Thamnochortus Insignis and T. Erectus, Restionaceae)

Total Page:16

File Type:pdf, Size:1020Kb

Thamnochortus Insignis and T. Erectus, Restionaceae) COMPARATIVE SEED AND REGENERATION BIOLOGY OF TWO THATCIDNG REED SPECIES (THAMNOCHORTUS INSIGNIS AND T. ERECTUS, RESTIONACEAE) Jaana-Maria Ball UniversitySeptember of Cape 1995 Town A thesis submitted to the Faculty of Science, University of Cape Town, in fulfilment of the requirements for the Degree of Master of Science The copyright of this thesis vests in the author. No quotation from it or information derived from it is to be published without full acknowledgement of the source. The thesis is to be used for private study or non- commercial research purposes only. Published by the University of Cape Town (UCT) in terms of the non-exclusive license granted to UCT by the author. University of Cape Town ii SUM:MARY The effect of harvesting on the seed and seedling ecology and the effect of fire and harvesting on the population dynamics of two thatching reed species, namely Thamnochortus insignis and Thamnochortus erectus were studied. The study species are both perennial hemicryptophytes each with a different regeneration mode, the former being a non-sprouter and the latter a resprouter. Despite being increasingly harvested in the agriculturally marginal areas of the southern Cape coast, no information exists on population dynamics and population processes that depend on the distribution and behaviour of seeds. Furthermore, Restionaceae which are physiognomically and floristically characteristic of the fynbos have generally been poorly studied. Thus, this study aimed to increase our understanding of the effect of harvesting on the seed bank dynamics and the effect of fire and harvesting on population dynamics of these species, as well as to provide managers of thatch stands with guidelines for the sustainable utilization of the resource. Seed bank dynamics and response of the species to disturbance were the focus of this study, but were placed in the context of their whole life cycles. Soil seed bank densities of both species were high; with that of T. insignis being approximately two times larger than that of T. erectus. This was attributed to greater seed production of T. insignis compared to T. erectus, rather than to longer survival of seed in the soil. Both species produced considerably more seeds than were incorporated into the seed bank and it was during this life history stage that the largest seed losses were observed. The seed bank densities of both species were distinctly seasonal, with direct seed counts for T. insignis varying between 1633 ± 2601 (mean± standard deviation) seeds per m2 before dispersal and 3773 ± 6027 seeds per m2 after dispersal. Seed counts for T. erectus varied between 1134 ± 2644 seeds per m2 before dispersal and 2530 ± 3482 seeds per m2 after dispersal. Seed bank estimates from germination were lower. Annual seed production and seed bank densities of both species showed large inter-annual variations, as well iii asdifferencesbetween species. Harvesting resulted in a drastic decline in both seed production and post-dispersal seed bank density. Active dispersal of seed during harvesting resulted in an increase in pre-dispersal seed bank density. Both species have seasonally persistent seed banks, and seed losses over the year following seed input were moderate. An accumulation of seeds in the soil over the two years was observed for both species. Seed burial showed that seed persistence and losses in seed banks differed between species and experimental seed bank type. Thamnochortus erectus showed greater seed persistence and T. insignis showed greater seed losses. These results conflict with actual observations of seed bank densities. Burial bags showed greater seed persistence and burial boxes showed greater seed losses for both species. Recruitment and seedling survival in mature vegetation was Umited for both species, although T. insignis appeared to have more potential than T. erectus for recruitment in this environment. In contrast. T. in.signis seedling recruitment was massive in the post-disturbance environment, indicating that the dormancy breaking may be mediated through cue " mcreasect resources in the disturbed environment. Moreover, germination appears to be cued by fire, although post-fire recruitment was not confmed to the first germination season after fire. Thamnochortus erectus seedling density was variable after disturbance and showed no large differences in the post-disturbance environment compared to mature vegetation, indicating that germination was not stimulated by environmental stimuli in the post-disturbance environment. The "open" microhabitat was favoured by seedlings of both species. Fire appeared to have a greater impact than harvesting on the population structure of both species. Culm production and resumption of seed production was rapid for both species, although reproductive output was both larger and increased more rapidly