Alternative Water Sources in Western Conifers Via Foliar Uptake and Hydraulic Redistribution
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Converging Patterns of Uptake and Hydraulic Redistribution of Soil Water in Contrasting Woody Vegetation Types
Tree Physiology 24, 919–928 © 2004 Heron Publishing—Victoria, Canada Converging patterns of uptake and hydraulic redistribution of soil water in contrasting woody vegetation types F. C. MEINZER,1,2 J. R. BROOKS,3 S. BUCCI,4 G. GOLDSTEIN,4 F. G. SCHOLZ 5 and J. M. WARREN1 1 USDA Forest Service, Forestry Sciences Laboratory, 3200 SW Jefferson Way, Corvallis, OR 97331-4401, USA 2 Corresponding author ([email protected]) 3 US EPA/NHEERL, Western Ecology Division, Corvallis, OR 97333, USA 4 Department of Biology, University of Miami, Coral Gables, FL 33124, USA 5 Laboratorio de Ecología Funcional, Departamento de Ciencias Biológicas, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Ciudad Universitaria, Nuñez, Buenos Aires, Argentina Received April 1, 2003; accepted September 13, 2003; published online June 1, 2004 Summary We used concurrent measurements of soil wa- Introduction Ψ ter content and soil water potential ( soil) to assess the effects Plant root systems not only extract water from the soil to sup- Ψ of soil on uptake and hydraulic redistribution (HR) of soil wa- ply the shoot, but also passively redistribute water within the ter by roots during seasonal drought cycles at six sites charac- soil profile according to gradients of soil water potential (Cal- terized by differences in the types and amounts of woody vege- dwell et al. 1998). The passive movement of water upward tation and in climate. The six sites included a semi-arid old- from moist to drier portions of the soil profile was originally growth ponderosa pine (Pinus ponderosa Dougl. ex P. -
Growth and Colonization of Western Redcedar by Vesicular-Arbuscular Mycorrhizae in Fumigated and Nonfumigated Nursery Beds
Tree Planter's Notes, Volume 42, No. 4 (1991) Growth and Colonization of Western Redcedar by Vesicular-Arbuscular Mycorrhizae in Fumigated and Nonfumigated Nursery Beds S. M. Berch, E. Deom, and T. Willingdon Assistant professor and research assistant, Department of Soil Science, University of British Columbia, Vancouver, BC, and manager, Surrey Nursery, British Columbia Ministry of Forests, Surrey, BC Western redcedar (Thuja plicata Donn ex D. Don) VAM. Positive growth responses of up to 20 times the seedlings were grown in a bareroot nursery bed that had nonmycorrhizal controls occurred under conditions of limited been fumigated with methyl bromide. Seedlings grown in soil phosphorus. Incense-cedar, redwood, and giant sequoia fumigated beds were stunted and had purple foliage. seedlings in northern California nursery beds are routinely Microscopic examination showed that roots from these inoculated with Glomus sp. (Adams et al. 1990), as seedlings were poorly colonized by mycorrhizae, and only by experience has shown that the absence of VAM after soil fine vesicular-arbuscular mycorrhizae. In contrast, roots from fumigation leads to phosphorus deficiency and poor growth. seedlings grown in non-fumigated beds had larger shoots and When western redcedars in fumigated transplant beds at green foliage and were highly colonized by both fine and the British Columbia Ministry of Forest's Surrey Nursery coarse vesicular-arbuscular mycorrhizae. Tree Planters' began to show signs of phosphorus deficiency, a deficiency Notes 42(4):14-16; 1991. of mycorrhizal colonization was suspected. Many studies have demonstrated improved P status of VAM-inoculated Species of cypress (Cupressaceae) and yew plants (see Harley and Smith 1983). -
Metasequoia Dawn Redwood a Truly Beautiful Tree
