Ketamine (C13h16clno)

Total Page:16

File Type:pdf, Size:1020Kb

Ketamine (C13h16clno) Ketamine (C13H16ClNO) Ketamine General Facts Molecular formular: C13H16ClNO Systematic name: 2-(2-chlorophenyl)-2-(methylamino)cyclohexan-1-one (IUPAC name) Alternatenames: a. In medical jargon: Ketaject, Ketanest, dl-Ketamine, Ketalar, CI 581 base, CLSTA 20, Ketolar b. In drug jargon: special K, green, jet, K, and super C Molar mass: 237.092042 g/mol Appearance: white powder, colorless liquid History and Discovery Initial genesis: finding a substitude for Morphin as a anaesthetic initially: Heroin, however too addicting temporary substitute: phencyclidine (PCP) Phencyclidine strong analgesic properties, hallucinogenic effects leading to an introduction in drug world as „angel dust“ 1962: Ketamine as drug with milder side-effects but similar structure 1964: experiments on paid prisoners, first suspicion on effects on psyche 1966: patent by Clarke-Davis 1970: officially in use proven as safe and very effective anaesthetic and painkiller for humans and animals effects strike quickly and does not cause depression or collapse of airways Used for casualties of traffic accidents or battlefield victims Historical usage: Vietnam war as anaesthetic however, still with psychic side effects Synthesis (following the mechanism developed by Calvin L. Stevens) Initial reagent: cyclopentyl Grignard Step 0: Producing cyclopentyl Grignard Reacting cyclopentyl bromide with magnesium in solvent (ether or THF) Best results: distill solvent from Grignard under vacuum and replace with hydrocarbon solvent (e.g. benzene) Step 1: processing to (o-chlorophenyl)-cyclopentyl ketone Adding o-chlorobenzonitrile to cyclopentyl Grignard in solvent, stirring for long period of time (typically three days) Hydrolyzing reaction with mixture containing crushed ice, ammonium chloride and some ammonium hydroxide Extraction with organic solvent gives (o-chlorophenyl)-cyclopentyl ketone Step 2: processing to alpha-bromo (o-chlorophenyl)-cyclopentyl ketone ketone processed with bromine in carbon tetrachloride at low temperature (typical T = 0°C), addition of bromine dropwise forming orange suspension Suspension washed in dilute aquerous solution of sodium bisufide and evaporated giving 1-bromocyclopentyl-(o-chlorophenyl)-ketone Note: bromoketone is unstable, immeadiate usage. Bromination carried out with N- Bromosuccinimide result higher yield (roughly 77%) Step 3: processing to 1-hydroxycyclopentyl-(o-chlorophenyl)-ketone-N-methylimine Dissolving bromoketone in liquid methylamine freebase (or benzene as possible solvent) After time lapse (1h): excess methylamine evaporated, residue dissolved in pentane and filtered evaporation of solvent yields 1-hydroxy-cyclopentyl-(o-chlorophenyl)-ketone N-methylimine Note: longer time span (4-5d) for evaporation of methylaminemay increase yield Step 4: processing to 2-Methylamino-2-(o-chlorophenyl)-cyclohexanone (Ketamine) Method: Thermal rearragement (qualitative yield after 30min in 180°C) N-methylimine dissolved in 15ml decalin, refluxed for 2.5h Evaporation of solvent under reduced temperature followed by extraction of residue with dilute hydrochloric acid Treatment with decolorizing charcoal (solution: acidic => basic) Recrystallization from pentane-ether Note - alternative to use of decalin: pressure bomb Properties of chemical structure Arylcyclohexylamine derivative racemic compound, in pharmaceutical preparation racemic more active enantiomere esketamine (S-Ketamine) available as Ketanest S, but Arketamine (R-Ketamine) never marketed for clinical use R-Ketamine S-Ketamine Optical rotation: varies between salt and free base form free base form: (S)-Ketamine dextrorotation (S)-(+)-ketamine hydrochloridesalt: levorotation(S)-(-)-ketamine Reason