Naturalization of Sequoiadendron Giganteum (Cupressaceae) in Montane Southern California Rudolf Schmid University of California, Berkeley

Total Page:16

File Type:pdf, Size:1020Kb

Naturalization of Sequoiadendron Giganteum (Cupressaceae) in Montane Southern California Rudolf Schmid University of California, Berkeley Aliso: A Journal of Systematic and Evolutionary Botany Volume 30 | Issue 1 Article 4 2012 Naturalization of Sequoiadendron giganteum (Cupressaceae) in Montane Southern California Rudolf Schmid University of California, Berkeley Mena Schmid Follow this and additional works at: http://scholarship.claremont.edu/aliso Part of the Botany Commons, Ecology and Evolutionary Biology Commons, and the Forest Biology Commons Recommended Citation Schmid, Rudolf and Schmid, Mena (2012) "Naturalization of Sequoiadendron giganteum (Cupressaceae) in Montane Southern California," Aliso: A Journal of Systematic and Evolutionary Botany: Vol. 30: Iss. 1, Article 4. Available at: http://scholarship.claremont.edu/aliso/vol30/iss1/4 Aliso, 30(1), pp. 19–32 ’ 2012, Rancho Santa Ana Botanic Garden NATURALIZATION OF SEQUOIADENDRON GIGANTEUM (CUPRESSACEAE) IN MONTANE SOUTHERN CALIFORNIA RUDOLF SCHMID1,3 AND MENA SCHMID2 1Department of Integrative Biology, University of California, Berkeley, California 94720-3140, USA ([email protected]); 2Somerville, Massachusetts 02144, USA([email protected]) 3Corresponding author ABSTRACT After the August 1974 fire in the upper Hall Canyon area on the southwestern flank of Black Mountain in the northwestern San Jacinto Mountains, Riverside Co., California, the United States Forest Service revegetated the burn in the mixed-conifer forest with the Sierra Nevada endemic Sequoiadendron giganteum (Cupressaceae). On 1 May 2009 a GPS census starting at the head of Hall Canyon revealed both in the canyon and upslope beyond it at least 157 individuals in the vicinity of the Black Mountain Trail, plus an outlier 450 m distant near the summit. This species alien to southern California is regenerating prolifically on Black Mountain, as revealed by multiple age classes, from juveniles (seedlings and saplings) about 20– 60 cm tall to young adult trees over 6 m tall, up to about 40 years old, and reproductively mature. The naturalized population (,7 ha in 2009) also appears to be spreading from its initial ‘‘small area’’ of introduction (,2 ha in 1974). Analysis of published print and Internet literature suggests similar post-fire naturalizations of S. giganteum in the San Gabriel and San Bernardino Mountains of Los Angeles and San Bernardino Counties. State and regional floras and checklists for California should acknowledge the naturalization of this species in montane southern California in the San Jacintos and possibly elsewhere. Key words: big tree, Cupressaceae, giant sequoia, naturalized species, Riverside Co., San Jacinto Mountains, Sequoiadendron, Sequoiadendron giganteum, southern California. INTRODUCTION An Internet search for ‘‘Sequoiadendron ‘Hall Canyon’’’ readily produced the answer to question #1. According to On 3 May 2008 while hiking on the Black Mountain Trail in Keeler-Wolf (1990: 156, 2004: 128), in upper Hall Canyon ‘‘a the San Jacinto Mountains, Riverside Co., California, we saw small area of the [August] 1974 burn was revegetated with non- an interesting, reproductively mature conifer at 2144 m el. on native giant sequoia (Sequoiadendron giganteum).’’ On 1 May the northwestern flank below the summit of Black Mountain 2009 we revisited Black Mountain to obtain the answers to (el. 2369 m), in mixed-conifer forest (Lower Montane questions #2 and #3, to take additional photos (Fig. 2–5 in Coniferous Forest), just above the head of Hall Canyon. The 2009, Fig. 6 the original photo in 2008, items in Fig. 7–8 Sequoiadendron giganteum conifer turned out to be (Lindl.) collected in 2009 and photographed in 2010), and to make J.Buchholz. voucher collections. This monotypic California endemic (Sequoiadendron J.Buch- holz) is native to the western slope of the Sierra Nevada, where it METHODS occurs in isolated groves (Fig. 1) in mixed-conifer forest between 825 and 2700 m el. (Stark 1968; Rundel 1972; Nomenclature and voucher information: Taxa follow The Weatherspoon 1990; Willard 1995, 2000; Elliott-Fisk et al. Jepson manual, 2nd edition (Baldwin et al. 2012). Voucher 1997; Lanner 1999; Schellevis and Schouten 1999; Flint 2002; information is (all collections RSA, UC, UCR): 1 May 2009, Fites-Kaufman et al. 2007; Krugman and Boe 2008; Eck- Black Mountain (summit el. 2369 m/7772 ft), Riverside Co., enwalder 2009; Farjon 2010; Boyd and Griffin 2012; CCH 2012; California, at 2036 m/6680 ft to 2144 m/7034 ft: Pinus Schmid 2012; Wikipedia 2012). The groves recognized vary in lambertiana (R. Schmid and M. Schmid 2009-3), Sequoiaden- number from 65 to 80 or more, depending on how ‘‘grove’’ is dron giganteum (Idem 2009-1, 2009-2, 2009-4, 2009-5, 2009-6). defined; Willard’s (2000) ‘‘67 groves’’ is now usually accepted. For details of collection labels see Schmid and Schmid (2011). The groves are mostly of very restricted extent and/or See also Observations. threatened. They occur in a narrow strip measuring about 395 km long (northwest–southeast) and 19–21 km at the widest Mapping aids: Mapping aids included: (1) Garmin Map- point (east–west). The groves extend over seven counties from Source version 6.15.11 with Topo US 2008 used to plot GPS southern Placer Co. southeasterly to southern Tulare Co. and data from a Garmin eTrex Legend HCx hiking GPS receiver vary in size from 6 to over 20,000 adult trees. (Fig. 9), (2) San Jacinto Wilderness trail map (Tom Harrison Our discovery of this Sierran species in the wilds of montane Maps 2006), (3–4) the Internet-based Google Earth (2012: southern California posed these questions: (1) When and how version 6.1.0.5001) and United States Geological Survey did this Sierran endemic get to southern California, some 280 Geographic Names Information System (GNIS) (2012), (5) air km south of its closest native occurrence (Fig. 1)? (2) How atlases for California (Benchmark Maps 2007; DeLorme extensively is this alien species distributed on Black Mountain? 2008), and (6) national-forest maps (print and downloadable (3) Is the species regenerating itself or naturalizing there? PDF versions) of the United States Forest Service (2012). 20 Schmid and Schmid ALISO Fig. 1. Distribution of Sequoiadendron giganteum showing the 8 northern (arrows) and 67 southern (dots) native groves recognized by Weatherspoon [1990: 553, the map source; since Willard (2000), the current numbers are 8 northern and 59 southern groves] and, on the overview map, the naturalized population on Black Mountain, northwestern San Jacinto Mountains, Riverside Co. On 1 May 2009 we used the Garmin GPS receiver to create ,1.3 cm/0.5 in. diameter, not reproductive; sapling,shoot waypoints for individuals of Sequoiadendron giganteum that we 30.5–137 cm/1–4.5 ft tall, main stem $1.3 cm/0.5 in. encountered in the vicinity of Black Mountain Trail. We made diameter, usually not reproductive. These are essentially most of our field observations over a ca. 0.7 km linear distance taxonomic-horticultural definitions, for example, by Flora between 2036 m and 2236 m el. North America (Lewis 1971: 18): ‘‘sapling: a young tree, Except in quotations, we express GPS coordinates in DDD usually several feet high and less than 4 inches [10.2 cm] in (decimal degrees) format to four decimal places (e.g., 37.9151u, diameter.’’ The respective dimensions are appreciably greater 2122.2866u 5 latitude, longitude; 173 m el.) because they seem when defined by foresters, for instance, by Northwest Illinois simpler and less error-prone in transcribing than either the Forestry Association (2012): ‘‘seedlings: trees that are less traditional DMS (degrees, minutes, and seconds) or usual GPS- than 4.5 feet [1.4 m] tall’’ and ‘‘sapling[s]: trees taller than device DMM (degrees, minutes with decimal seconds) for- 4.5 feet [1.4 m] but less than 5.0 inches [12.7 cm] dbh’’ (see mats (respectively, 37u549540N, 122u179110Wand37u54.9069N, also SORTIE-ND 2011). [We checked some 20 dictionaries 122u17.1989W for the previous example). Computer Support of biology and botany for ‘‘seedling’’ and ‘‘sapling’’ and Group (2012) makes available on the Internet a GPS latitude/ found only Lewis (1971) using actual dimensions to define longitude coordinate converter and distance calculator. these terms.] Terminology: We define seedlings and saplings of trees as Criteria for naturalization or regeneration of introduced follows: seedling,shoot,30.5 cm/1 ft tall, main stem plants.—The critical question regarding the introduction of VOLUME 30, NUMBER 1 Sequoiadendron Naturalization 21 Fig. 2–8. Sequoiadendron giganteum.—2–6. Naturalized on Black Mountain (summit el. 2369 m), northwestern San Jacinto Mountains, Riverside Co., California.—2. Outlier sapling (#49) at 2361 m el.—3. Trees up to ca. 30 years old and ca. 5.5–6 m tall at the sloping plateau or saddle at 2144 m el.; tree (#28) left of center enlarged in Fig. 4, 6. Note the classic conical or pyramidal form of these uncrowded trees.—4, 6. Tree (#28) ca. 5.5 m tall, with Rudolf Schmid and male and female cones.—5. Male cones from tree (#c1) at 2066.5 m el.—Fig. 7–8. Items collected 1 May 2009 from the ground on Black Mountain at ca. 2070 m el.—7. Mature seed cones (70, 57 mm long).—8. Winged seeds (50) retrieved from 8 seed cones; mix of sandy granitic soil and sparse duff with needles (Abies concolor) and shoot segments (Calocedrus decurrens). Photos taken 1 May 2009 (Fig. 2–5), 3 May 2008 (Fig. 6), 31 Jan 2010 (Fig. 7), and 16 Apr 2010 (Fig. 8). Photos by M. Schmid (Fig. 2–4, 6) and R. Schmid (Fig. 5, 7, 8). 22 Schmid and Schmid ALISO Fig. 9. Map showing GPS plots of specimens of Sequoiadendron giganteum encountered 1 May 2009 along and near Black Mountain Trail, Black Mountain (summit el. 2369 m).—At least 157 individuals were seen from 2036 to 2236 m el. (respectively, individuals #1, #48, a total of ca. 0.7 km linear distance, ca. 0.066 km2 or 6.6 ha) downslope from Boulder Basin Campground.
Recommended publications
  • Distribution of Living Cupressaceae Reflects the Breakup of Pangea
    Distribution of living Cupressaceae reflects the breakup of Pangea Kangshan Maoa,b,c,1, Richard I. Milnea,b,c,1, Libing Zhangd,e, Yanling Penga, Jianquan Liua,2, Philip Thomasc, Robert R. Millc, and Susanne S. Rennerf aState Key Laboratory of Grassland Agro-Ecosystem, School of Life Sciences, Lanzhou University, Lanzhou, Gansu 730000, People’s Republic of China; bInstitute of Molecular Plant Sciences, School of Biological Sciences, University of Edinburgh, Edinburgh EH9 3JH, United Kingdom; cRoyal Botanic Garden Edinburgh, Edinburgh EH3 5LR, Scotland, United Kingdom; dChengdu Institute of Biology, Chinese Academy of Sciences, Chengdu, Sichuan 610041, People’s Republic of China; eMissouri Botanical Garden, St. Louis, MO 63166; fSystematic Botany and Mycology, Department of Biology, University of Munich, 80638 Munich, Germany Edited by Charles C. Davis, Harvard University, Cambridge, MA, and accepted by the Editorial Board March 21, 2012 (received for review September 2, 2011) Most extant genus-level radiations in gymnosperms are of Oligocene occur on all continents except Antarctica and comprise 162 species age or younger, reflecting widespread extinction during climate in 32 genera (see Table S2 for subfamilies, genera, and species cooling at the Oligocene/Miocene boundary [∼23 million years ago numbers). The family has a well-studied fossil record going back (Ma)]. Recent biogeographic studies have revealed many instances of to the Jurassic (32–36). Using ancient fossils to calibrate genetic long-distance dispersal in gymnospermsaswellasinangiosperms. distances in molecular phylogenies can be problematic, because the Acting together, extinction and long-distance dispersal are likely to older a fossil is, the more likely it is to represent an extinct lineage erase historical biogeographic signals.
