Anatomic Imaging of Gluteal Perforator Flaps Without Ionizing Radiation: Seeing Is Believing with Magnetic Resonance Angiography
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
The Acetabular Blood Supply: Implications for Periacetabular Osteotomies
View metadata, citation and similar papers at core.ac.uk brought to you by CORE provided by RERO DOC Digital Library Surg Radiol Anat (2003) 25: 361–367 DOI 10.1007/s00276-003-0149-3 ANATOMIC BASES OF MEDICAL, RADIOLOGICAL AND SURGICAL TECHNIQUES M. Beck Æ M. Leunig Æ T. Ellis Æ J. B. Sledge Æ R. Ganz The acetabular blood supply: implications for periacetabular osteotomies Received: 22 April 2002 / Accepted: 27 February 2003 / Published online: 16 August 2003 Ó Springer-Verlag 2003 Abstract As the popularity of juxta-acetabular osteot- noise, une e´ tude anatomique apre` s injection de latex omies in adults increases, concern arises that such a colore´ ae´ te´ re´ alise´ e. La vascularisation du versant ex- procedure will potentially cause avascular necrosis of the terne du fragment pe´ ri-ace´ tabulaire a e´ te´ e´ tudie´ e sur 16 acetabular fragment. In order to verify the remaining hanches apre` s injection de latex colore´ dans l’aorte ab- vascularization after a Bernese periacetabular osteoto- dominale et celle de son versant interne sur 4 hanches. my, an injection study with colored latex was performed. Pour confirmer les conclusions tire´ es du travail anato- The vascularity of the outside of the periacetabular bone mique, une oste´ otomie pe´ ri-ace´ tabulaire bernoise a e´ te´ was studied in 16 hips after injection of colored latex re´ alise´ e sur deux hanches supple´ mentaires apre` s injec- into the abdominal aorta and the inside in four hips. To tion de latex. Cette e´ tude a montre´ que, par une voie confirm the conclusions drawn from the anatomic study, d’abord de Smith-Petersen modifie´ eetenre´ alisant a Bernese periacetabular osteotomy was performed in l’oste´ otomie a` partir du versant interne du bassin, le two additional hips after latex injection. -
Part 1 the Thorax ECA1 7/18/06 6:30 PM Page 2 ECA1 7/18/06 6:30 PM Page 3
ECA1 7/18/06 6:30 PM Page 1 Part 1 The Thorax ECA1 7/18/06 6:30 PM Page 2 ECA1 7/18/06 6:30 PM Page 3 Surface anatomy and surface markings The experienced clinician spends much of his working life relating the surface anatomy of his patients to their deep structures (Fig. 1; see also Figs. 11 and 22). The following bony prominences can usually be palpated in the living subject (corresponding vertebral levels are given in brackets): •◊◊superior angle of the scapula (T2); •◊◊upper border of the manubrium sterni, the suprasternal notch (T2/3); •◊◊spine of the scapula (T3); •◊◊sternal angle (of Louis) — the transverse ridge at the manubrio-sternal junction (T4/5); •◊◊inferior angle of scapula (T8); •◊◊xiphisternal joint (T9); •◊◊lowest part of costal margin—10th rib (the subcostal line passes through L3). Note from Fig. 1 that the manubrium corresponds to the 3rd and 4th thoracic vertebrae and overlies the aortic arch, and that the sternum corre- sponds to the 5th to 8th vertebrae and neatly overlies the heart. Since the 1st and 12th ribs are difficult to feel, the ribs should be enu- merated from the 2nd costal cartilage, which articulates with the sternum at the angle of Louis. The spinous processes of all the thoracic vertebrae can be palpated in the midline posteriorly, but it should be remembered that the first spinous process that can be felt is that of C7 (the vertebra prominens). The position of the nipple varies considerably in the female, but in the male it usually lies in the 4th intercostal space about 4in (10cm) from the midline. -
Corona Mortis: the Abnormal Obturator Vessels in Filipino Cadavers