found in molecular level: different orientation of substituents: freebase: o-chlorophenyl equatorial, methylamino axial salt: o-chlorophenyl axial, methylamino equatorial Usage of ketamine a. Medical usage injectionin I.V. systems in hydrochloric form, direct input in bloodstream normally used as anesthectic in veterinary medicine for small mammals, sometimes used on humans on humans: limited use as anaesthetic due to side effects anesthetic for diagnostic and surgical procedures that do not require skeletal muscle relaxation (dose number increasing with length of precedure as dose last for short periods of time) b. Drug abuse Consumption in combination with other drugs (e.g. cocaine, ecstasy, alcohol) consumption typically by injection or snorting, smoking and as pill also possible In form of liquid: date rape drug since colorless and odorless Medical aspect – effects on body and mind a. General sideeffects Reduce or eliminate pain Bad hallucinations if used to escape unpleasant thoughts/emotions Disorientation, confusion Drowsiness, amnesia Nausea, may progress to vomiting Difficulty in movements, may progress to numbness and temporary unable to move Higher heart rate and blood pressure (in high doses) „K-Hole“: intense, unpleasant hallucinations (visual and auditory), derealization, detachment from reality b. Short-Term sideeffects Aprupt high, starting 2-5mins. if smoked/swallowed or 30s if injected, lasting for one hour Relaxation in full body Detachments from body (higher doses) Hallucinations c. Long-Term sideeffects Addiction Severe abdominal pain Kidney problems Sources: http://creationwiki.org/Ketamine#Synthesis http://www.lycaeum.org/rhodium/chemistry/pcp/ketamine.html https://pubchem.ncbi.nlm.nih.gov/compound/ketamine https://pubchem.ncbi.nlm.nih.gov/compound/ketamine#section=Drug-Warning http://www.rsc.org/chemistryworld/2014/02/ketamine-special-k-drugs-podcast http://drugabuse.com/library/the-effects-of-ketamine-use/ http://www.drugfreeworld.org/drugfacts/prescription/ketamine.html http://onlinelibrary.wiley.com/doi/10.1002/1615-9314(20021101)25:15/17%3C1155::AID-JSSC1155%3E3.0.CO;2-M/pdf .
Recommended publications
  • Medical Review Officer Manual
    Department of Health and Human Services Substance Abuse and Mental Health Services Administration Center for Substance Abuse Prevention Medical Review Officer Manual for Federal Agency Workplace Drug Testing Programs EFFECTIVE OCTOBER 1, 2010 Note: This manual applies to Federal agency drug testing programs that come under Executive Order 12564 dated September 15, 1986, section 503 of Public Law 100-71, 5 U.S.C. section 7301 note dated July 11, 1987, and the Department of Health and Human Services Mandatory Guidelines for Federal Workplace Drug Testing Programs (73 FR 71858) dated November 25, 2008 (effective October 1, 2010). This manual does not apply to specimens submitted for testing under U.S. Department of Transportation (DOT) Procedures for Transportation Workplace Drug and Alcohol Testing Programs (49 CFR Part 40). The current version of this manual and other information including MRO Case Studies are available on the Drug Testing page under Medical Review Officer (MRO) Resources on the SAMHSA website: http://www.workplace.samhsa.gov Previous Versions of this Manual are Obsolete 3 Table of Contents Chapter 1. The Medical Review Officer (MRO)........................................................................... 6 Chapter 2. The Federal Drug Testing Custody and Control Form ................................................ 7 Chapter 3. Urine Drug Testing ...................................................................................................... 9 A. Federal Workplace Drug Testing Overview..................................................................