    [Show full text]
  • Natural Regeneration of White and Red Fir. . . Influence of Several Factors. Berkeley, Calif., Pacific SW
    PACIFIC SOUTHWEST Forest and Range FOREST SERVICE. U. S. DEPARTMENT OF AGRICULTURE P.O. BOX 245, BERKELEY, CALIFORNIA 94701 Experiment Station U.S.D.A. FOREST SERVICE RESEARCH PAPER PSW- 58 /1970 Gordon, Donald T. 1970. Natural regeneration of white and red fir. influence of several factors. Berkeley, Calif., Pacific SW. Forest & Range Exp. Sta. 32 p., illus. (U.S.D.A. Forest Serv. Res. Pap. PSW-58) In a group of studies at Swain Mountain Experimental Forest in northeastern California, seedling survival and mortality were analyzed within the general framework of seed production and dispersal, germination, seedbed condition, soil surface temperature, insolation, soil moisture, and vegetative competition. Factors found to favor seedling establishment were abundance of sound seed, mineral soil seedbed, and probably some shade in the first year. Chief obstacles to seedling survival and growth included strong insolation, deep litter, insects, competing low vegetation, and time between good seed years. The most practical approach to securing natural regeneration appears to be keeping abundant seed trees close to a prepared mineral soil seedbed. Oxford: 231–181.525[+ 174.7 Abies concolor + 174.7 Abies magnifica + 174.7 Abies magnifica var. shastensis]. Retrieval Terms: Abies concolor; Abies magnifica; Abies magnifica var. shastensis; natural regeneration; seedling establishment; seedbed; protective shading; seed production; seedling mortality; Swain Mountain Experimental Forest. Gordon, Donald T. 1970. Natural regeneration of white and red fir. influence of several factors. Berkeley, Calif., Pacific SW. Forest & Range Exp. Sta. 32 p., illus. (U.S.D.A. Forest Serv. Res. Pap. PSW-58) In a group of studies at Swain Mountain Experimental Forest in northeastern California, seedling survival and mortality were analyzed within the general framework of seed production and dispersal, germination, seedbed condition, soil surface temperature, insolation, soil moisture, and vegetative competition.