with time for T. in.signis compared to T. erectus. A single disturbance event increases the successful establishment of the non-sprouter, T. insignis, largely by massive seedling recruitment, although many plants survive and resprout from a subterranean base after harvesting. Population expansion of T. erectus after iv fire is probable, although not after harvesting. This was largely due to the ability of the resprouter, T. erectus, to maintain population size by adult plant survival and vegetative growth after a disturbance event, as :well as recruiting seedlings. Thamnoehortus insignis can, thus, be seen as a pioneer a species and T. erectus can be seen asApersistent species. This study contributes to the understanding of soil seed bank dynamics in fynbos and is the first comprehensive study of the seed and seedling biology of African Restionaceae. The implications of these results for commercial harvesting of the study species are discussed. V ACKNOWLEDGEMENTS I wish to express my appreciation to my supervisor Professor Richard Cowling for his generous academic and moral support throughout this study. Without fail I would leave each discussion more enthusiastic and enlightened. His dedication to and love for his work, and balanced outlook on life is an inspiration to all. Thanks also to my colleagues in the Institute for Plant Conservation and Botany Department at the University of Cape Town for their friendship, support and encouragement over the years. It was a privilege to have worked in such an environment. Special thanks is also due to Desmond Barnes, Henry Botha, Raymond Carelse, Hilary Cochrane, Robert Jacobs, Wendy Paisley and Sandy Smuts for their invaluable assistance. Prof. June Juritz of the Department of Statistical Sciences, University of Cape Town is thanked for assistance with the statistical analyses. I am most grateful to Angie Beuka, Bogart Butler, Raynn Bruce, Janette Du Tait, Michelle Forcioli, Alan Fransman, Carol Green, Leigh Gurney, Brandon Hurd, Petra Jobst, Alasdair Keen, Bridgit Klump, Chris Lotz, Cecilia Makua, Pieter Martin, Carl Morrow, Anton Noffke, Barry Page, Megan Page, Myles Prothero, Alison Pudney, Michael Richards, Anthony Smith, Jean Smith, Jenny Tomalin, Torbian Wiborg and Russel Wise for a great deal of hard work and patience, sometimes under extreme conditions, during the many field trips and processing of samples in the laboratory. Many friendships have been borne or strengthened during this time spent together. Access to the field study sites was kindly granted by the van Breda and Albertyn families, owners of the farms Zoetendalsvallei and Zeekoeivlei. Thanks also to Diana Durrant and Mr and Mrs Geldenhuys for accommodation at Springfield and Renosterkop during field trips. Their enthusiasm, generosity, desire to conserve natural areas, appreciation of nature and love of the area that they live in will be remembered. Whenever I vi reached the Agulhas Plain, after a long and frantic buildup to each field trip, an inner calm crept into me. I have truly come to love the area. Thanks also to the many farmers and thatch harvesters of the Stilbaai and Agulhas areas, for their willingness to discuss the practical aspects of thatch farming. Finally, I gratefully acknowledged the financial support of the Botanical Society, Department of Agriculture, Foundation for Research Development, Institute for Plant Conservation and University of Cape Town. vii CONTENTS PAGE SUMMARY ii ACKNOWLEDGEl\fENTS V CHAPTER 1: GENERAL INTRODUCTION 1 1. 1 Thesis rationale 2 1.2 Specific aims 5 1.2.1 Seed banks 5 1.2.2 Life cycle dynamics 7 1.2.3 The effects of disturbance 8 1.2.4 Practical significance 9 1.3 Study area and study sites 9 1.3.1 Physiography, climate and vegetation of the Agulhas Plain 9 1.3.2 Study sites 10 1.4 Study species and thatching industry 14 1.5 Methodology 18 1.6 Thesis structure and outline 19 1. 7 References 42 CHAPTER 2: SOIL STORED SEED BANKS OF TWO THATCIDNG REED SPECIES: PERSISTENCE AND DYNAMICS IN RESPONSE TO HARVESTING 55 2.1 Abstract 56 2.2 Introduction 58 2.3 Study species and study sites 64 2.4 Methods and materials 67 2.4.1 Seed characteristics 67 2.4.2 Population structure 67 2.4.3 Pre-dispersal seed losses 69 viii 2.4.4 Seed production 69 2.4.5 Post-dispersal seed predation 71 2.4.5.1 Cafeteria experiment 71 2.4.5.2 Observations 72 2.4.6 Soil seed bank size and dynamics 72 2.4.6.1 Pilot study 74 2.4.6.2 Physical separation technique 76 2.4.6.3 Seedling emergence technique 76 2.4.7 Seed storage and burial 77 2.4.7.1 Field study 77 a) Burial bag experiment 78 b) Burial box experiment 79 2.4.7.2 Laboratory study 80 2.4.8 Seedling dynamics 80 2.4.9 Seed budget 82 2.5 Results 84 2.5.1 Seed characteristics 84 2.5.2 Population structure 84 2.5.3 Pre-dispersal seed losses 89 2.5.4 Seed production 90 2.5.5 Post-dispersal seed predation 95 2.5.6 Soil seed bank size and dynamics 96 2.5.7 Seed storage and burial 107 2.5.8 Seedling dynamics 110 2.5.9 Seed budget 116 2.6 Discussion 155 2.