    [Show full text]
  • An Analytical Perspective on Determination of Free Base Nicotine in E-Liquids
    Virginia Commonwealth University VCU Scholars Compass Pharmaceutics Publications Dept. of Pharmaceutics 2020 An Analytical Perspective on Determination of Free Base Nicotine in E-Liquids Vinit V. Gholap Virginia Commonwealth University Rodrigo S. Heyder Virginia Commonwealth University Leon Kosmider Medical University of Silesia Matthew S. Halquist Virginia Commonwealth University, [email protected] Follow this and additional works at: https://scholarscompass.vcu.edu/pceu_pubs Part of the Pharmacy and Pharmaceutical Sciences Commons Copyright © 2020 Vinit V. Gholap et al. -is is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. Downloaded from https://scholarscompass.vcu.edu/pceu_pubs/19 This Article is brought to you for free and open access by the Dept. of Pharmaceutics at VCU Scholars Compass. It has been accepted for inclusion in Pharmaceutics Publications by an authorized administrator of VCU Scholars Compass. For more information, please contact [email protected]. Hindawi Journal of Analytical Methods in Chemistry Volume 2020, Article ID 6178570, 12 pages https://doi.org/10.1155/2020/6178570 Research Article An Analytical Perspective on Determination of Free Base Nicotine in E-Liquids Vinit V. Gholap ,1 Rodrigo S. Heyder,2 Leon Kosmider,3 and Matthew S. Halquist 1 1Department of Pharmaceutics, School of Pharmacy, Virginia Commonwealth University, Richmond 23298, VA, USA 2Department of Pharmaceutics, Pharmaceutical Engineering, School of Pharmacy, Virginia Commonwealth University, Richmond 23298, VA, USA 3Department of General and Inorganic Chemistry, Medical University of Silesia, Katowice FOPS in Sosnowiec, Jagiellonska 4, 41-200 Sosnowiec, Poland Correspondence should be addressed to Matthew S.
    [Show full text]
  • SPRAVATO® Esketamine Hydrochloride DATA SHEET
    SPRAVATO® esketamine hydrochloride DATA SHEET 1. PRODUCT NAME SPRAVATO® esketamine hydrochloride 32.3mg (equivalent to 28mg esketamine) nasal spray 2. QUALITATIVE AND QUANTITATIVE COMPOSITION Each single use nasal spray device delivers two sprays, one spray into each nostril. Total volume of drug product per device to be delivered is 0.2 mL containing a total of 32.3 mg of esketamine hydrochloride (equivalent to 28 mg of esketamine). For the full list of excipients, see Section 6.1 List of Excipients. 3. PHARMACEUTICAL FORM Nasal spray, solution. Clear, colourless, aqueous solution. 4. CLINICAL PARTICULARS 4.1 Therapeutic Indications SPRAVATO in conjunction with an oral antidepressant, is indicated for: - treatment resistant depression (Major Depressive Disorder in adults who have not responded adequately to at least two different antidepressants of adequate dose and duration to treat the current depressive episode). - rapid reduction of depressive symptoms in patients with Major Depressive Disorder who have acute suicidal ideation or behaviour. SPRAVATO is not indicated to prevent suicide or in reducing suicidal ideation or behaviour (see section 4.4. Special Warnings And Precautions For Use) 4.2 Dose and method of administration In patients with TRD, SPRAVATO should be administered in conjunction with a newly initiated oral antidepressant (AD) therapy. In patients with MDSI, SPRAVATO should be administered in conjunction with standard of care therapy. During the Phase III MDSI clinical program, standard of care oral AD treatment (either AD monotherapy or AD plus augmentation therapy) was initiated or optimised. Important Considerations Prior to Initiating and During Therapy SPRAVATO must be administered under the direct supervision of a healthcare provider.
