Research.Pdf

Total Page:16

File Type:pdf, Size:1020Kb

Research.Pdf AGGRESSIVE CALLING IN TREEFROGS A Dissertation presented to the Faculty of the Graduate School At the University of Missouri In Partial Fulfillment Of the Requirements for the Degree Doctor of Philosophy By MICHAEL STEWART REICHERT Dr. H. Carl Gerhardt, Dissertation Supervisor DECEMBER 2011 The undersigned, appointed by the dean of the Graduate School, have examined the dissertation entitled AGGRESSIVE CALLING IN TREEFROGS Presented by Michael Stewart Reichert A candidate for the degree of Doctor of Philosophy And hereby certify that, in their opinion, it is worthy of acceptance. H. Carl Gerhardt, Ph.D. Reginald Cocroft, Ph.D. Raymond Semlitsch, Ph.D. David Geary, Ph.D. ACKNOWLEDGEMENTS This work belongs to many people. I would first like to thank my family for always supporting my interests and doing everything they could to make sure I succeeded. Thanks to my Mom, Dad, Elizabeth, Rebecca, Will, Grandma and Grandpa Gerstle and Grandma and Grandpa Reichert. The highest acknowledgement must go to my wife, Flavia Barbosa, whom I met very early on in graduate school. She has been with me throughout the entire process and my work would be far inferior without her. We went through some very challenging times early in graduate school, and without each other’s support, I’m not sure we would have made it to where we are today. Flavia inspired me early on with her passion for science, and has had as much of an impact on my work as anyone. She’s been there with me in the field, running experiments, reading every draft I ever wrote and helping me keep a positive mental attitude. Not to mention that she is a delight to be around and has made my Ph.D. experience some of the best years of my life. I’m extremely fortunate to have her. Carl Gerhardt deserves nothing but the highest praise as an advisor. I can’t thank him enough first of all for taking me in, and then for setting an outstanding example as a scientist. He very carefully helped me get the ball rolling on my projects and has consistently provided insightful commentary when needed. I knew I’d be getting help from a great intellect when I signed up to come to MU, but I had no idea how fortunate I ii would be to be working with such a great naturalist as well. He taught me a lot while we were working in the field, and I’m grateful for that. I would also like to thank the other members of my committee: Rex Cocroft, Ray Semlitsch and Dave Geary. It has been a privilege to have such a collection of scientific talent to work with, and each of them has been very helpful in giving their own perspective on my studies. On the same note, I have been very lucky to have such talented labmates. I’m very grateful to them all for their comments on my work, help collecting frogs in the field, for enlightening me with their own interesting work, and just for being pleasant and professional to work with. So thanks to Noah Gordon, Jennifer Henderson, Sarah Humfeld, Katy Klymus, Carlos Martínez-Rivera, Mitch Tucker, and Jessica Wood. I started this work at the University of Texas and I am very grateful to Mike Singer for serving as my advisor while I was there. Although we didn’t have a lot in common in terms of research interests, I’m very appreciative that Mike was willing to give me a chance. I’d be in a very different place today if it weren’t for him. He also is by far the most entertaining person I have met in science, in addition to being an excellent researcher. For various assistance and advice on my research, thanks to Mark Bee, Ximena Bernal, John Christy, Richard Daniel, Zac Ernst, Michael Greenfield, Kit Murphy, Rachel Page, Mike Ryan and members of his lab, Johannes Schul, Josh Schwartz, Karen Warkentin and members of her lab, Allison Welch, Kent Wells, Mary Jane West- iii Eberhard, Lori Wollerman and Ping Yu. Several anonymous reviewers and journal editors also provided helpful comments on previous versions of those chapters in this dissertation that have been published. Thanks also to the support staff at the Smithsonian Tropical Research Institute in Panama and the Organization for Tropical Studies (especially Ronald Vargas) at La Selva, Costa Rica. The governments of Panama and Costa Rica as well as the Missouri Department of Conservation provided permission to carry out these studies. The support staff at the University of Missouri has been fantastic as well. Thanks to Shannon Dennis, Nila Emerich, Jan Gorman-McAdams, Josh Hartley, Steve Heinrich, Tyeece Little, Alan Marshall, Amy Miles, Barb Sonderman and Pat Willis. It has been a privilege to work with a lot of talented assistants and I’d like to especially thank them all. These people put in a whole lot of work on my project, and I would have never gotten nearly as much done without them. So thank you to Tanya Drew, Nick Fowler, Tim Golden, Daniel Gruhn, Carmen Harjoe, Kathryn Kettenbach, Will Li, and Benjamin