Recommended publications
  • Systematic Studies of the South African Campanulaceae Sensu Stricto with an Emphasis on Generic Delimitations
    Town The copyright of this thesis rests with the University of Cape Town. No quotation from it or information derivedCape from it is to be published without full acknowledgement of theof source. The thesis is to be used for private study or non-commercial research purposes only. University Systematic studies of the South African Campanulaceae sensu stricto with an emphasis on generic delimitations Christopher Nelson Cupido Thesis presented for the degree of DOCTOR OF PHILOSOPHY in the Department of Botany Town UNIVERSITY OF CAPECape TOWN of September 2009 University Roella incurva Merciera eckloniana Microcodon glomeratus Prismatocarpus diffusus Town Wahlenbergia rubioides Cape of Wahlenbergia paniculata (blue), W. annularis (white) Siphocodon spartioides University Rhigiophyllum squarrosum Wahlenbergia procumbens Representatives of Campanulaceae diversity in South Africa ii Town Dedicated to Ursula, Denroy, Danielle and my parents Cape of University iii Town DECLARATION Cape I confirm that this is my ownof work and the use of all material from other sources has been properly and fully acknowledged. University Christopher N Cupido Cape Town, September 2009 iv Systematic studies of the South African Campanulaceae sensu stricto with an emphasis on generic delimitations Christopher Nelson Cupido September 2009 ABSTRACT The South African Campanulaceae sensu stricto, comprising 10 genera, represent the most diverse lineage of the family in the southern hemisphere. In this study two phylogenies are reconstructed using parsimony and Bayesian methods. A family-level phylogeny was estimated to test the monophyly and time of divergence of the South African lineage. This analysis, based on a published ITS phylogeny and an additional ten South African taxa, showed a strongly supported South African clade sister to the campanuloids.
    [Show full text]
  • Campanulaceae) Based on ITS and Tranl-F Sequence Data: Implications for a Reclassification
    CORE Metadata, citation and similar papers at core.ac.uk Provided by University of the Western Cape Research Repository Cupido, C. N. et al. (2013). Phylogeny of Southern African and Australasian Wahlenbergioids (Campanulaceae) based on ITS and tranL-F sequence data: implications for a reclassification. Systematic Botany, 38(2): 523 – 535 http:// doi.org/10.1600/036364413X666714 dx. Phylogeny of Southern African and Australasian Wahlenbergioids (Campanulaceae) based on ITS and trnL-F sequence data: implications for a reclassification Christopher N. Cupido , Jessica M. Prebble , and William M. M. Eddie Abstract The Campanulaceae: Wahlenbergioideae currently comprises 15 genera, one of which, Wahlenbergia, is widespread over the southern continents. Southern Africa is the region with maximum wahlenbergioid diversity with 12 genera and approximately 252 species. A second center is Australasia with 38 Wahlenbergia species. This study used a broad sample of wahlenbergioid diversity from South Africa, Australia, and New Zealand to reconstruct a phylogeny based on chloroplast trnL-F and nuclear ITS sequences. Data were analyzed separately and in combination using parsimony and Bayesian methods. The results suggest that for the wahlenbergioids to be monophyletic Wahlenbergia hederacea has to be excluded and that none of the South African, Australian or New Zealand lineages are strictly monophyletic. There are five species assemblages that are in some disagreement with current classification in the family. Wahlenbergia, Prismatocarpus and Roella are shown to be non-monophyletic and implications for a reclassification are presented. Careful consideration of morphological characters is suggested before the adjustment of generic circumscriptions can be accomplished. Recent family-wide molecular phylogenetic studies have supported the view that the Campanulaceae s.s.
