Trust (for licensing and facilitating herptile sample collection), the British Association of Shooting and Conservation (BASC) and the Egremont and District Wildfowlers Association (for the provision of bird samples) and the Lake District National Parks Authority, the Muncaster Estate and Mr Ireland (for permitting site access and sampling). Finally I wish to thank my family for supporting me in undertaking this part-time Ph.D. research. In particular, I wish to thank my wife, Mrs Helen Wood, for her encouragement and patience throughout the many evenings, weekends and holidays that I have spent working on this thesis. iv This thesis is dedicated to Helen and Abigail with love v (This page is left blank intentionally) vi CONTENTS ABSTRACT ............................................................................................................... I ACKNOWLEDGMENTS .................................................................................... III CONTENTS .......................................................................................................... VII LIST OF FIGURES ............................................................................................ XIII LIST OF TABLES ............................................................................................ XVII LIST OF ABBREVIATIONS ............................................................................ XXI CHAPTER 1 - INTRODUCTION ......................................................................... 1 1.1. ENVIRONMENTAL RADIOACTIVITY .................................................... 1 1.1.1. REJUVENATION IN THE NUCLEAR INDUSTRY ................................................ 1 1.1.2. IMPACTS OF IONISING RADIATION ................................................................. 2 1.1.2.1. Ionising radiation and dose ................................................................. 2 1.1.2.1. Effects of ionising radiation on non-human biota ............................... 4 1.2. ENVIRONMENTAL RADIATION PROTECTION .................................. 6 1.2.1. RADIOECOLOGY AND THE DEVELOPMENT OF ENVIRONMENTAL RADIATION PROTECTION MODELS .............................................................................................. 8 1.2.2. MODELS AND MODEL TESTING...................................................................... 9 1.3. OBJECTIVES ................................................................................................. 11 1.3.1. MEASUREMENT ........................................................................................... 11 1.3.2. MODELLING ................................................................................................ 12 CHAPTER 2 – THE DRIGG COASTAL SAND DUNES ............................... 15 2.1. COASTAL SAND DUNES ............................................................................ 15 2.1.1. SAND TRANSPORT, DUNE GROWTH AND MORPHOLOGY .............................. 16 2.1.2. SOIL DEVELOPMENT .................................................................................... 20 2.1.3. ZONATION AND SUCCESSION ...................................................................... 22 2.1.4. HYDROLOGY ............................................................................................... 23 2.1.4.1. Precipitation ....................................................................................... 24 2.1.4.2. Groundwater ....................................................................................... 25 2.2. THE STUDY SITE ......................................................................................... 25 2.2.1. SITE LOCATION ........................................................................................... 25 2.2.2. SITE DESCRIPTION ....................................................................................... 26 2.2.3. SITE DISTURBANCE ..................................................................................... 32 2.3. JUSTIFICATION FOR SITE SELECTION .............................................. 34
Recommended publications
  • Recovery Plan for Northeastern Beach Tiger Beetle
    Northeastern Beach Tiger Beetle, (Cincindela dorsalisdorsal/s Say) t1rtmow RECOVERY PLAN 4.- U.S. Fish and Wildlife Service SFAVI ? Hadley, Massachusetts September 1994 C'AZ7 r4S \01\ Cover illustration by Katherine Brown-Wing copyright 1993 NORTHEASTERN BEACH TIGER BEETLE (Cicindela dorsalis dorsalis Say) RECOVERY PLAN Prepared by: James M. Hill and C. Barry Knisley Department of Biology Randolph-Macon College Ashland, Virginia in cooperation with the Chesapeake Bay Field Office U.S. Fish and Wildlife Service and members of the Tiger Beetle Recovery Planning-Group Approved: . ILL Regi Director, Region Five U.S. Fish and Wildlife Service Date: 9 29- ~' TIGER BEETLE RECOVERY PLANNING GROUP James Hill Philip Nothnagle Route 1 Box 2746A RFD 1, Box 459 Reedville, VA Windsor, VT 05089 Judy Jacobs Steve Roble U.S. Fish and Wildlife Service VA Natural Heritage Program Annapolis Field Office Main Street Station 177 Admiral Cochrane Drive 1500 East Main Street Annapolis, MD 21401 Richmond, VA 23219 C. Barry Knisley Tim Simmons Biology Department The Nature Conservancy Massachusetts Randolph-Macon College Field Office Ashland, VA 23005 79 Milk Street Suite 300 Boston, MA 02109 Laurie MacIvor The Nature Conservancy Washington Monument State Park 6620 Monument Road Middletown, MD 21769 EXECUTIVE SUMMARY NORTHEASTERN BEACH TIGER BEETLE RECOVERY PLAN Current Status: This tiger beetle occurred historically "in great swarms" on beaches along the Atlantic Coast, from Cape Cod to central New Jersey, and along Chesapeake Bay beaches in Maryland and Virginia. Currently, only two small populations remain on the Atlantic Coast. The subspecies occurs at over 50 sites within the Chesapeake Bay region.