Nickelson. Thanks also to other undergrads in the lab that I didn’t work with directly but that provided assistance collecting or caring for frogs: Brice Grunert, Erin Murray, Si Yol Yi and all the rest. I have been incredibly fortunate to receive financial support from the following organizations, whom I gratefully acknowledge in chronological order: the Carl Gottfried Hamilton Fellowship Fund, Smithsonian Institution 10 week predoctoral fellowship, Animal Behavior Society student research grant, a Graduate Assistance in Areas of iv National Need fellowship from the University of Missouri and the US Department of Education, research grant from the Chicago Herpetological Society, travel grant from the US National Science Foundation and the Animal Behavior Society, Gaige Fund Award from the American Society for Ichthyologists and Herpetologists, Research Fellowship from the Organization for Tropical Studies (the Lillian and Murray Slatkin Fellowship and the Christiane and Christopher Tyson Fellowship), a Doctoral Dissertation Improvement Grant (IOS–1010791) from the US National Science Foundation, and a Dean Metter Award from the Society for the Study of Amphibians and Reptiles. v TABLE OF CONTENTS ACKNOWLEDGEMENTS ........................................................................................................ii LIST OF TABLES .................................................................................................................... ix LIST OF FIGURES .................................................................................................................. xi ABSTRACT .......................................................................................................................... xiii CHAPTER 1. General introduction ...................................................................................... 1 CHAPTER 2. Aggressive thresholds in Dendropsophus ebraccatus: Habituation and sensitization to different call types Abstract ................................................................................................................. 13 Introduction .......................................................................................................... 14 Methods ................................................................................................................ 19 Results ................................................................................................................... 27 Discussion.............................................................................................................. 29 CHAPTER 3. Effects of multiple-speaker playbacks on aggressive calling behavior in the treefrog Dendropsophus ebraccatus Abstract ................................................................................................................. 43 Introduction .......................................................................................................... 44 Methods ................................................................................................................ 47 Results ................................................................................................................... 56 Discussion.............................................................................................................. 62 vi CHAPTER 4. Call timing is determined by response call type, but not by stimulus properties, in the treefrog Dendropsophus ebraccatus Abstract ................................................................................................................. 80 Introduction .......................................................................................................... 81 Methods ................................................................................................................ 85 Results ................................................................................................................... 96 Discussion............................................................................................................ 101 CHAPTER 5. Aggressive calls improve leading callers' attractiveness in the treefrog Dendropsophus ebraccatus Abstract ............................................................................................................... 113 Introduction ........................................................................................................ 114 Methods .............................................................................................................. 119 Results ................................................................................................................
Recommended publications
  • Table of Contents