Metasequoia Dawn Redwood A Truly Beautiful Tree Metasequoia glyptostroboides is considered to be a living fossil as it is the only remaining species of a genus that was widespread in the geological past. In 1941 it was discovered in Hubei, China. In 1948 the Arnold Arboretum of Harvard University sent an expedition to collect seed, which was distributed to universities and botanical gardens worldwide for growth trials. Seedlings were raised in New Zealand and trees can be seen in Christchurch Botanical Gardens, Eastwoodhill and Queens Gardens, Nelson. A number of natural Metasequoia populations exist in the wetlands and valleys of Lichuan County, Hubei, mostly as small groups. The largest contains 5400 trees. It is an excellent tall growing deciduous tree to complement evergreens in wetlands, stream edge plantings to control slips, and to prevent erosion in damp valley bottoms where other forestry trees fail to grow. Spring growth is a fresh bright green and in autumn the foliage turns a A fast growing deciduous conifer, red coppery brown making a great display. with a straight trunk, numerous It is also a most attractive winter branch silhouette. While the foliage is a similiar colour in autumn to that of swamp cypress (Taxodium), it is a branches and a tall conical crown, much taller erect growing tree, though both species thrive in moist soil growing to 45 metres in height and conditions. We import our seed from China and the uniformity of the seedling one metre in diameter. crop is most impressive. The timber has been used in boat building. Abies vejari 20 years old on left 14 years old on right Abies Silver Firs These dramatic conical shaped conifers make a great statement in the landscape, long-lived and withstanding the elements. -
Cupressaceae Calocedrus Decurrens Incense Cedar
Cupressaceae Calocedrus decurrens incense cedar Sight ID characteristics • scale leaves lustrous, decurrent, much longer than wide • laterals nearly enclosing facials • seed cone with 3 pairs of scale/bract and one central 11 NOTES AND SKETCHES 12 Cupressaceae Chamaecyparis lawsoniana Port Orford cedar Sight ID characteristics • scale leaves with glaucous bloom • tips of laterals on older stems diverging from branch (not always too obvious) • prominent white “x” pattern on underside of branchlets • globose seed cones with 6-8 peltate cone scales – no boss on apophysis 13 NOTES AND SKETCHES 14 Cupressaceae Chamaecyparis thyoides Atlantic white cedar Sight ID characteristics • branchlets slender, irregularly arranged (not in flattened sprays). • scale leaves blue-green with white margins, glandular on back • laterals with pointed, spreading tips, facials closely appressed • bark fibrous, ash-gray • globose seed cones 1/4, 4-5 scales, apophysis armed with central boss, blue/purple and glaucous when young, maturing in fall to red-brown 15 NOTES AND SKETCHES 16 Cupressaceae Callitropsis nootkatensis Alaska yellow cedar Sight ID characteristics • branchlets very droopy • scale leaves more or less glabrous – little glaucescence • globose seed cones with 6-8 peltate cone scales – prominent boss on apophysis • tips of laterals tightly appressed to stem (mostly) – even on older foliage (not always the best character!) 15 NOTES AND SKETCHES 16 Cupressaceae Taxodium distichum bald cypress Sight ID characteristics • buttressed trunks and knees • leaves -
Plant Palette - Trees 50’-0”
50’-0” 40’-0” 30’-0” 20’-0” 10’-0” Zelkova Serrata “Greenvase” Metasequoia glyptostroboides Cladrastis kentukea Chamaecyparis obtusa ‘Gracilis’ Ulmus parvifolia “Emer I” Green Vase Zelkova Dawn Redwood American Yellowwood Slender Hinoki Falsecypress Athena Classic Elm • Vase shape with upright arching branches • Narrow, conical shape • Horizontally layered, spreading form • Narrow conical shape • Broadly rounded, pendulous branches • Green foliage • Medium green, deciduous conifer foliage • Dark green foliage • Evergreen, light green foliage • Medium green, toothed leaves • Orange Fall foliage • Rusty orange Fall foliage • Orange to red Fall foliage • Evergreen, no Fall foliage change • Yellowish fall foliage Plant Palette - Trees 50’-0” 40’-0” 30’-0” 20’-0” 10’-0” Quercus coccinea Acer freemanii Cercidiphyllum japonicum Taxodium distichum Thuja plicata Scarlet Oak Autumn Blaze Maple Katsura Tree Bald Cyprus Western Red Cedar • Pyramidal, horizontal branches • Upright, broad oval shape • Pyramidal shape • Pyramidal shape, develops large flares at base • Pyramidal, buttressed base with lower branches • Long glossy green leaves • Medium green fall foliage • Bluish-green, heart-shaped foliage • Leaves are needle-like, green • Leaves green and scale-like • Scarlet red Fall foliage • Brilliant orange-red, long lasting Fall foliage • Soft apricot Fall foliage • Rich brown Fall foliage • Sharp-pointed cone scales Plant Palette - Trees 50’-0” 40’-0” 30’-0” 20’-0” 10’-0” Thuja plicata “Fastigiata” Sequoia sempervirens Davidia involucrata Hogan -