    [Show full text]
  • Liley Et Al., 2006B)
    Date: March 2010; Version: FINAL Recommended Citation: Liley D., Lake, S., Underhill-Day, J., Sharp, J., White, J. Hoskin, R. Cruickshanks, K. & Fearnley, H. (2010). Welsh Seasonality Habitat Vulnerability Review. Footprint Ecology / CCW. 1 Summary It is increasingly recognised that recreational access to the countryside has a wide range of benefits, such as positive effects on health and well-being, economic benefits and an enhanced understanding of and connection with the natural environment. There are also negative effects of access, however, as people’s presence in the countryside can impact on the nature conservation interest of sites. This report reviews these potential impacts to the Welsh countryside, and we go on to discuss how such impacts could be mapped across the entirety of Wales. Such a map (or series of maps) would provide a tool for policy makers, planners and access managers, highlighting areas of the countryside particularly sensitive to access and potentially guiding the location and provision of access infrastructure, housing etc. We structure the review according to four main types of impacts: contamination, damage, fire and disturbance. Contamination includes impacts such as litter, nutrient enrichment and the spread of exotic species. Within the section on damage we consider harvesting and the impacts of footfall on vegetation and erosion of substrates. The fire section addresses the impacts of fire (accidental or arson) on animals, plant communities and the soil. Disturbance is typically the unintentional consequences of people’s presence, sometimes leading to animals avoiding particular areas and impacts on breeding success, survival etc. We review the effects of disturbance to mammals, birds, herptiles and invertebrates and also consider direct mortality, for example trampling of nests or deliberate killing of reptiles.
    [Show full text]
  • Appendices To
    Report to: - CEMEX UK Operations Ltd Wolverhampton Road Oldbury Warley West Midlands B69 4RJ v. 4 – July 2018 Appendices to: PRELIMINARY ECOLOGICAL APPRAISAL OF LAND AT LIME KILN FARM, WANGFORD QUARRY, HILL ROAD, WANGFORD, SUFFOLK NR34 8AR Unit 14B The Avenue High Street Bridgwater TA6 3QE www.aecol.co.uk CONTENTS APPENDIX A. BAT SPECIES CORE SUSTENANCE ZONES ……………………………... 1 APPENDIX B. PLANT SPECIES RECORDED AT LIME KILN FARM ON 3RD, 4TH & 5TH APRIL 2018 BY HENRY ANDREWS MSc CEcol MCIEEM …………………. 2 APPENDIX C. A REVIEW OF THE DISTRIBUTION, HABITAT REQUIREMENTS AND POTENTIAL FOR OCCURRENCE OF LEGALLY PROTECTED AND/OR SECTION 41 SPECIES OF PRINCIPAL IMPORTANCE (S41 SPECIES) OF TERRESTRIAL INVERTEBRATES WITHIN LIME KILN FARM ………....... 4 APPENDIX D. A REVIEW OF THE DISTRIBUTION, HABITAT REQUIREMENTS AND POTENTIAL FOR OCCURRENCE OF LEGALLY PROTECTED AND/OR SECTION 41 SPECIES OF PRINCIPAL IMPORTANCE (S41 SPECIES) OF FRESHWATER FISH WITHIN LIME KILN FARM …........................... 50 APPENDIX E. A REVIEW OF THE DISTRIBUTION, HABITAT REQUIREMENTS AND POTENTIAL FOR OCCURRENCE OF LEGALLY PROTECTED AND/OR SECTION 41 SPECIES OF PRINCIPAL IMPORTANCE (S41 SPECIES) OF AMPHIBIANS WITHIN LIME KILN FARM ……………………………… 56 APPENDIX F. A REVIEW OF THE DISTRIBUTION, HABITAT REQUIREMENTS AND POTENTIAL FOR OCCURRENCE OF LEGALLY PROTECTED AND/OR SECTION 41 SPECIES OF PRINCIPAL IMPORTANCE (S41 SPECIES) OF REPTILES WITHIN LIME KILN FARM ………………………………… 64 APPENDIX G. A REVIEW OF THE DISTRIBUTION, HABITAT REQUIREMENTS AND POTENTIAL FOR OCCURRENCE OF SCHEDULE 1 AND/OR SECTION 41 SPECIES OF PRINCIPAL IMPORTANCE (S41 SPECIES) OF BIRDS WITHIN LIME KILN FARM …………………………………………………… 74 APPENDIX H. A REVIEW OF THE DISTRIBUTION, HABITAT REQUIREMENTS AND POTENTIAL FOR OCCURRENCE OF LEGALLY PROTECTED AND/OR SECTION 41 SPECIES OF PRINCIPAL IMPORTANCE (S41 SPECIES) OF TERRESTRIAL MAMMALS (EXCLUDING BATS) WITHIN LIME KILN FARM …………………………………………………………………………… 95 APPENDIX I.