    Table of Contents Page LIST OF ACRONYMS a EXECUTIVE SUMMARY I 1.0 Introduction 1 1.1 Scope of Study 1 1.2 Background – Volta River Authority 2 1.3 Proposed Aboadze-Volta Transmission Line Project (AVTP) 3 1.4 Legal, Regulatory and Policy Considerations 5 1.5 Future developments by VRA 8 2.0 Description of proposed development 10 2.1 Pre-Construction Activities 11 2.2 Construction Phase Activities 12 2.3 Operational Phase Activities 17 2.3.1 Other Operational Considerations 20 3.0 Description of Existing Environments 21 3.1 Bio-Physical Environment 21 3.1.1 Climate 21 3.1.2 Flora 25 3.1.3 Fauna 35 3.1.4 Water Resources 43 3.1.5 Geology and Soils 44 3.1.6 General Land Use 51 3.2 Socio-Economic/Cultural Environment 51 3.2.1 Methodology 53 3.2.2 Profiles of the Districts in the Project Area 54 3.2.2(a) Shama - Ahanta East Metropolitan Area 54 3.2.2(b) Komenda - Edina - Eguafo - Abirem (KEEA) District 58 i 3.2.2(c) Mfantseman District 61 3.2.2(d) Awutu-Effutu-Senya District 63 3.2.2(e) Tema Municipal Area 65 3.2.2(f) Abura-Asebu-Kwamankese 68 3.2.2(g) Ga District 71 3.2.2(h) Gomoa District 74 3.3 Results of Socio-Economic Surveys 77 (Communities, Persons and Property) 3.3.1 Information on Affected Persons and Properties 78 3.3.1.1 Age Distribution of Affected Persons 78 3.3.1.2 Gender Distribution of Affected Persons 79 3.3.1.3 Marital Status of Affected Persons 80 3.3.1.4 Ethnic Composition of Afected Persons 81 3.3.1.5 Household Size/Dependents of Affected Persons 81 3.3.1.6 Religious backgrounds of Affected Persons 82 3.3.2 Economic Indicators
    [Show full text]
  • Bioseries12-Amphibians-Taita-English
    0c m 12 Symbol key 3456 habitat pond puddle river stream 78 underground day / night day 9101112131415161718 night altitude high low vegetation types shamba forest plantation prelim pages ENGLISH.indd ii 2009/10/22 02:03:47 PM SANBI Biodiversity Series Amphibians of the Taita Hills by G.J. Measey, P.K. Malonza and V. Muchai 2009 prelim pages ENGLISH.indd Sec1:i 2009/10/27 07:51:49 AM SANBI Biodiversity Series The South African National Biodiversity Institute (SANBI) was established on 1 September 2004 through the signing into force of the National Environmental Management: Biodiversity Act (NEMBA) No. 10 of 2004 by President Thabo Mbeki. The Act expands the mandate of the former National Botanical Institute to include responsibilities relating to the full diversity of South Africa’s fauna and ora, and builds on the internationally respected programmes in conservation, research, education and visitor services developed by the National Botanical Institute and its predecessors over the past century. The vision of SANBI: Biodiversity richness for all South Africans. SANBI’s mission is to champion the exploration, conservation, sustainable use, appreciation and enjoyment of South Africa’s exceptionally rich biodiversity for all people. SANBI Biodiversity Series publishes occasional reports on projects, technologies, workshops, symposia and other activities initiated by or executed in partnership with SANBI. Technical editor: Gerrit Germishuizen Design & layout: Elizma Fouché Cover design: Elizma Fouché How to cite this publication MEASEY, G.J., MALONZA, P.K. & MUCHAI, V. 2009. Amphibians of the Taita Hills / Am bia wa milima ya Taita. SANBI Biodiversity Series 12. South African National Biodiversity Institute, Pretoria.
    [Show full text]
  • Aspects of the Ecology and Conservation of Frogs in Urban Habitats of South Africa
    Frogs about town: Aspects of the ecology and conservation of frogs in urban habitats of South Africa DJD Kruger 20428405 Thesis submitted for the degree Philosophiae Doctor in Zoology at the Potchefstroom Campus of the North-West University Supervisor: Prof LH du Preez Co-supervisor: Prof C Weldon September 2014 i In loving memory of my grandmother, Kitty Lombaard (1934/07/09 – 2012/05/18), who has made an invaluable difference in all aspects of my life. ii Acknowledgements A project with a time scale and magnitude this large leaves one indebted by numerous people that contributed to the end result of this study. I would like to thank the following people for their invaluable contributions over the past three years, in no particular order: To my supervisor, Prof. Louis du Preez I am indebted, not only for the help, guidance and support he has provided throughout this study, but also for his mentorship and example he set in all aspects of life. I also appreciate the help of my co-supervisor, Prof. Ché Weldon, for the numerous contributions, constructive comments and hours spent on proofreading. I owe thanks to all contributors for proofreading and language editing and thereby correcting my “boerseun” English grammar but also providing me with professional guidance. Prof. Louis du Preez, Prof. Ché Weldon, Dr. Andrew Hamer, Dr. Kirsten Parris, Prof. John Malone and Dr. Jeanne Tarrant are all dearly thanked for invaluable comments on earlier drafts of parts/the entirety of this thesis. For statistical contributions I am especially also grateful to Dr. Andrew Hamer for help with Bayesian analysis and to the North-West Statistical Services consultant, Dr.