ORIGINAL ARTICLE Corona Mortis: the Abnormal Obturator Vessels in Filipino Cadavers Imelda A. Luna Department of Anatomy, College of Medicine, University of the Philippines Manila ABSTRACT Objectives. This is a descriptive study to determine the origin of abnormal obturator arteries, the drainage of abnormal obturator veins, and if any anastomoses exist between these abnormal vessels in Filipino cadavers. Methods. A total of 54 cadaver halves, 50 dissected by UP medical students and 4 by UP Dentistry students were included in this survey. Results. Results showed the abnormal obturator arteries arising from the inferior epigastric arteries in 7 halves (12.96%) and the abnormal communicating veins draining into the inferior epigastric or external iliac veins in 16 (29.62%). There were also arterial anastomoses in 5 (9.25%) with the inferior epigastric artery, and venous anastomoses in 16 (29.62%) with the inferior epigastric or external iliac veins. Bilateral abnormalities were noted in a total 6 cadavers, 3 with both arterial and venous, and the remaining 3 with only venous anastomoses. Conclusion. It is important to be aware of the presence of these abnormalities that if found during surgery, must first be ligated to avoid intraoperative bleeding complications. Key Words: obturator vessels, abnormal, corona mortis INtroDUCTION The main artery to the pelvic region is the internal iliac artery (IIA) with two exceptions: the ovarian/testicular artery arises directly from the aorta and the superior rectal artery from the inferior mesenteric artery (IMA). The internal iliac or hypogastric artery is one of the most variable arterial systems of the human body, its parietal branches, particularly the obturator artery (OBA) accounts for most of its variability. -
A STUDY of ANAMOLOUS ORIGIN of GLUTEAL ARTERIES IJCRR Section: Healthcare Sci
Research Article A STUDY OF ANAMOLOUS ORIGIN OF GLUTEAL ARTERIES IJCRR Section: Healthcare Sci. Journal Impact Factor Amudalapalli Siva Narayana1, M. Pramila Padmini2 4.016 1Tutor, Department of Anatomy, Gitam Institute of Medical Sciences Visakhapatnam, Andhrapradesh, India; 2Assistant Professor, Department of Anatomy, Gitam Institute of Medical Sciences, Visakhapatnam, Andhrapradesh, India. ABSTRACT Aim: The present study has been taken up to observe the branching pattern of internal iliac artery and its importance for the clinicians in their respective fields. Methodology: 45 pelvic halves were studied from dissected cadavers. The branches of gluteal arteries were traced carefully by separating the connective tissue surrounding the arteries. Result: In 4 cadavers, inferior gluteal artery was given off in the gluteal region, in 1 case it is given off from posterior division of internal iliac artery. In 1 case superior gluteal arose in common with internal pudendal artery. Conclusion: Vascular variations in the gluteal region are important for surgeons and anatomists. Key Words: Internal iliac artery, Gluteal arteries, Pelvic region, Internal pudendal artery INTRODUCTION The tributaries of internal iliac vein along with the main trunk were discarded to visualize the branches of IIA. Con- Each internal iliac artery is about 4 cm long and begins at the nective tissue surrounding the IIA was cleared. Parietal and common iliac bifurcation level with the intervertebral disc visceral branches were traced. Some of the branches of between L5 and S1 vertebrae and anterior to the sacroiliac IIA were traced till their exit from the pelvic cavity and are joint. As it passes downward across the brim of the pelvis it called parietal branches. -
Six Steps to the “Perfect” Lip Deborah S
September 2012 1081 Volume 11 • Issue 9 Copyright © 2012 ORIGINAL ARTICLES Journal of Drugs in Dermatology SPECIAL TOPIC Six Steps to the “Perfect” Lip Deborah S. Sarnoff MD FAAD FACPa and Robert H. Gotkin MD FACSb,c aRonald O. Perelman Department of Dermatology, New York University School of Medicine, New York, NY bLenox Hill Hospital—Manhattan Eye, Ear & Throat Institute, New York, NY cNorth Shore—LIJ Health Systems, Manhasset, NY ABSTRACT Full lips have always been associated with youth and beauty. Because of this, lip enhancement is one of the most frequently re- quested procedures in a cosmetic practice. For novice injectors, we recommend hyaluronic acid (HA) as the filler of choice. There is no skin test required; it is an easily obtainable, “off-the-shelf” product that is natural feeling when skillfully implanted in the soft tissues. Hyaluronic acid is easily reversible with hyaluronidase and, therefore, has an excellent safety profile. While