    [Show full text]
  • Around the Corner Canadian Equity Research Emerging Companies and Industries to Watch 3 March 2020
    Around the Corner Canadian Equity Research Emerging companies and industries to watch 3 March 2020 Tania Gonsalves, CFA | Analyst | Canaccord Genuity Corp. (Canada) | [email protected] | 1.416.996.8346 Scott McFarland | Associate | Canaccord Genuity Corp. (Canada) | [email protected] | 1.416.998.7202 Around the Corner highlights what we believe are some of the most exciting Psychedelic-derived medicines and therapies emergent private companies in Canada, and/or industry themes and trends which are yet to be fully represented in the Mental health miracle or another bad trip? public markets. When most of us think of psychedelic drugs, we think of the 1960s counterculture. We We aim to offer insight into early industry think of anti-establishment, anti-war, anti-capitalist hippies, Woodstock, tie-dye, Lucy in trends, educate investors about private the Sky, peace, love and bell bottom jeans. But before psychedelics became ingrained in companies that are making a mark, and the counterculture, they were found in a lab. The first wave of scientific research on identify companies that may enter the psychedelics took place between 1950-65. Sandoz Pharmaceutics, what is now Novartis public markets in the future. AG (NVS-NYSE), the third largest pharmaceutical company in the world, used to market We do not provide any ratings or price LSD and psilocybin for psychotherapeutic purposes. Psychedelics weren’t born of the targets, nor should any be inferred, for counterculture. They were killed by it. The proliferation of recreational use spurred any uncovered company featured in government intervention and by 1971, psilocybin, LSD, ibogaine, mescaline, peyote, Around the Corner.
    [Show full text]
  • Salts of Therapeutic Agents: Chemical, Physicochemical, and Biological Considerations
    molecules Review Salts of Therapeutic Agents: Chemical, Physicochemical, and Biological Considerations Deepak Gupta 1, Deepak Bhatia 2 ID , Vivek Dave 3 ID , Vijaykumar Sutariya 4 and Sheeba Varghese Gupta 4,* 1 Department of Pharmaceutical Sciences, School of Pharmacy, Lake Erie College of Osteopathic Medicine, Bradenton, FL 34211, USA; [email protected] 2 ICPH Fairfax Bernard J. Dunn School of Pharmacy, Shenandoah University, Fairfax, VA 22031, USA; [email protected] 3 Wegmans School of Pharmacy, St. John Fisher College, Rochester, NY 14618, USA; [email protected] 4 Department of Pharmaceutical Sciences, USF College of Pharmacy, Tampa, FL 33612, USA; [email protected] * Correspondence: [email protected]; Tel.: +01-813-974-2635 Academic Editor: Peter Wipf Received: 7 June 2018; Accepted: 13 July 2018; Published: 14 July 2018 Abstract: The physicochemical and biological properties of active pharmaceutical ingredients (APIs) are greatly affected by their salt forms. The choice of a particular salt formulation is based on numerous factors such as API chemistry, intended dosage form, pharmacokinetics, and pharmacodynamics. The appropriate salt can improve the overall therapeutic and pharmaceutical effects of an API. However, the incorrect salt form can have the opposite effect, and can be quite detrimental for overall drug development. This review summarizes several criteria for choosing the appropriate salt forms, along with the effects of salt forms on the pharmaceutical properties of APIs. In addition to a comprehensive review of the selection criteria, this review also gives a brief historic perspective of the salt selection processes. Keywords: chemistry; salt; water solubility; routes of administration; physicochemical; stability; degradation 1.