    [Show full text]
  • Congolius, a New Genus of African Reed Frog Endemic to The
    www.nature.com/scientificreports OPEN Congolius, a new genus of African reed frog endemic to the central Congo: A potential case of convergent evolution Tadeáš Nečas1,2*, Gabriel Badjedjea3, Michal Vopálenský4 & Václav Gvoždík1,5* The reed frog genus Hyperolius (Afrobatrachia, Hyperoliidae) is a speciose genus containing over 140 species of mostly small to medium-sized frogs distributed in sub-Saharan Africa. Its high level of colour polymorphism, together with in anurans relatively rare sexual dichromatism, make systematic studies more difcult. As a result, the knowledge of the diversity and taxonomy of this genus is still limited. Hyperolius robustus known only from a handful of localities in rain forests of the central Congo Basin is one of the least known species. Here, we have used molecular methods for the frst time to study the phylogenetic position of this taxon, accompanied by an analysis of phenotype based on external (morphometric) and internal (osteological) morphological characters. Our phylogenetic results undoubtedly placed H. robustus out of Hyperolius into a common clade with sympatric Cryptothylax and West African Morerella. To prevent the uncovered paraphyly, we place H. robustus into a new genus, Congolius. The review of all available data suggests that the new genus is endemic to the central Congolian lowland rain forests. The analysis of phenotype underlined morphological similarity of the new genus to some Hyperolius species. This uniformity of body shape (including cranial shape) indicates that the two genera have either retained ancestral morphology or evolved through convergent evolution under similar ecological pressures in the African rain forests. African reed frogs, Hyperoliidae Laurent, 1943, are presently encompassing almost 230 species in 17 genera.
    [Show full text]
  • Characterization of an Alsodes Pehuenche Breeding Site in the Andes of Central Chile
    Herpetozoa 33: 21–26 (2020) DOI 10.3897/herpetozoa.33.e49268 Characterization of an Alsodes pehuenche breeding site in the Andes of central Chile Alejandro Piñeiro1, Pablo Fibla2, Carlos López3, Nelson Velásquez3, Luis Pastenes1 1 Laboratorio de Genética y Adaptación a Ambientes Extremos, Departamento de Biología y Química, Facultad de Ciencias Básicas, Universidad Católica del Maule. Av. San Miguel #3605, Talca, Chile 2 Laboratorio de Genética y Evolución, Departamento de Ciencias Ecológicas, Facultad de Ciencias, Universidad de Chile. Las Palmeras #3425, Santiago, Chile 3 Laboratorio de Comunicación Animal, Departamento de Biología y Química, Facultad de Ciencias Básicas, Universidad Católica del Maule, Av. San Miguel #3605, Talca, Chile http://zoobank.org/E7A8C1A6-31EF-4D99-9923-FAD60AE1B777 Corresponding author: Luis Pastenes ([email protected]) Academic editor: Günter Gollmann ♦ Received 10 December 2019 ♦ Accepted 21 March 2020 ♦ Published 7 April 2020 Abstract Alsodes pehuenche, an endemic anuran that inhabits the Andes of Argentina and Chile, is considered “Critically Endangered” due to its restricted geographical distribution and multiple potential threats that affect it. This study is about the natural history of A. pe- huenche and the physicochemical characteristics of a breeding site located in the Maule mountain range of central Chile. Moreover, the finding of its clutches in Chilean territory is reported here for the first time. Finally, a description of the number and morphology of these eggs is provided. Key Words Alsodidae, Andean, Anura, endemism, highland wetland, threatened species The Andean border crossing “Paso Internacional Pehu- and long roots arranged in the form of cushions, hence the enche” (38°59'S, 70°23'W, 2553 m a.s.l.) is a bioceanic name “cushion plants” (Badano et al.