The Taxonomic Position and the Scientific Name of the Big Tree Known As Sequoia Gigantea
The Taxonomic Position and the Scientific Name of the Big Tree known as Sequoia gigantea HAROLD ST. JOHN and ROBERT W. KRAUSS l FOR NEARLY A CENTURY it has been cus ing psychological document, but its major,ity tomary to classify the big tree as Sequoia gigan vote does not settle either the taxonomy or tea Dcne., placing it in the same genus with the nomenclature of the big tree. No more the only other living species, Sequoia semper does the fact that "the National Park Service, virens (Lamb.) End!., the redwood. Both the which has almost exclusive custodY of this taxonomic placement and the nomenclature tree, has formally adopted the name Sequoia are now at issue. Buchholz (1939: 536) pro gigantea for it" (Dayton, 1943: 210) settle posed that the big tree be considered a dis the question. tinct genus, and he renamed the tree Sequoia The first issue is the generic status of the dendron giganteum (Lind!.) Buchholz. This trees. Though the two species \differ con dassification was not kindly received. Later, spicuously in foliage and in cone structure, to obtain the consensus of the Calif.ornian these differences have long been generally botanists, Dayton (1943: 209-219) sent them considered ofspecific and notofgeneric value. a questionnaire, then reported on and sum Sequoiadendron, when described by Buchholz, marized their replies. Of the 29 answering, was carefully documented, and his tabular 24 preferred the name Sequoia gigantea. Many comparison contains an impressive total of of the passages quoted show that these were combined generic and specific characters for preferences based on old custom or sentiment, his monotypic genus. -
Bald Cypress & Dawn Redwood
Bald Cypress & Dawn Redwood: Deciduous Conifers and Newcomers to the Urban Landscape By: Dan Petters University of Minnesota Department of Forest Resources Urban Forestry Outreach Research and Extension Lab and Nursery February, 2020 Many Minnesotans are already familiar with one type of deciduous conifer: our native tamarack (Larix laricina). Those deciduous conifers are fairly unique and relatively uncommon. They have both needle-like leaves and seeds contained in some sort of cone, but also drop their needles annually with the changing seasons. Tamaracks are often found growing in bogs or other acidic, lowland or wet sites, as well as many upland sites, and have clustered tufts of soft needles that turn yellow and are shed annually. Though, aside from our native, a couple other deciduous conifers of the Cupressaceae family have begun to make an appearance in urban and garden landscapes over the last several decades: dawn redwood (Metasequoia glyptostroboides) and bald cypress (Taxodium distichum). Dawn redwood bark and form -- John Ruter, A couple of factors have made the introduction of these two species University of Georgia, possible. Dawn redwood was thought to be extinct until the 1940s, but the Bugwood.org discovery of some isolated pockets in China made the distribution of seeds and introduction of the tree possible worldwide. Bald cypress is native to much of the southeastern US, growing in a variety of sites including standing water. Historically, this tree would not have been able to survive the harshest winters this far north, but the warming Minnesota climate over the last several decades has allowed bald cypress to succeed in a variety of plantings. -
Highly Flammable Plant List: PLANTS THAT WILL IGNITE QUICKLY and BURN READILY
Highly Flammable Plant List: PLANTS THAT WILL IGNITE QUICKLY AND BURN READILY When living in a Wildfire Hazard Zone, it is recommended that these plants NOT be used within 30 ft of any structures, fenced outbuildings or decks. This list is NOT all-inclusive as other plants with similar characteristic, such as: low moisture, dry limbs and needles and abundant oils are potentially hazardous. Plant smart and use fire-resistant vegetation to create defensible space around all structures. Trees Acacia (Acacia sp.) Arborvitae (Thuja sp.) Cedar (Cedrus sp.) Cedar/Cypress (Chamaecyparis sp.) Cypress (Cupressus sp.) Douglas fir (Pseudotsuga menziesi) Fir (Abies sp.) Hemlock (Tsuga sp.) Juniper (Juniperus sp.) Pine (Pinus sp.) Sequoia (Sequoia sp.) Spruce (Picea sp.) Yew (Taxus sp.) Shrubs Blackberry (Rubus