    [Show full text]
  • Janssen Research & Development, LLC Advisory Committee Briefing
    Janssen Research & Development, LLC Advisory Committee Briefing Document Esketamine Nasal Spray for Patients with Treatment-resistant Depression JNJ-54135419 (esketamine) Status: Approved Date: 16 January 2019 Prepared by: Janssen Research & Development, LLC EDMS number: EDMS-ERI-171521650, 1.0 ADVISORY COMMITTEE BRIEFING MATERIALS: AVAILABLE FOR PUBLIC RELEASE 1 Status: Approved, Date: 16 January 2019 JNJ-54135419 (esketamine) Treatment-resistant Depression Advisory Committee Briefing Document GUIDE FOR REVIEWERS This briefing document provides 3 levels of review with increasing levels of detail: The Executive Overview (Section 1, starting on page 11) provides a narrative summarizing the disease, need for novel treatments, key development program characteristics for esketamine nasal spray, study results, and conclusions. References are made to the respective supporting sections in the core document. The core document (Section 2 to Section 11, starting on page 30) includes detailed summaries and discussion in support of the Executive Overview. The appendices (starting on page 180) provide additional or more detailed information to complement brief descriptions provided in sections of the core document (e.g., demographic and baseline characteristics of the study populations, additional efficacy analyses in the Phase 3 studies, statistical methods). These appendices are referenced in the core document when relevant. This review structure allows review at varying levels of detail; however, reviewers who read at multiple levels will necessarily
    [Show full text]
  • 9.18.19 Didactic
    STIMULANTS- PART I Michael H. Baumann, Ph.D. Designer Drug Research Unit (DDRU), Intramural Research Program, NIDA, NIH Baltimore, MD 21224 Chronology of Stimulant Misuse 1. 1980s: Cocaine 2. 1990s: Ecstasy 3. Summary 2 Topics Covered for Each Substance Chemistry Formulations and Methods of Use Pharmacokinetics and Metabolism Desired and Adverse Effects Chronic and Withdrawal Effects Neurobiology Treatments 1980s: Cocaine Cocaine, a Plant-Based Alkaloid Andean Cocaine is Trafficked Globally UNODC World Drug Report, 2012 Formulations and Methods of Use Cocaine Free Base (i.e., Crack) Smoking of free base “rock” using pipes Cocaine HCl Intravenous injection of solutions using needle and syringe Intranasal snorting of powder Pharmacokinetics and Metabolism Pharmacokinetics Smoked drug reaches brain within seconds Intravenous drug reaches brain within seconds Intranasal drug reaches brain within minutes Metabolism Ester hydrolysis to benzoylecgonine Ecgonine methyl ester Cone, 1995 Rate Hypothesis of Drug Reward Smoked and Intravenous Routes Faster rate of drug entry into the brain Enhanced subjective and rewarding effects Intranasal and Oral Routes Slower rate of drug entry into the brain Reduced subjective and rewarding effects Desired Effects Enhanced Mood and Euphoria Increased Attention and Alertness Decreased Need for Sleep Appetite Suppression Sexual Arousal Adverse Effects Psychosis Tachycardia, Arrhythmias, Heart Attack Hypertension, Stroke Hyperthermia, Rhabdomyolysis Multisystem Organ Failure Tolerance-
    [Show full text]
  • Phencyclidine: an Update
    Phencyclidine: An Update U.S. DEPARTMENT OF HEALTH AND HUMAN SERVICES • Public Health Service • Alcohol, Drug Abuse and Mental Health Administration Phencyclidine: An Update Editor: Doris H. Clouet, Ph.D. Division of Preclinical Research National Institute on Drug Abuse and New York State Division of Substance Abuse Services NIDA Research Monograph 64 1986 DEPARTMENT OF HEALTH AND HUMAN SERVICES Public Health Service Alcohol, Drug Abuse, and Mental Health Administratlon National Institute on Drug Abuse 5600 Fishers Lane Rockville, Maryland 20657 For sale by the Superintendent of Documents, U.S. Government Printing Office Washington, DC 20402 NIDA Research Monographs are prepared by the research divisions of the National lnstitute on Drug Abuse and published by its Office of Science The primary objective of the series is to provide critical reviews of research problem areas and techniques, the content of state-of-the-art conferences, and integrative research reviews. its dual publication emphasis is rapid and targeted dissemination to the scientific and professional community. Editorial Advisors MARTIN W. ADLER, Ph.D. SIDNEY COHEN, M.D. Temple University School of Medicine Los Angeles, California Philadelphia, Pennsylvania SYDNEY ARCHER, Ph.D. MARY L. JACOBSON Rensselaer Polytechnic lnstitute National Federation of Parents for Troy, New York Drug Free Youth RICHARD E. BELLEVILLE, Ph.D. Omaha, Nebraska NB Associates, Health Sciences Rockville, Maryland REESE T. JONES, M.D. KARST J. BESTEMAN Langley Porter Neuropsychiatric lnstitute Alcohol and Drug Problems Association San Francisco, California of North America Washington, D.C. DENISE KANDEL, Ph.D GILBERT J. BOTV N, Ph.D. College of Physicians and Surgeons of Cornell University Medical College Columbia University New York, New York New York, New York JOSEPH V.