    [Show full text]
  • Population Size and Mobility of Cicindela Maritima Dejean, 1822 (Coleoptera: Carabidae) 1-6 ©Gesellschaft Für Angewandte Carabidologie E.V
    ZOBODAT - www.zobodat.at Zoologisch-Botanische Datenbank/Zoological-Botanical Database Digitale Literatur/Digital Literature Zeitschrift/Journal: Angewandte Carabidologie Jahr/Year: 2012 Band/Volume: 9 Autor(en)/Author(s): Irmler Ulrich Artikel/Article: Population size and mobility of Cicindela maritima Dejean, 1822 (Coleoptera: Carabidae) 1-6 ©Gesellschaft für Angewandte Carabidologie e.V. download www.laufkaefer.de Population size and mobility of Cicindela maritima Dejean, 1822 (Coleoptera: Carabidae)1 Ulrich Irmler 1 Dedicated to Prof. Gerd Müller-Motzfeld (†) in remembrance of many interesting talks and excursions Abstract: In 2008, 2009, and 2010 the Dune Tiger Beetle (Cicindela maritima Dejean, 1822) was inve- stigated on a 110 m long beach north of the city of List on the barrier island of Sylt, northern Germany. Population size was determined using the mark-and-recatch method. Ten marked specimens were observed over periods of 0.5 to 1.5 hours and travel distances measured. Site population size was calculated to be 17 specimens in 2008, 12 – 13 in 2009, and 26 in 2010. Daily activity observations indicated maximum diurnal activity at 11:30 hrs CEST (12:30 hrs CET). Mean travel distance per hour was 125 m, mean range covered per day was 54 m. It can be derived from these data that a population of 100 specimens requires a one-kilometer stretch of beach and dune environment that is closed to public access. 1 Introduction shape of the white spots of the elytra (Fig. 1). In Ger- many, C. maritima is rarely found outside a narrow The Dune tiger Beetle (Cicindela maritima Dejean, coastal strip of sandy beaches and primary dunes.
    [Show full text]
  • Sites of Importance for Nature Conservation Wales Guidance (Pdf)
    Wildlife Sites Guidance Wales A Guide to Develop Local Wildlife Systems in Wales Wildlife Sites Guidance Wales A Guide to Develop Local Wildlife Systems in Wales Foreword The Welsh Assembly Government’s Environment Strategy for Wales, published in May 2006, pays tribute to the intrinsic value of biodiversity – ‘the variety of life on earth’. The Strategy acknowledges the role biodiversity plays, not only in many natural processes, but also in the direct and indirect economic, social, aesthetic, cultural and spiritual benefits that we derive from it. The Strategy also acknowledges that pressures brought about by our own actions and by other factors, such as climate change, have resulted in damage to the biodiversity of Wales and calls for a halt to this loss and for the implementation of measures to bring about a recovery. Local Wildlife Sites provide essential support between and around our internationally and nationally designated nature sites and thus aid our efforts to build a more resilient network for nature in Wales. The Wildlife Sites Guidance derives from the shared knowledge and experience of people and organisations throughout Wales and beyond and provides a common point of reference for the most effective selection of Local Wildlife Sites. I am grateful to the Wales Biodiversity Partnership for developing the Wildlife Sites Guidance. The contribution and co-operation of organisations and individuals across Wales are vital to achieving our biodiversity targets. I hope that you will find the Wildlife Sites Guidance a useful tool in the battle against biodiversity loss and that you will ensure that it is used to its full potential in order to derive maximum benefit for the vitally important and valuable nature in Wales.