    [Show full text]
  • Mannophryne Olmonae) Catherine G
    The College of Wooster Libraries Open Works Senior Independent Study Theses 2014 A Not-So-Silent Spring: The mpI acts of Traffic Noise on Call Features of The loB ody Bay Poison Frog (Mannophryne olmonae) Catherine G. Clemmens The College of Wooster, [email protected] Follow this and additional works at: https://openworks.wooster.edu/independentstudy Part of the Other Environmental Sciences Commons Recommended Citation Clemmens, Catherine G., "A Not-So-Silent Spring: The mpI acts of Traffico N ise on Call Features of The loodyB Bay Poison Frog (Mannophryne olmonae)" (2014). Senior Independent Study Theses. Paper 5783. https://openworks.wooster.edu/independentstudy/5783 This Senior Independent Study Thesis Exemplar is brought to you by Open Works, a service of The oC llege of Wooster Libraries. It has been accepted for inclusion in Senior Independent Study Theses by an authorized administrator of Open Works. For more information, please contact [email protected]. © Copyright 2014 Catherine G. Clemmens A NOT-SO-SILENT SPRING: THE IMPACTS OF TRAFFIC NOISE ON CALL FEATURES OF THE BLOODY BAY POISON FROG (MANNOPHRYNE OLMONAE) DEPARTMENT OF BIOLOGY INDEPENDENT STUDY THESIS Catherine Grace Clemmens Adviser: Richard Lehtinen Submitted in Partial Fulfillment of the Requirement for Independent Study Thesis in Biology at the COLLEGE OF WOOSTER 2014 TABLE OF CONTENTS I. ABSTRACT II. INTRODUCTION…………………………………………...............…...........1 a. Behavioral Effects of Anthropogenic Noise……………………….........2 b. Effects of Anthropogenic Noise on Frog Vocalization………………....6 c. Why Should We Care? The Importance of Calling for Frogs..................8 d. Color as a Mode of Communication……………………………….…..11 e. Biology of the Bloody Bay Poison Frog (Mannophryne olmonae)…...13 III.
    [Show full text]
  • Presence of Kassina Cassinoides in Senegal
    ZOBODAT - www.zobodat.at Zoologisch-Botanische Datenbank/Zoological-Botanical Database Digitale Literatur/Digital Literature Zeitschrift/Journal: Herpetozoa Jahr/Year: 2005 Band/Volume: 18_3_4 Autor(en)/Author(s): Böhme Wolfgang Artikel/Article: Presence of Kassina cassinoides (BOULENGER, 1903) in Senegal 177-178 ©Österreichische Gesellschaft für Herpetologie e.V., Wien, Austria, download unter www.biologiezentrum.at SHORT NOTE HERPETOZOA 18 (3/4) Wien, 30. Dezember 2005 SHORT NOTE 177 Presence of Kassina cassinoides (BOULENGER, 1903) in Senegal Kassina cassinoides (BOULENGER, 1903) was described on the basis of a single female from MacCarthy Island, The Gambia. ANDERSSON (1937) found it to be very com- mon at this place but otherwise it is rare and seldomly collected (SCHIOTZ 1967; RODEL 2000). Recently, WANGER (2005) found this species again in The Gambia, west of the type locality, viz. in the Kiang West National Park. Though locally common, the Fig. 2: Kassina cassinoides (BOULENGER, 1903) distribution records all over West Africa at Siminti, Niokolo Koba NP, SE Senegal seem to be rather disjunct (RODEL 2000). (Photo: I. ANTON). The nearest known record locality of K. cassinoides east of MacCarthy Island and JOGER & LAMBERT (2002) who report Kas- the only one in Mali is Diafarabé (SCHI0TZ sina fusca SCHI0TZ, 1967 and K. senegalen- 1977; JOGER & LAMBERT 1996) (see fig. 1). sis (DuMÉRiL & BiBRON, 1841) but not K. All of the few remaining records are situat- cassinoides from there]. The presence of K. ed east of Diafarabé in Burkina Faso, Ivory cassinoides in Senegal is documented here Coast, Ghana and Cameroon (see map in for the first time.