Restylane® is the only FDA-approved HA filler with a specific indication for lip augmentation, one can use the following HA products off-label: Juvéderm® Ultra, Juvéderm Ultra Plus, Juvéderm Ultra XC, Juvéderm Ultra PLUS XC, Restylane-L®, Perlane®, Perlane-L®, and Belotero®. We present our six steps to achieve aesthetically pleasing augmented lips. While there is no single prescription for a “perfect” lip, nor a “one size fits all” approach for lip augmentation, these 6 steps can be used as a basic template for achieving a natural look. For more comprehensive, global perioral rejuvenation, our 6-step technique can be combined with the injection of neuromodulating agents and fractional laser skin resurfacing during the same treatment session. -
Pdf Manual (964.7Kb)
MD-17 , CONTENTS THE URINARY SYSTEM 4 THE REPRODUCTIVE SYSTEM 5 The Scrotum The Testis The Epididylnis The Ductus Deferens The Ejaculatory Duct The Seminal Vesicle The Spermatic Cord The Penis The Prostate Gland THE INGUINAL CANAL l) HERNIAS FURTIlER READING 10 MODEL KEY 1I Human Male Pelvis This life-size model shows the viscera and structures which form the urogenital system and some of the related anatomy such as the sig moid colon and rectum. The vascular supply to the viscera and support ing tissue is demonstrated, as well as that portion of the vascular system which continues into the lower extremity. The model is divided into right and left portions. The right portion shows a midsagittal section of the pelvic structures. The left represents a similar section, but the dissection is deeper. Two pieces are remov able on the left side; one piece includes the bladder, prostate, and semi nal vesicles, and the other includes the penis, left testicle, and scrotum. When all portions are removed, a deeper view of these structures and a deeper dissection of the pelvis can be seen. THE URINARY SYSTEM The portion of the urinary system shown depicts the ureter from the level of the 5th lumbar vertebra, where it passes the common iliac ar tery near the bifurcation of thi s artery into the external and internal iliac arteries. The ureter then passes toward the posterior portion of the bladder, beneath the vas deferens, and opens through the wall of the blad der at one cranial corner of the trigone on the bladder's interior. -
Part Innervation Blood Supply Venous Drainage
sheet PART INNERVATION BLOOD SUPPLY VENOUS DRAINAGE LYMPH DRAINAGE Roof: greater palatine & nasopalatine Mouth nerves (maxillary N.) Floor: lingual nerve (mandibular N.) Taste {ant 1/3}: chorda tympani nerve (facial nerve) Cheeks: buccal nerve (mandibular N.) Buccinator muscle: Buccal Nerve 1 (facial Nerve) Orbicularis oris muscle: facial nerve Tip: Submental LNs Tongue lingual artery (ECA) sides of ant 2/3: Ant 1/3: Lingual nerve (sensory) & tonsillar branch of facial artery lingual veins correspond to submandibular & chorda tympani (Taste) (ECA) the arteries and drain into IJV deep cervical LNs Post 2/3: glossopharyngeal N. (both) ascending pharyngeal artery post 1/3: Deep (ECA) cervical LNs greater palatine vein greater palatine artrey Palate Hard Palate: greater palatine and (→maxillary V.) (maxillary A.) nasopalatine nerves ascending palatine vein Deep cervical lymph ascending palatine artrey Soft Palate: lesser palatine and (→facial V.) nodes (facial A.) glossopharyngeal nerves ascending pharyngeal ascending pharyngeal artery vein PANS (secreto-motor) & Sensory: 2 Parotid gland Auriculotemporal nerve {Inferior salivary Nucleus → tympanic branch of glossopharyngeal N.→ Lesser petrosal nerve parasympathetic preganglionic fibres → otic ganglia → auriculotemporal nerve parasympathetic postganglionic fibres} sheet PART INNERVATION BLOOD SUPPLY VENOUS DRAINAGE LYMPH DRAINAGE PANS (secreto-motor): facial nerve Submandibular Sensory: lingual nerve gland {Superior salivary Nucleus → Chorda tympani branch from facial -
Current Overview of Neurovascular Structures in Hip Arthroplasty