    [Show full text]
  • Growth and Colonization of Western Redcedar by Vesicular-Arbuscular Mycorrhizae in Fumigated and Nonfumigated Nursery Beds
    Tree Planter's Notes, Volume 42, No. 4 (1991) Growth and Colonization of Western Redcedar by Vesicular-Arbuscular Mycorrhizae in Fumigated and Nonfumigated Nursery Beds S. M. Berch, E. Deom, and T. Willingdon Assistant professor and research assistant, Department of Soil Science, University of British Columbia, Vancouver, BC, and manager, Surrey Nursery, British Columbia Ministry of Forests, Surrey, BC Western redcedar (Thuja plicata Donn ex D. Don) VAM. Positive growth responses of up to 20 times the seedlings were grown in a bareroot nursery bed that had nonmycorrhizal controls occurred under conditions of limited been fumigated with methyl bromide. Seedlings grown in soil phosphorus. Incense-cedar, redwood, and giant sequoia fumigated beds were stunted and had purple foliage. seedlings in northern California nursery beds are routinely Microscopic examination showed that roots from these inoculated with Glomus sp. (Adams et al. 1990), as seedlings were poorly colonized by mycorrhizae, and only by experience has shown that the absence of VAM after soil fine vesicular-arbuscular mycorrhizae. In contrast, roots from fumigation leads to phosphorus deficiency and poor growth. seedlings grown in non-fumigated beds had larger shoots and When western redcedars in fumigated transplant beds at green foliage and were highly colonized by both fine and the British Columbia Ministry of Forest's Surrey Nursery coarse vesicular-arbuscular mycorrhizae. Tree Planters' began to show signs of phosphorus deficiency, a deficiency Notes 42(4):14-16; 1991. of mycorrhizal colonization was suspected. Many studies have demonstrated improved P status of VAM-inoculated Species of cypress (Cupressaceae) and yew plants (see Harley and Smith 1983).
    [Show full text]
  • Metasequoia Dawn Redwood a Truly Beautiful Tree
    Metasequoia Dawn Redwood A Truly Beautiful Tree Metasequoia glyptostroboides is considered to be a living fossil as it is the only remaining species of a genus that was widespread in the geological past. In 1941 it was discovered in Hubei, China. In 1948 the Arnold Arboretum of Harvard University sent an expedition to collect seed, which was distributed to universities and botanical gardens worldwide for growth trials. Seedlings were raised in New Zealand and trees can be seen in Christchurch Botanical Gardens, Eastwoodhill and Queens Gardens, Nelson. A number of natural Metasequoia populations exist in the wetlands and valleys of Lichuan County, Hubei, mostly as small groups. The largest contains 5400 trees. It is an excellent tall growing deciduous tree to complement evergreens in wetlands, stream edge plantings to control slips, and to prevent erosion in damp valley bottoms where other forestry trees fail to grow. Spring growth is a fresh bright green and in autumn the foliage turns a A fast growing deciduous conifer, red coppery brown making a great display. with a straight trunk, numerous It is also a most attractive winter branch silhouette. While the foliage is a similiar colour in autumn to that of swamp cypress (Taxodium), it is a branches and a tall conical crown, much taller erect growing tree, though both species thrive in moist soil growing to 45 metres in height and conditions. We import our seed from China and the uniformity of the seedling one metre in diameter. crop is most impressive. The timber has been used in boat building. Abies vejari 20 years old on left 14 years old on right Abies Silver Firs These dramatic conical shaped conifers make a great statement in the landscape, long-lived and withstanding the elements.
    [Show full text]
  • Cupressaceae Calocedrus Decurrens Incense Cedar
    Cupressaceae Calocedrus decurrens incense cedar Sight ID characteristics • scale leaves lustrous, decurrent, much longer than wide • laterals nearly enclosing facials • seed cone with 3 pairs of scale/bract and one central 11 NOTES AND SKETCHES 12 Cupressaceae Chamaecyparis lawsoniana Port Orford cedar Sight ID characteristics • scale leaves with glaucous bloom • tips of laterals on older stems diverging from branch (not always too obvious) • prominent white “x” pattern on underside of branchlets • globose seed cones with 6-8 peltate cone scales – no boss on apophysis 13 NOTES AND SKETCHES 14 Cupressaceae Chamaecyparis thyoides Atlantic white cedar Sight ID characteristics • branchlets slender, irregularly arranged (not in flattened sprays). • scale leaves blue-green with white margins, glandular on back • laterals with pointed, spreading tips, facials closely appressed • bark fibrous, ash-gray • globose seed cones 1/4, 4-5 scales, apophysis armed with central boss, blue/purple and glaucous when young, maturing in fall to red-brown 15 NOTES AND SKETCHES 16 Cupressaceae Callitropsis nootkatensis Alaska yellow cedar Sight ID characteristics • branchlets very droopy • scale leaves more or less glabrous – little glaucescence • globose seed cones with 6-8 peltate cone scales – prominent boss on apophysis • tips of laterals tightly appressed to stem (mostly) – even on older foliage (not always the best character!) 