    [Show full text]
  • Miocene Plio-Pleistocene Oligocene Eocene Paleocene Cretaceous
    Phrynomantis microps Hemisus sudanensis Hemisus marmoratus Balebreviceps hillmani Breviceps mossambicus Breviceps adspersus Breviceps montanus Breviceps fuscus Breviceps gibbosus Breviceps macrops Breviceps namaquensis Breviceps branchi Spelaeophryne methneri Probreviceps loveridgei Probreviceps uluguruensis Probreviceps durirostris Probreviceps sp. Nguru Probreviceps sp. Rubeho Probreviceps sp. Kigogo Probreviceps sp. Udzungwa Probreviceps rungwensis Probreviceps macrodactylus Callulina shengena Callulina laphami Callulina dawida Callulina kanga Callulina sp lowland Callulina sp Rubeho Callulina hanseni Callulina meteora Callulina stanleyi Callulina kisiwamsitu Callulina kreffti Nyctibates corrugatus Scotobleps gabonicus Astylosternus laticephalus Astylosternus occidentalis Trichobatrachus robustus Astylosternus diadematus Astylosternus schioetzi Astylosternus batesi Leptodactylodon mertensi Leptodactylodon erythrogaster Leptodactylodon perreti Leptodactylodon axillaris Leptodactylodon polyacanthus Leptodactylodon bicolor Leptodactylodon bueanus Leptodactylodon ornatus Leptodactylodon boulengeri Leptodactylodon ventrimarmoratus Leptodactylodon ovatus Leptopelis parkeri Leptopelis macrotis Leptopelis millsoni Leptopelis rufus Leptopelis argenteus Leptopelis yaldeni Leptopelis vannutellii Leptopelis susanae Leptopelis gramineus Leptopelis kivuensis Leptopelis ocellatus Leptopelis spiritusnoctis Leptopelis viridis Leptopelis aubryi Leptopelis natalensis Leptopelis palmatus Leptopelis calcaratus Leptopelis brevirostris Leptopelis notatus
    [Show full text]
  • Evaluating Methods for Phylogenomic Analyses, and a New Phylogeny for a Major Frog Clade
    Molecular Phylogenetics and Evolution 119 (2018) 128–143 Contents lists available at ScienceDirect Molecular Phylogenetics and Evolution journal homepage: www.elsevier.com/locate/ympev Evaluating methods for phylogenomic analyses, and a new phylogeny for a MARK major frog clade (Hyloidea) based on 2214 loci ⁎ Jeffrey W. Streichera,b, , Elizabeth C. Millera, Pablo C. Guerreroc,d, Claudio Corread, Juan C. Ortizd, Andrew J. Crawforde, Marcio R. Pief, John J. Wiensa a Department of Ecology and Evolutionary Biology, University of Arizona, Tucson, AZ 85721, USA b Department of Life Sciences, The Natural History Museum, London SW7 5BD, UK c Institute of Ecology and Biodiversity, Faculty of Sciences, University of Chile, 780-0024 Santiago, Chile d Facultad de Ciencias Naturales & Oceanográficas, Universidad de Concepción, Concepción, Chile e Department of Biological Sciences, Universidad de los Andes, A.A. 4976 Bogotá, Colombia f Departamento de Zoologia, Universidade Federal do Paraná, Curitiba, Paraná, Brazil ARTICLE INFO ABSTRACT Keywords: Phylogenomic approaches offer a wealth of data, but a bewildering diversity of methodological choices. These Amphibia choices can strongly affect the resulting topologies. Here, we explore two controversial approaches (binning Anura genes into “supergenes” and inclusion of only rapidly evolving sites), using new data from hyloid frogs. Hyloid Biogeography frogs encompass ∼53% of frog species, including true toads (Bufonidae), glassfrogs (Centrolenidae), poison Naive binning frogs (Dendrobatidae), and treefrogs (Hylidae). Many hyloid families are well-established, but relationships Phylogenomics among these families have remained difficult to resolve. We generated a dataset of ultraconserved elements Statistical binning (UCEs) for 50 ingroup species, including 18 of 19 hyloid families and up to 2214 loci spanning > 800,000 aligned base pairs.
    [Show full text]
  • A New Species of Running Frog, (Kassina, Anura: Hyperoliidae) from Unguja Island, Zanzibar, Tanzania
    African Journal of Herpetology, 2006 55(2): 113-122. ©Herpetological Association of Africa Original article A new species of Running Frog, (Kassina, Anura: Hyperoliidae) from Unguja Island, Zanzibar, Tanzania CHARLES A. MSUYA1, KIM M. HOWELL1, AND ALAN CHANNING2 1PO Box 35064, Department of Zoology & Wildlife Conservation, University of Dar es Salaam, Dar es Salaam, Tanzania 2Biodiversity and Conservation Biology Department, University of the Western Cape, Private Bag X17, Bellville 7535, South Africa Abstract.—A new species of Kassina is described from Unguja Island, Zanzibar, East Africa. It is dis- tinguished from other species in its genus by an advertisement call that is pulsed, frequency modulated, and with a longer duration than that of K. senegalensis or K. maculata, and its grey and white reticulat- ed colour pattern. The gular strap, like that in K. senegalensis, is continuous with the thick, pleated skin of the vocal pouch, but unlike K. senegalensis, it is rounded and truncated posteriorly. In contrast, the gular gland of K. maculata is rounded and free at its posterior end. The finger and toe tips are not dis- tinct disks, but are only very slightly rounded and truncated when viewed from above. In lateral view, the tips are noticeably flattened. Key words.—Africa, Tanzania, new species, Kassina, Zanzibar, Jozani-Chwaka National Park he Running Frogs (Kassina spp.) are mem- Pakenham 1941; Pakenham 1983). The only Tbers of the Hyperoliidae, a family that is distinctive endemic mammal on Zanzibar, the restricted to sub-Saharan Africa. In eastern Zanzibar Red Colobus, has been considered a Africa several species of Kassina have been separate species by some authors (Corbet & recorded (Channing & Howell 2006).