1mon.qxd 2/2/04 10:26 AM Page 73 REVIEW Current Overview of Neurovascular Structures in Hip Arthroplasty: Anatomy, Preoperative Evaluation, Approaches, and Operative Techniques to Avoid Complications John-Paul H. Rue, MD* Nozomu Inoue, MD, PhD* Michael A. Mont, MD† A major neurovascular injury during total hip arthroplasty (THA) is uncom- Educational Objectives mon. Nevertheless, these are worri- some due to their devastating conse- As a result of reading this article, physicians should be able to: quences. As more THAs are performed 1. Identify the bony, vascular, and neural anatomy that is relevant to the each year, the chances of this potential- surgeon performing total hip arthroplasty. ly life- or limb-threatening injury 2. Describe the common approaches to avoid neurovascular complica- increase.1 It is crucial for the orthope- tions. dic surgeon to have a thorough under- 3. Discuss the appropriate clinical work-up of these patients. standing of the anatomy of the region 4. Describe the various neurovascular complications and how to handle and the potential complications. them. This article reviews the exposures to the acetabulum for simple and complex primary THA, as well as revision cases, with particular attention to the neu- ischium, and pubis (Figure 1). The Damage to any of these vessels by rovascular anatomy of the region. acetabulum is located at the junction of retraction, drilling, reaming, or dissec- these three bones. These bones unite tion can cause massive hemorrhage, ANATOMY anteriorly at the pubic symphysis and which can lead to exsanguination with- Bone posteriorly to the sacrum to form a ring in minutes. -
Variation in the Origin of Obturator Artery
Indian Journal of Clinical Anatomy and Physiology 2019;6(4):401–404 Content available at: iponlinejournal.com Indian Journal of Clinical Anatomy and Physiology Journal homepage: www.innovativepublication.com Original Research Article Variation in the origin of obturator artery Karishma Sharma1, Prashant Prasad1, Mathew Joseph1, Mukesh Singla1, K S Ravi1, Brijendra Singh1,* 1Dept. of Anatomy, All India Institute of Medical Sciences, Rishikesh, Uttarakhand, India ARTICLEINFO ABSTRACT Article history: Introduction: An ideal method of exploring the surgical anatomy and the variations and anomalies is Received 09-11-2019 the human cadaver. The anatomical region of pelvic cavity consists of a large number of organs and Accepted 14-11-2019 structures. The clear knowledge of vascular pattern and its variations is significant. The laparoscopic Available online 31-12-2019 surgical procedures for herniorrhaphy and hernio plasty makes the study of the pelvic vascular structures very important. The obturator artery which is normally a branch of anterior division of internal iliac artery has high frequency of variations which brings attention of many anatomists and surgeons to its origin and Keywords: course. Anterior trunk Materials and Methods: The present study was conducted on 24 hemi pelvises of 12 adult cadavers, Posterior trunk independent of age and sex dissected in the department of Anatomy, AIIMS, Rishikesh, India. During the Internal Iliac Artery dissection, origin and course of the obturator artery were traced. The handy instruction booklet of Anatomy Obturator artery by Cunningham was referred as the standard for all the dissections. Pelvic vasculature Observation and Result: In 22 specimens out of the 24 pelvic halves, the obturator artery originated from Variations the anterior division of the internal iliac artery (IIA). -
Surface and Regional Anatomy 297
Van De Graaff: Human IV. Support and Movement 10. Surface and Regional © The McGraw−Hill Anatomy, Sixth Edition Anatomy Companies, 2001 Surface and Regional 10 Anatomy Introduction to Surface Anatomy 297 Surface Anatomy of the Newborn 298 Head 300 Neck 306 Trunk 309 Pelvis and Perineum 318 Shoulder and Upper Extremity 319 Buttock and Lower Extremity 326 CLINICAL CONSIDERATIONS 330 Clinical Case Study Answer 339 Chapter Summary 340 Review Activities 341 Clinical Case Study A 27-year-old female is brought to the emergency room following a motor vehicle accident. You examine the patient and find her to be alert but pale and sweaty, with breathing that is rapid and shallow. You see that she has distension of her right internal jugular vein visible to the jaw and neck. Her trachea is deviated 3 cm to the right of midline. She