15 NOTES AND SKETCHES 16 Cupressaceae Taxodium distichum bald cypress Sight ID characteristics • buttressed trunks and knees • leaves
    [Show full text]
  • Giant Sequoia Insect, Disease, and Ecosystem Interactions1
    Giant Sequoia Insect, Disease, and Ecosystem Interactions1 Douglas D. Piirto2 Abstract: Individual trees of giant sequoia (Sequoia gigantea [Lindl.] afflict and kill other trees." Similarly Hartesveldt (1962) Decne.) have demonstrated a capacity to attain both a long life and very concurred that "Sequoia's longevity and great size have large size. It is not uncommon to find old-growth giant sequoia trees in their native range that are 1,500 years old and over 15 feet in diameter at been attributed by nearly all writers, popular and scientific, breast height. The ability of individual giant sequoia trees to survive over to its few insect and fungus parasites and the remarkable such long periods of time has often been attributed to the species high resistance of the older trees to damage or death by fire. resistance to disease, insect, and fire damage. Such a statement, however, is There is no record of an individual sequoia living in its a gross oversimplification, given broader ecosystem and temporal interac- tions. For example, why isn't there a greater representation of young-growth natural range as having been killed by either fungus or insect giant sequoia trees throughout the mixed-conifer belt of the Sierra Nevadas? attack." Even as recently as 1991 Harlow and others (1991) What other factors, in addition to physical site characteristics, limit giant stated: "Insects and fungi cause but minor damage, and no sequoia to its present range and grove boundaries? How does fire and fire large Bigtree killed by them has ever been found." frequency affect disease and insect interrelationships in the giant sequoia/ mixed-conifer ecosystem? Are current forest management strategies (e.g., It is finally being recognized that giant sequoia is fire suppression, prescribed burning programs) affecting these interactions? subject to the same natural forces as other tree species (Bega Giant sequoia trees are subject to the same natural forces (e.g., insect and 1964, Harvey and others 1980, Parmeter 1987, Piirto 1977, disease organisms) as other tree species.
    [Show full text]
  • Hybridization of the California Firs
    Forest Science, Vol. 34, No. I, pp. 139-151. Copyright 1988 by the Society of American Foresters Hybridization of the California Firs William B. Critchfield Abstract. Four groups of firs (sections, in the most recent classification of Abies) are represented in California. Crossing within these sections is possible and even easy, and in two of the sections intergrading populations between highly crossable taxa are wide spread in California. An exception is A. amabilis, a Northwestern fir that has not been crossed with other species in the same section {Grandes: A. concolor, A. grandis) or in other sections (e.g., Nobiles: A magnified). Crossing species in different sections is usually difficult or impossible. The genetic isolation of A. bracteata, an endemic species classified as a monotypic subgenus or section, may be nearly complete: two probable hybrids with A. concolor died at a few years of age. A few putative hybrids from inter- sectional crosses between species in Grandes and Nobiles died within months of germi nation. Intersectional crosses with firs outside California (two Mexican and four Eur asian species) all failed except A. concolor x A. religiosa, which produced numerous healthy hybrids. The common occurrence of genetic barriers in Abies is at odds with the long-held view that it is easy to hybridize fir species. For. Sci. 34(1): 139-151. Additional key words. Abies, interspecific hybrids, crossability, classification. The ability of species to hybridize has not been explored as systemati cally in the genus Abies (true firs) as it has in other genera of Pinaceae such as Pinus and Pice a.