    [Show full text]
  • Pleistocene Phylogeography and Cryptic Diversity of a Tiger Beetle
    Pleistocene phylogeography and cryptic diversity of a tiger beetle, Calomera littoralis, in North-Eastern Mediterranean and Pontic regions inferred from mitochondrial COI gene sequences Radomir Jaskuªa1, Tomasz Rewicz2, Mateusz Płóciennik1 and Michaª Grabowski1 1 Department of Invertebrate Zoology and Hydrobiology, University of Lodz, Łódź, Poland 2 Laboratory of Microscopic Imaging and Specialized Biological Techniques, University of Lodz, Łódź, Poland ABSTRACT Background. Calomera littoralis is a Palearctic species, widely distributed in Europe; inhabiting predominantly its Atlantic, Mediterranean and Black Sea coastlines. Methods. Its phylogeography on the Balkan Peninsula and on the north-western Black Sea coast was inferred using a 697 bp long portion of the mitochondrial COI gene, amplified from 169 individuals collected on 43 localities. Results. The results revealed two genetically divergent groups/lineages, the southern one inhabiting both the Balkan Peninsula and the Pontic Region and the northern one found exclusively in the Pontic Region. Species delimitation based on DNA barcoding gap suggested an interspecific level of divergence between these groups. Multivariate analysis of eight male and female morphometric traits detected no difference between the groups, implying they may represent cryptic species. The Bayesian time-calibrated reconstruction of phylogeny suggested that the lineages diverged ca. 2.3 Ma, in early Pleistocene. Discussion. The presence of the two genetically divergent groups results most likely from contemporary isolation of the Pontic basin from the Mediterranean that broke Submitted 30 April 2016 the continuous strip of coastal habitats inhabited by C. littoralis. Demographic analyses Accepted 23 May 2016 indicated that both lineages have been in demographic and spatial expansion since Published 19 July 2016 ca.
    [Show full text]
  • Site Management Plan for the Siuslaw Hairy-Necked Tiger Beetle
    SITE MANAGEMENT PLAN FOR THE SIUSLAW HAIRY-NECKED TIGER BEETLE (CICINDELA HIRTICOLLIS SIUSLAWENSIS GRAVES, KREJCI, AND GRAVES, 1988) ON NEW RIVER ACEC, COOS BAY BLM, OREGON Photo by Candace Fallon / The Xerces Society. Developed by Candace Fallon and Sarina Jepsen of The Xerces Society for Invertebrate Conservation SEPTEMBER 2015 U.S.D.A. FOREST SERVICE REGION 6 AND U.S.D.I. BUREAU OF LAND MANAGEMENT INTERAGENCY SPECIAL STATUS AND SENSITIVE SPECIES PROGRAM CONTENTS Goal of the Management Plan ....................................................................................................................................... 4 Section I: Status and Threats ......................................................................................................................................... 4 Conservation Status ................................................................................................................................................... 4 Taxonomy .................................................................................................................................................................. 4 Species Range, Distribution, Abundance, and Trends ............................................................................................... 4 Species Life History .................................................................................................................................................... 7 New River ACEC Site Description ..............................................................................................................................