    [Show full text]
  • Recommended Methods for the Identification and Analysis Of
    Vienna International Centre, P.O. Box 500, 1400 Vienna, Austria Tel: (+43-1) 26060-0, Fax: (+43-1) 26060-5866, www.unodc.org RECOMMENDED METHODS FOR THE IDENTIFICATION AND ANALYSIS OF AMPHETAMINE, METHAMPHETAMINE AND THEIR RING-SUBSTITUTED ANALOGUES IN SEIZED MATERIALS (revised and updated) MANUAL FOR USE BY NATIONAL DRUG TESTING LABORATORIES Laboratory and Scientific Section United Nations Office on Drugs and Crime Vienna RECOMMENDED METHODS FOR THE IDENTIFICATION AND ANALYSIS OF AMPHETAMINE, METHAMPHETAMINE AND THEIR RING-SUBSTITUTED ANALOGUES IN SEIZED MATERIALS (revised and updated) MANUAL FOR USE BY NATIONAL DRUG TESTING LABORATORIES UNITED NATIONS New York, 2006 Note Mention of company names and commercial products does not imply the endorse- ment of the United Nations. This publication has not been formally edited. ST/NAR/34 UNITED NATIONS PUBLICATION Sales No. E.06.XI.1 ISBN 92-1-148208-9 Acknowledgements UNODC’s Laboratory and Scientific Section wishes to express its thanks to the experts who participated in the Consultative Meeting on “The Review of Methods for the Identification and Analysis of Amphetamine-type Stimulants (ATS) and Their Ring-substituted Analogues in Seized Material” for their contribution to the contents of this manual. Ms. Rosa Alis Rodríguez, Laboratorio de Drogas y Sanidad de Baleares, Palma de Mallorca, Spain Dr. Hans Bergkvist, SKL—National Laboratory of Forensic Science, Linköping, Sweden Ms. Warank Boonchuay, Division of Narcotics Analysis, Department of Medical Sciences, Ministry of Public Health, Nonthaburi, Thailand Dr. Rainer Dahlenburg, Bundeskriminalamt/KT34, Wiesbaden, Germany Mr. Adrian V. Kemmenoe, The Forensic Science Service, Birmingham Laboratory, Birmingham, United Kingdom Dr. Tohru Kishi, National Research Institute of Police Science, Chiba, Japan Dr.
    [Show full text]
  • Advisory Council on the Misuse of Drugs Chair: Professor Les Iversen Secretary: Rachel Fowler 3Rd Floor Seacole Building 2
    ACMD Advisory Council on the Misuse of Drugs Chair: Professor Les Iversen Secretary: Rachel Fowler 3rd Floor Seacole Building 2. Marsham Street London SW1P 4DF 020 7035 0454 Email: [email protected] Rt Hon. Theresa May MP Home Office 2 Marsham Street London SW1P 4DF 18th October 2012 Dear Home Secretary, In March 2012 the ACMD advised that methoxetamine be subject to a temporary class drug order. Methoxetamine was marketed as a legal alternative to ketamine until a temporary class drug order was implemented in April 2012. As is now required, the ACMD has followed its initial assessment with a consideration of methoxetamine in the context of the Misuse of Drugs Act 1971; I enclose the report with this letter. The chemical structure of methoxetamine bears a close resemblance to that of both ketamine and phencyclidine (PCP, „Angel Dust‟, a class A drug), which both produce well- documented and serious adverse effects following both acute and chronic usage. Users report that the effects of methoxetamine are similar to those of ketamine, however, some users report that the effects are of longer duration.The harmful effects reported include severe dissociation, cardiovascular symptoms, paranoid thoughts and unpleasant hallucinations. The first analytically confirmed series reported by Guy‟s and St Thomas‟ NHS Foundation Trust, London in 2011, was of three individuals who presented having self-reported use of methoxetamine. All three presented with a ketamine-like dissociative state, but also had significant stimulant effects with agitation and cardiovascular effects including tachycardia and hypertension. Toxicological screening of serum samples confirmed methoxetamine use in two of the cases.