armeniacus) Bitterbrush (Purshia tridentata) Juniper (Juniperus sp.) Laurel sumac (Malosma laurina) Manzanita* (Arctostaphylos sp.) *except for Kinnikinnick Oregon grape* (Mahonia aquifolium) *except for ‘Compacta’ Rosemary* (Rosmarinus sp.) *except for ‘Prostratus’ Sagebrush (Artemisia sp.) Scotch broom (Cytisus scoparius) Scrub oak (Quercus sp.) Wild Lilac (Ceanothus sp.) Grasses and Ground Cover Dry annual grasses Large bark mulch Pampas grass (Cortaderia selloana) Remember, there are NO fire-proof plants, but some are more fire-resistant that others. Fire-resistant plants have the following characteristics: -Are less flammable and likely to ignite in a wildfire -Have high moisture content; succulent plants -Are low growing or a small species -Have stems or leaves that are not resinous, oily or waxy -Easy to maintain and prune -Have less accumulated debris and fewer dead branches -Have an open, loose branching pattern -Are drought resistant, requiring less irrigation -Burn less intensely when ignited, and spread the fire slower . -
Contribution of Hydraulically Lifted Deep Moisture to the Water Budget in a Southern California Mixed Forest Kuni Kitajima,1 Michael F
JOURNAL OF GEOPHYSICAL RESEARCH: BIOGEOSCIENCES, VOL. 118, 1561–1572, doi:10.1002/2012JG002255, 2013 Contribution of hydraulically lifted deep moisture to the water budget in a Southern California mixed forest Kuni Kitajima,1 Michael F. Allen,1 and Michael L. Goulden 2 Received 3 December 2012; revised 15 October 2013; accepted 18 October 2013; published 25 November 2013. [1] Trees and shrubs growing in California’s mountains rely on deep roots to survive the hot and dry Mediterranean climate summer. The shallow montane soil cannot hold enough water to support summer transpiration, and plants must access deeper moisture from the weathered bedrock. We used the HYDRUS-1D model to simulate the moisture flux through the soil-plant continuum in Southern California’s San Jacinto Mountains. The mechanisms facilitating deep water access are poorly understood, and it is possible that either or both hydraulic lift and capillary rise contribute to the survival and activity of trees and soil microorganisms. We modified HYDRUS to incorporate hydraulic lift and drove it with meteorological and physiological data. The modeled quantity of water lifted hydraulically ranged from near zero during the wet months to ~28 mm monthÀ1 in midsummer. Likewise, modeled capillary rise was negligible during the winter and averaged ~15 mm monthÀ1 during June through November. Both mechanisms provided water to support evapotranspiration during the dry months. Isotopic measurements of xylem water for eight shrub and tree species confirmed the importance of a deep source of water. Conventional and automated minirhizotron observations showed that fine-root and rhizomorph biomass remained relatively constant year-round, while mycorrhizal hyphae biomass varied markedly, peaking in the wet season and declining by ~70% in the dry season. -
Morphology and Morphogenesis of the Seed Cones of the Cupressaceae - Part I Cunninghamioideae, Athrotaxoideae, Taiwanioideae, Sequoioideae, Taxodioideae
1 2 Bull. CCP 3 (3): 117-136. (12.2014) A. Jagel & V.M. Dörken Morphology and morphogenesis of the seed cones of the Cupressaceae - part I Cunninghamioideae, Athrotaxoideae, Taiwanioideae, Sequoioideae, Taxodioideae Summary Seed cone morphology of the basal Cupressaceae (Cunninghamia, Athrotaxis, Taiwania, Metasequoia, Sequoia, Sequoiadendron, Cryptomeria, Glyptostrobus and Taxodium) is presented at pollination time and at maturity. These genera are named here taxodiaceous Cupressaceae (= the former family Taxodiaceae, except for Sciadopitys). Some close relationships exist between genera within the Sequoioideae and Taxodioideae. Seed cones of taxodiaceous Cupressaceae consist of several bract-/seed scale-complexes. The cone scales represent aggregation of both scale types on different levels of connation. Within Cunninghamia and Athrotaxis the bulges growing out of the cone scales represents the distal tip of the seed scale, which has been fused recaulescent with the adaxial part of the bract scale. In Athrotaxis a second bulge, emerging on the distal part of the cone scale, closes the cone. This bulge is part of the bract scale. Related conditions are found in the seed cones of Taiwania and Sequoioideae, but within these taxa bract- and seed scales are completely fused with each other so that vegetative parts of the seed scale are not recognizable. The ovules represent the only visible part of the seed scale. Within taxodiaceous Cupressaceae the number of ovules is increased compared to taxa of other conifer families. It is developed most distinctly within the Sequoioideae, where furthermore more than one row of ovules appears. The rows develop centrifugally and can be interpreted as short-shoots which are completely reduced to the ovules in the sense of ascending accessory shoots. -