    [Show full text]
  • Plant Palette - Trees 50’-0”
    50’-0” 40’-0” 30’-0” 20’-0” 10’-0” Zelkova Serrata “Greenvase” Metasequoia glyptostroboides Cladrastis kentukea Chamaecyparis obtusa ‘Gracilis’ Ulmus parvifolia “Emer I” Green Vase Zelkova Dawn Redwood American Yellowwood Slender Hinoki Falsecypress Athena Classic Elm • Vase shape with upright arching branches • Narrow, conical shape • Horizontally layered, spreading form • Narrow conical shape • Broadly rounded, pendulous branches • Green foliage • Medium green, deciduous conifer foliage • Dark green foliage • Evergreen, light green foliage • Medium green, toothed leaves • Orange Fall foliage • Rusty orange Fall foliage • Orange to red Fall foliage • Evergreen, no Fall foliage change • Yellowish fall foliage Plant Palette - Trees 50’-0” 40’-0” 30’-0” 20’-0” 10’-0” Quercus coccinea Acer freemanii Cercidiphyllum japonicum Taxodium distichum Thuja plicata Scarlet Oak Autumn Blaze Maple Katsura Tree Bald Cyprus Western Red Cedar • Pyramidal, horizontal branches • Upright, broad oval shape • Pyramidal shape • Pyramidal shape, develops large flares at base • Pyramidal, buttressed base with lower branches • Long glossy green leaves • Medium green fall foliage • Bluish-green, heart-shaped foliage • Leaves are needle-like, green • Leaves green and scale-like • Scarlet red Fall foliage • Brilliant orange-red, long lasting Fall foliage • Soft apricot Fall foliage • Rich brown Fall foliage • Sharp-pointed cone scales Plant Palette - Trees 50’-0” 40’-0” 30’-0” 20’-0” 10’-0” Thuja plicata “Fastigiata” Sequoia sempervirens Davidia involucrata Hogan
    [Show full text]
  • Why Are Coast Redwood and Giant Sequoia Not Where They Are Not?1
    Proceedings of the Coast Redwood Science Symposium—2016 Why Are Coast Redwood And Giant Sequoia Not Where They Are Not?1 2 W.J. Libby Abstract Models predicting future climates and other kinds of information are being developed to anticipate where these two species may fail, where they may continue to thrive, and where they may colonize, given changes in climate and other elements of the environment. Important elements of such predictions, among others, are: photoperiod; site qualities; changes in levels and yearly patterns of temperature, wind, fog and precipitation; the effects of these on interactions with other biota at each site; the effects of changes in fire frequency and intensity; the availability of seeds and seed vectors; and the effects of human activity. Examples are presented, with focus on fire and human activity. Natural migration may need assistance. Establishing groves far from the native ranges is advocated. Keywords: assisted colonization, assisted migration, climate change, fire, Sequoia, Sequoiadendron When preparing this talk and then paper, it became increasingly clear that it is more of an Op-Ed than a comprehensive review, and is meant for people interested in and familiar with coast redwood (Sequoia sempervirens (D. Don) Endl.) and giant sequoia (Sequoiadendron giganteum (Lindl.) Buchholz). Thus, four background references are provided, and they in turn provide detail on many of the topics covered. The final two references provide background on future speculative scenarios. Possible responses to such future scenarios are suggested. Coast redwood’s current natural latitudinal range begins with discontinuous canyon-bottom populations near the southern Monterey County border, extends north through increasingly- continuous coastal and generally-separated interior populations, and stops just north of the Oregon/California border.
    [Show full text]
  • Local Variation in Intergrading Abies Grandis—Abies Concolor Populations in the Central Oregon Cascades: Needle Morphology and Periderm Color
    BOT. GAZ. 134(3):209-220. 1973. LOCAL VARIATION IN INTERGRADING ABIES GRANDIS—ABIES CONCOLOR POPULATIONS IN THE CENTRAL OREGON CASCADES: NEEDLE MORPHOLOGY AND PERIDERM COLOR DONALD B. ZOBEL Department of Botany and Plant Pathology, Oregon State University, Corvallis, Oregon 97331 ABSTRACT In the central Oregon Cascades, grand fir morphology varies from that of typical Abies grandis to that of populations with a variety of morphological types, some closely resembling A. concolor. Low- elevation populations west of the Cascade crest, mostly on river terraces, resemble A. grandis. High- elevation west-side populations, disjunct from those at low elevations and occupying ridge tops and steep, dry slopes, include trees with some traits of A. concolor. Populations on the east flank of the Cascades show a greater but widely variable influence of A. concolor. East-side populations vary locally with aspect, being most like A. grandis on north slopes, but they do not clearly vary with elevation. Incidence of characteristics resembling A. concolor increases from north to south within the study area, although this pattern shows deviations not associated with obvious changes in topography. Periderm color and needle morphology show the same general relationships between the populations sampled. Either "maxi- mum number of adaxial stomatal rows" or "percentage of length of needle with adaxial stomata" can be used to describe the extent of adaxial stomata. Needle notch depth is not consistently correlated with stomata( characteristics on a tree-to-tree basis, but shows a similar, less distinct, geographic and habitat pattern. The variation within populations is greater in the intermediate populations than in those of "typical" A.