    [Show full text]
  • Wirral Bio Audit 02 Task 1 Aug 09 Ch1+2.Doc
    1. PROJECT SPECIFICATION 1.1 The Wirral Biodiversity Audit Project, commissioned by Wirral Metropolitain Borough Council, was designed to develop a Biodiversity Evidence Base for the LDF and to review and update Wirral’s Local Wildlife sites selection criteria and guidelines. Under these two primary aims, a range of Tasks were identified, each of which has been addressed individually in subsequent sections of this report. Project Rationale 1.2 RPG 13, the Regional Planning Guidance for the North West, sets out the framework into which the LDF sits. The Regional Spatial Strategy (RSS – currently under review) sets out the framework for the environment under its heading of ‘ Enjoying and Managing the North West: Environmental Enhancement and Protection ’. This requires sound environmental management to be delivered across the North West by: • protecting and enhancing the most significant biodiversity, landscape, heritage and woodland assets; • land and water management; • the delivery of a green infrastructure – creating functional networks of greenspaces important not only for their environmental quality but also providing for recreation, opportunities for improving health, adaptation to climate change and other social and economic benefits; and, • ensuring that the coast is properly managed. 1.3 As far as biodiversity is concerned, the targets for the North West in the RSS are derived from the UK BAP. Local BAPs are seen as the key mechanism for implementing BAP targets and the regional biodiversity targets form a natural link between the two stages. 1.4 The LDF provides the local dimension within the RSS framework. It consists of a collection of statutory Development Documents that together set out the vision and spatial strategy for the future development and investment across the whole Borough.
    [Show full text]
  • Pleistocene Phylogeography of Tiger Beetle, Calomera Littoralis, in North-Eastern Mediterranean and Pontic Regions Inferred from Mitochondrial COI Gene Sequence
    A peer-reviewed version of this preprint was published in PeerJ on 19 July 2016. View the peer-reviewed version (peerj.com/articles/2128), which is the preferred citable publication unless you specifically need to cite this preprint. Jaskuła R, Rewicz T, Płóciennik M, Grabowski M. 2016. Pleistocene phylogeography and cryptic diversity of a tiger beetle, Calomera littoralis, in North-Eastern Mediterranean and Pontic regions inferred from mitochondrial COI gene sequences. PeerJ 4:e2128 https://doi.org/10.7717/peerj.2128 Pleistocene phylogeography of tiger beetle, Calomera littoralis, in North-Eastern Mediterranean and Pontic regions inferred from mitochondrial COI gene sequence Radomir Jaskuła, Tomasz Rewicz, Mateusz Płóciennik, Michał Grabowski Background. Calomera littoralis is a Palearctic species, widely distributed in Europe; inhabiting predominantly its Atlantic, Mediterranean and Black Sea coastlines. Methods. Its phylogeography on the Balkan Peninsula and on the north-western Black Sea coast was inferred using a 697 bp long portion of the mitochondrial COI gene, amplified from 169 individuals collected on 43 localities. Results. The results revealed two genetically divergent groups/lineages, the southern one inhabiting both the Balkan Peninsula and the Pontic Region and the northern one found exclusively in the Pontic Region. Species delimitation based on DNA barcoding gap suggested an interspecific level of divergence between these groups. Multivariate analysis of eight male and female morphometric traits detected no difference between the groups, implying they may represent cryptic species. The Bayesian time- calibrated reconstruction of phylogeny suggested that the lineages diverged ca. 2.3 Ma, in early Pleistocene. Discussion. This might result from contemporary isolation of the Pontic basin from the Mediterranean that broke the continuous strip of coastal habitats inhabited by C.
    [Show full text]
  • FJALOR I Emrave Të Kafshëve Të Shqipërisë
    1 Prof. Dr. Dhimitër Dhora Universiteti i Shkodrës “Luigj Gurakuqi” Fakulteti i Shkencave të Natyrës Departamenti i Biologji-Kimisë FJALOR i emrave të kafshëve të Shqipërisë latinisht-shqip-anglisht Botimet “Camaj-Pipa” 2 Prof. Dr. Dhimitër Dhora Fjalor i emrave të kafshëve të Shqipërisë latinisht-shqip-anglisht _________________________________________________ Grafika: Gjergj Spathari ISBN 978-99956-02-61-1 ©Copyright: Dh. Dhora 3 Përmbajtja Parathënie .................................................. 5 Latinisht-shqip-anglisht ............................. 7 Shqip-latinisht ............................................ 142 Anglisht-latinisht ....................................... 211 Latinisht, në renditje sistematike ............... 248 Literaturë .................................................... 284 4 Parathënie Në shekullin e fundit është bërë një punë e madhe për grum- bullimin dhe pasqyrimin në fjalorë të emrave shqip të kafshëve dhe këtu mund të veçoj fjalorët e Gazullit (1942) dhe Demës (2005), Fjalorin e Shqipes së Sotme (2002) e tj. Nga ana tjetër në shumë fauna të ndryshme të Shqipërisë janë dhënë edhe emrat shqip të llojeve të kafshëve, si tek Bino e tjerë (2006) për shpendët dhe gjitarët, Poljakov e tjerë (1958) dhe Rakaj (1995) për peshqit e tjerë. Mirëpo në të gjitha rastet vërehet mungesa e një bashkëpunimi të frytshëm të gjuhëtarëve me specialistët faunistë, çka duket tek mungesa e specifikimit dhe shpjegimit të saktë të emrave, ose tek varfëria e emrave, për shkak të mos- njohjes së fondit të tyre. Nevojat për të zgjidhur në tërësi këto probleme dhe për ti dhënë lexuesve një fjalor sa më të plotë, kanë qenë motivet kryesore të punës për hatimin e tij dhe për të qënë më i vlefshëm, u hartua në tre gjuhë, latinisht – shqip – anglisht. Ky fjalor përmban emrat e 1140 llojeve të kafshëve të Shqipërisë.