has tender contu- sions on her left anterior chest wall with minimal active bleeding over one of the ribs. During the brief period of your examination, the patient exhibits more respiratory distress, and her blood pressure begins to drop. You urgently insert a large-gauge needle into her left hemitho- rax and withdraw 20 cc of air. This results in immediate improvement in the patient’s breath- ing and blood pressure. Why does the patient have a distended internal jugular vein on the right side of her neck? Could this be related to a rapid drop in blood pressure? What is the clinical situation of this patient? Hint: As you read this chapter, note that knowledge of normal surface anatomy is vital to the FIGURE: In order to effectively administer medical treatment, it is imperative for a recognition of abnormal surface anatomy, and that the latter may be an easy clue to the pathol- physician to know the surface anatomy of each ogy lying deep within the body. -
Residency Essentials Full Curriculum Syllabus
RESIDENCY ESSENTIALS FULL CURRICULUM SYLLABUS Please review your topic area to ensure all required sections are included in your module. You can also use this document to review the surrounding topics/sections to ensure fluidity. Click on the topic below to jump to that page. Clinical Topics • Gastrointestinal • Genitourinary • Men’s Health • Neurological • Oncology • Pain Management • Pediatrics • Vascular Arterial • Vascular Venous • Women’s Health Requisite Knowledge • Systems • Business and Law • Physician Wellness and Development • Research and Statistics Fundamental • Clinical Medicine • Intensive Care Medicine • Image-guided Interventions • Imaging and Anatomy Last revised: November 4, 2019 Gastrointestinal 1. Portal hypertension a) Pathophysiology (1) definition and normal pressures and gradients, MELD score (2) Prehepatic (a) Portal, SMV or Splenic (i) thrombosis (ii) stenosis (b) Isolated mesenteric venous hypertension (c) Arterioportal fistula (3) Sinusoidal (intrahepatic) (a) Cirrhosis (i) ETOH (ii) Non-alcoholic fatty liver disease (iii) Autoimmune (iv) Viral Hepatitis (v) Hemochromatosis (vi) Wilson's disease (b) Primary sclerosing cholangitis (c) Primary biliary cirrhosis (d) Schistosomiasis (e) Infiltrative liver disease (f) Drug/Toxin/Chemotherapy induced chronic liver disease (4) Post hepatic (a) Budd Chiari (Primary secondary) (b) IVC or cardiac etiology (5) Ectopic perianastomotic and stomal varices (6) Splenorenal shunt (7) Congenital portosystemic shunt (Abernethy malformation) b) Measuring portal pressure (1) Direct -
Unit #2 - Abdomen, Pelvis and Perineum
UNIT #2 - ABDOMEN, PELVIS AND PERINEUM 1 UNIT #2 - ABDOMEN, PELVIS AND PERINEUM Reading Gray’s Anatomy for Students (GAFS), Chapters 4-5 Gray’s Dissection Guide for Human Anatomy (GDGHA), Labs 10-17 Unit #2- Abdomen, Pelvis, and Perineum G08- Overview of the Abdomen and Anterior Abdominal Wall (Dr. Albertine) G09A- Peritoneum, GI System Overview and Foregut (Dr. Albertine) G09B- Arteries, Veins, and Lymphatics of the GI System (Dr. Albertine) G10A- Midgut and Hindgut (Dr. Albertine) G10B- Innervation of the GI Tract and Osteology of the Pelvis (Dr. Albertine) G11- Posterior Abdominal Wall (Dr. Albertine) G12- Gluteal Region, Perineum Related to the Ischioanal Fossa (Dr. Albertine) G13- Urogenital Triangle (Dr. Albertine) G14A- Female Reproductive System (Dr. Albertine) G14B- Male Reproductive System (Dr. Albertine) 2 G08: Overview of the Abdomen and Anterior Abdominal Wall (Dr. Albertine) At the end of this lecture, students should be able to master the following: 1) Overview a) Identify the functions of the anterior abdominal wall b) Describe the boundaries of the anterior abdominal wall 2) Surface Anatomy a) Locate and describe the following surface landmarks: xiphoid process, costal margin, 9th costal cartilage, iliac crest, pubic tubercle, umbilicus 3 3) Planes and Divisions a) Identify and describe the following planes of the abdomen: transpyloric, transumbilical, subcostal, transtu- bercular, and midclavicular b) Describe the 9 zones created by the subcostal, transtubercular, and midclavicular planes c) Describe the 4 quadrants created