    [Show full text]
  • Guidance on the Clinical Management of Acute and Chronic Harms of Club Drugs and Novel Psychoactive Substances NEPTUNE
    Novel Psychoactive Treatment UK Network NEPTUNE Guidance on the Clinical Management of Acute and Chronic Harms of Club Drugs and Novel Psychoactive Substances NEPTUNE This publication of the Novel Psychoactive Treatment UK Network (NEPTUNE) is protected by copyright. The reproduction of NEPTUNE guidance is authorised, provided the source is acknowledged. © 2015 NEPTUNE (Novel Psychoactive Treatment UK Network) 2015 Club Drug Clinic/CAPS Central and North West London NHS Foundation Trust (CNWL) 69 Warwick Road Earls Court SW5 9HB http://www.Neptune-clinical-guidance.com http://www.Neptune-clinical-guidance.co.uk The guidance is based on a combination of literature review and expert clinical con sensus and is based on information available up to March 2015. We accept no responsi bility or liability for any consequences arising from the use of the information contained in this document. The recommended citation of this document is: Abdulrahim D & Bowden-Jones O, on behalf of the NEPTUNE Expert Group. Guidance on the Management of Acute and Chronic Harms of Club Drugs and Novel Psychoactive Substances. Novel Psychoactive Treatment UK Network (NEPTUNE). London, 2015. NEPTUNE is funded by the Health Foundation, an independent charity working to improve the quality of health care in the UK. Editorial production and page design by Ralph Footring Ltd, http://www.footring.co.uk NEPTUNE NEPTUNE (Novel Psychoactive Treatment UK Network): Expert Group members NEPTUNE Expert Group Dr Owen Bowden-Jones Neptune Chair Clinical and programme lead Consultant
    [Show full text]
  • International Quality Assurance Programme (Iqap)
    INTERNATIONAL QUALITY ASSURANCE PROGRAMME (IQAP) INTERNATIONAL COLLABORATIVE EXERCISES (ICE) Summary Report SEIZED MATERIAL 2018/2 INTERNATIONAL QUALITY ASSURANCE PROGRAMME (IQAP) INTERNATIONAL COLLABORATIVE EXERCISES (ICE) Table of contents Introduction Page 3 Comments from the International Panel of Forensic Experts Page 3 NPS reported by ICE participants Page 5 Codes and Abbreviations Page 7 Sample 1 Analysis Page 8 Identified substances Page 8 Statement of findings Page 13 Identification methods Page 23 Summary Page 29 Z-Scores Page 30 Sample 2 Analysis Page 34 Identified substances Page 34 Statement of findings Page 39 Identification methods Page 49 Summary Page 55 Z-Scores Page 56 Sample 3 Analysis Page 59 Identified substances Page 59 Statement of findings Page 64 Identification methods Page 74 Summary Page 80 Z-Scores Page 81 Sample 4 Analysis Page 84 Identified substances Page 84 Statement of findings Page 89 Identification methods Page 99 Summary Page 105 Z-Scores Page 106 Test Samples Information Samples Comments on samples Sample 1 SM-1 was prepared from a seizure containing 22.7 % (w/w) Cocaine base. The test sample also contained lactose with methylecgonine, benzoylecgonine and cinnamoyl cocaine as minor components Sample 2 SM-2 was prepared from a seizure containing 9.8 % (w/w) 3,4-methylenedioxypyrovalerone base. The test sample also contained lactose. Sample 3 SM-3 was prepared from a seizure containing 19.6% (w/w) Metamfetamine base. The test sample also contained lactose Sample 4 SM-4 was prepared from a seizure containing
    [Show full text]