    [Show full text]
  • Do Tiger Beetles Use the Same Strategies When Hunting Different Types of Prey?
    Catch fast and kill quickly: do tiger beetles use the same strategies when hunting different types of prey? Tomasz Rewicz* and Radomir Jaskuªa* Department of Invertebrate Zoology and Hydrobiology/Faculty of Biology and Environmental Protection, University of Lodz, Łódź, Poland * These authors contributed equally to this work. ABSTRACT Background. Tiger beetles (Coleoptera: Cicindelidae) are fast running predatory insects preying on different small insects and other terrestrial arthropods. Prey is located by sight and captured after short and fast pursuit interspersed with pause-and-look behaviour. At least some tiger beetle species can recognise the size and location of prey using memory, which probably allows them to achieve greater hunting success. Material and Methods. Two eurytopic tiger beetle species known to occur in different types of habitat were used in the study: Cicindela hybrida hybrida, a very common central European beetle found even in artificial habitats such as sandy roads or gravel pits, and Calomera littoralis nemoralis, a species widely distributed in southern European countries and occurring on sandy sea beaches, in salt marshes, as well as on sandy banks of rivers and lakes. Both species are very similar in body size. Specimens used in the study were collected in the field and later tested in the laboratory. We checked whether tiger beetles use different hunting strategies when attacking prey of different sizes and abilities to escape as well as whether the sex of the studied species makes a difference in its hunting behaviour. Results. The hunting strategies of both tiger beetle species consist of the following main phases: identification, pursuit (often with stops), attack, and optional release of the prey, and then the secondary attack, abandonment of the prey, or consumption of Submitted 31 March 2018 the prey.
    [Show full text]
  • Broads Biodiversity Audit
    October 2011 Biodiversity Audit and Tolerance Sensitivity Mapping for the Broads The Broads Biodiversity Audit is a Broads Authority initiative, undertaken by the University of East Anglia, supported by Natural England and working with the conservation organisations in the Broads area. Project manager Andrea Kelly, Senior Ecologist (Broads Authority) Steering group: Andrea Kelly (Broads Authority) Erica Murray (Broads Authority) Dorothy Casey (Suffolk Wildlife Trust) Martin Horlock (Norfolk Biodiversity Information Service) Phil Pearson (Royal Society for the Preservation of Birds) Scott Perkin (Norfolk Biodiversity Partnership) Martin Sanford (Suffolk Biological Records Centre) Hannah Wallace (Natural England) Stuart Warrington (National Trust) Citation: C. Panter, H. Mossman, P. M. Dolman (2011) Biodiversity Audit and Tolerance Sensitivity Mapping for the Broads. Broads Authority Report. University of East Anglia, Norwich. Published By: School of Environmental Sciences, University of East Anglia, Norwich, NR4 7TJ, UK ISBN: 978-0-9567812-1-5 © Copyright rests with the Broads Authority. Terms and Conditions for use of maps in this document i) You are granted a non-exclusive, royalty free, revocable licence solely to view the licensed data for non-commercial purposes for the period during which the Broads Authority makes it available. ii) You are not permitted to copy, sub licence, distribute, sell or otherwise make available the Licensed Data to third parties in any form iii) Third party rights to enforce the terms of this licence shall
    [Show full text]