Notes on Some Species of Chloroscypha Endophytic in Cupressaceae of Europe and North America
©Verlag Ferdinand Berger & Söhne Ges.m.b.H., Horn, Austria, download unter www.biologiezentrum.at Notes on some Species of Chloroscypha Endophytic in Cupressaceae of Europe and North America 0. PETEJNI Mikrobiologisches Institut, ETH-Zentrum, CH-8092 Zürich, Schweiz Introduction The genus Chloroscypha was proposed by SEAVER in 1931, based on a fungus collected on Thuja plicata D. DON. He included C. seaveri REHM ex SEAVER as the type and three other species, viz. C. chloro- mela (PHILL. & HARK.) SEAVER, C. jacksonii SEAVER [= C. entero- chroma (PECK) SEAVER] and C. juniperina (ELLIS) SEAVER [= C. sa- binae (FUCK.) DENNIS]. In 1938 SEAVER added another species, C. cedrina (COOKE) SEAVER. Later, in 1943, he transferred all Chloro- cypha species to Kriegeria RABENHORST. SEAVER considered Ombro- phila kriegeriana RABH. to be the type-species of Kriegeria RABH. However, as pointed out by DENNIS (1954, 1956), Kriegeria has not been validly published by RABENHORST, who only proposed to erect a new genus for Ombrophila kriegeriana, and suggested the name Kriegeria ad interim. In addition, at the time SEAVER adopted it. this name was already occupied by Kriegeria eriophori BRESADOLA (1891), belonging to the Tuberculariaceae (Auriculariales according to von HÖHNEL, 1909). Thus the name Chloroscypha SEAVER has been re- established by later authors. For a detailed account of the nomen- clatural problem see DENNIS (1954) and KOBAYASHI (1965). Ten species have been described, all of them occurring on Cupressaceae. Species of Chloroscypha are suspected to be weak pathogens of Cupressaceae (GREMMEN, 1963; KOBAYASHI, 1965), however, the extent of their pathogenicity is not known yet. Reinoculation experi- ments have not been conducted because it has not been possible to obtain species of Chloroscypha in pure culture. -
Nutrient Uptake As a Contributing Explanation for Deep Rooting in Arid and Semi-Arid Ecosystems
Oecologia (2004) 141: 620–628 DOI 10.1007/s00442-004-1687-z ECOSYSTEM ECOLOGY R. L. McCulley . E. G. Jobbágy . W. T. Pockman . R. B. Jackson Nutrient uptake as a contributing explanation for deep rooting in arid and semi-arid ecosystems Received: 17 February 2004 / Accepted: 14 July 2004 / Published online: 19 August 2004 # Springer-Verlag 2004 Abstract Explanations for the occurrence of deep-rooted the surface. The prevalence of such deep resource pools, plants in arid and semi-arid ecosystems have traditionally and our evidence for cation uptake from them, suggest emphasized the uptake of relatively deep soil water. nutrient uptake as a complementary explanation for the However, recent hydrologic data from arid systems show occurrence of deep-rooted plants in arid and semi-arid that soil water potentials at depth fluctuate little over long systems. We propose that hydraulic redistribution of time periods, suggesting this water may be rarely utilized shallow surface water to deep soil layers by roots may or replenished. In this study, we examine the distributions be the mechanism through which deep soil nutrients are of root biomass, soil moisture and nutrient contents to 10- mobilized and taken up by plants. m depths at five semi-arid and arid sites across south- western USA. We couple these depth distributions with Keywords Cation uptake . Deep roots . Hydraulic strontium (Sr) isotope data that show deep (>1 m) nutrient redistribution . Nutrient uplift . Strontium isotopes uptake is prevalent at four of the five sites. At all of the sites, the highest abundance of one or more of the measured nutrients occurred deep within the soil profile, Introduction particularly for P, Ca2+ and Mg2+.