    [Show full text]
  • Giant Sequoia Management in National Parks 1
    in: Aune, rnuip s., teen, coora. iyy*. rroceeainss oi me symposium on uian. sc^uiaa. '«'" ^.o^c ... the ecotystea and society; 1992 June 23-25; Visalia, CA. Albany, CA: U.S. Department of Agriculture, Forest Service, Pacific Southwest Research Station: 109-115. Objects or Ecosystems? PUB #267 Giant Sequoia Management in National Parks 1 David J. Parsons2 Abstract: Policies and programs aimed at protecting giant sequoia the effects of such external threats as air pollution and (Sequoiadendron giganteum) in the national parks of the Sierra Nevada projected human induced climadc change. The challenges have evolved from the protection of individual trees to the preservation of entire ecosystems. We now recognize that the long-term preservation of associated with assuring the long-term preservation of giant giant sequoia depends on our ability to minimize and mitigate the influences sequoia have become increasingly complicated as we have of human activities. National Park Service management strategies for giant learned more about the complexity and inter-relatedness of sequoia focus on the restoration of native ecosytem processes. This includes the greater Sierra Nevada ecosystem. the use of prescribed fire to simulate natural ignitions as well as the movement of visitor facilities out of the groves. Basic research is being This paper briefly reviews the history of giant sequoia carried out to improve our understanding of the factors infuencing giant management in the National Parks of the Sierra Nevada, sequoia reproduction, growth, and survival. Future management decisions emphasizing a gradually improved understanding of giant must recognize that giant sequoia are only part of a complex ecosystem; they sequoia ecosystems and how management has attempted to cannot be managed as objects in isolation of their surroundings.
    [Show full text]
  • Abies Concolor (White Fir)
    Compiled here is distribution, characteristics and other information on host species featured as ‘Host of the Month’ in past issues of the COMTF Monthly Report. Abies concolor (white fir) This is an evergreen tree native to the mountains of southern Oregon, California, the southern Rocky Mountains, and Baja California. Large and symmetrical, white fir grows 80 – 120ft tall and 15 – 20ft wide in its native range and in the Pacific Northwest. White fir is one of the top timber species found in the Sierra Nevada Mountains of CA and is a popular Christmas tree, as well as one of the most commonly grown native firs in Western gardens. Young trees are conical in shape, but develop a dome-like crown with age. The flattened needles of white fir are silvery blue-green, blunt at the tip , and grow 2 – 3in long. Often curving upwards, the needles extend at right angles from the twig, and twigs produce a citrus smell when needles are broken. White fir is monoecious, producing yellow- to red-toned, catkin-like male flowers and inconspicuous yellow-brown female flowers. The oblong cones grow 3 – 5 in upright, are yellow-green to purple in color, and are deciduous at maturity, dispersing seed in the fall. New twigs are dark- orange, but become gray-green, then gray with maturity. The bark of saplings is thin, smooth, and gray, turning thick, ash-gray with age, and developing deep irregular furrows. P. ramorum- infected Abies concolor (white fir) was first reported in the October 2005 COMTF newsletter as having been found at a Christmas tree farm in the quarantined county of Santa Clara.
    [Show full text]