    [Show full text]
  • Articles-38747 Archivo 01.Pdf
    MINISTERIO DE EDUCACIÓN PUBLICA Ministro de Educación Pública Carolina Schmidt Zaldívar Subsecretario de Educación Fernando Rojas Ochagavía Dirección de Bibliotecas, Magdalena Krebs Kaulen Archivo y Museos Diagramación Herman Núñez Impreso por BOLETÍN DEL MUSEO NACIONAL DE HISTORIA NATURAL CHILE Director Claudio Gómez Papic Editor Herman Núñez Comité Editor Pedro Báez R. Mario Elgueta D. Gloria Rojas V. David Rubilar R. Rubén Stehberg L. (c) Dirección de Bibliotecas, Archivos y Museos Inscripción N° XXXXXXX Edición de 100 ejemplares Museo Nacional de Historia Natural Casilla 787 Santiago de Chile www.mnhn.cl Se ofrece y acepta canje Exchange with similar publications is desired Échange souhaité Wir bitten um Austach mit aehnlichen Fachzeitschriften Si desidera il cambio con publicazioni congeneri Deseja-se permuta con as publicações congéneres Este volumen se encuentra disponible en soporte electrónico como disco compacto y en línea en Contribución del Museo Nacional de Historia Natural al Programa del Conocimiento y Preservación de la Diversidad Biológica Las opiniones vertidas en cada uno de los artículos publicados son de excluisiva responsabilidad del autor respectivo BOLETÍN DEL MUSEO NACIONAL DE HISTORIA NATURAL CHILE 2013 62 SUMARIO CLAUDIO GÓMEZ P. Editorial ............................................................................................................................................................................6 ANDRÉS O. TAUCARE-RÍOS y WALTER SIELFELD Arañas (Arachnida: Araneae) del Extremo Norte de Chile ...............................................................................................7
    [Show full text]
  • Biodiversity in Sub-Saharan Africa and Its Islands Conservation, Management and Sustainable Use
    Biodiversity in Sub-Saharan Africa and its Islands Conservation, Management and Sustainable Use Occasional Papers of the IUCN Species Survival Commission No. 6 IUCN - The World Conservation Union IUCN Species Survival Commission Role of the SSC The Species Survival Commission (SSC) is IUCN's primary source of the 4. To provide advice, information, and expertise to the Secretariat of the scientific and technical information required for the maintenance of biologi- Convention on International Trade in Endangered Species of Wild Fauna cal diversity through the conservation of endangered and vulnerable species and Flora (CITES) and other international agreements affecting conser- of fauna and flora, whilst recommending and promoting measures for their vation of species or biological diversity. conservation, and for the management of other species of conservation con- cern. Its objective is to mobilize action to prevent the extinction of species, 5. To carry out specific tasks on behalf of the Union, including: sub-species and discrete populations of fauna and flora, thereby not only maintaining biological diversity but improving the status of endangered and • coordination of a programme of activities for the conservation of bio- vulnerable species. logical diversity within the framework of the IUCN Conservation Programme. Objectives of the SSC • promotion of the maintenance of biological diversity by monitoring 1. To participate in the further development, promotion and implementation the status of species and populations of conservation concern. of the World Conservation Strategy; to advise on the development of IUCN's Conservation Programme; to support the implementation of the • development and review of conservation action plans and priorities Programme' and to assist in the development, screening, and monitoring for species and their populations.
    [Show full text]