    [Show full text]
  • Species Limits in the Rhodocoma Gigantea
    Species Emits in tlie Cl(liodocoma gigantea (1(untli) £ inder Compfex.. Paseka Mafa University of Cape Town Botany Honours Systematics Project Supervised by Prof. H. P. Linder University of Cape Town 1999 The copyright of this thesis vests in the author. No quotation from it or information derived from it is to be published without full acknowledgement of the source. The thesis is to be used for private study or non- commercial research purposes only. Published by the University of Cape Town (UCT) in terms of the non-exclusive license granted to UCT by the author. University of Cape Town Abstract Rhodocoma gigantea and Rhodocoma foliosus have been recognised by earlier authors as separate species on the basis of perianth length and shape. Linder (1985) .s perficially lumped these two species under Rhodocoma gigantea arguing that the difference between the two appear to be brought by ecological gradient. Numerical phenetic analyses of 19 quantitative floral morphological characters investigated from 33 herbarium specimens reveal that Rhodocoma gigantea complex consists of two groups. One group correspon(Jo Rhodocoma gigantea, having longer and wider spikelets, perianth segments and bracts, while the other correspond to Rhodocoma foliosus having shorter and thinner female spikelets, bracts and perianth segments than the former. Minimum spanning tree also reveal the two groups are geographically isolated. The former group occur in the western part of the south coast along the Langeberg in Swellendam and Riversdale districts and the latter is widely distributed on the Outeniekwaberg, Tsitsikama mountains to Zuurberg with outliers reaching as far as Uitenhage. 8ritz river appears to be the geographical barrier between these two species.
    [Show full text]
  • Vegetation Map for the Riversdale Domain
    VEGETATION MAP FOR THE RIVERSDALE DOMAIN Project Team: Jan Vlok, Regalis Environmental Services, P.O. Box 1512, Oudtshoorn, 6620. Riki de Villiers, CapeNature, Private Bag X5014, Stellenbosch, 7599. Date of report: March 2007 Suggested Reference to maps and report: Vlok, J.H.J. & de Villiers, M.E. 2007. Vegetation map for the Riversdale domain. Unpublished 1:50 000 maps and report supported by CAPE FSP task team and CapeNature. 2 Dedication: For Anne Lise, my dear wife, who motivated so strongly for this study to be done. I sincerely hope that this work will enable her, current and future CapeNature colleagues to contribute more towards the conservation and sustainable use of the biodiversity of the rather remarkable biodiversity of the Riversdale region. 3 EXECUTIVE SUMMARY The vegetation of a circa 800 000 ha area in the Riversdale region of the southern Cape was classified and mapped at a scale of 1:50 000 for the CAPE Fine-Scale Conservation Plan task team. The vegetation was mapped as their occurrence was perceived to be in the 17th century, thus before any transformation due to European impacts. The classification system follows a six-tier hierarchy in order to facilitate analyses at biome, habitat type and vegetation unit level. Aquatic and terrestrial systems are recognized, with two biomes within aquatic ecosystems and five biomes within the terrestrial ecosystems. Aquatic ecosystems cover approximately 12 percent of the domain and terrestrial ecosystems 88 percent. At habitat level, 47 habitat types are recognized; six are within the aquatic ecosystems and 41 in the terrestrial ecosystems. Brief descriptions and a photograph are provided for each habitat type.
    [Show full text]
  • 'A Phylogeny for the African Restionaceae and New Perspectives on Morphology's Role in Generating
    Hardy, C R; Moline, P; Linder, H P (2008). A phylogeny for the African Restionaceae and new perspectives on morphology's role in generating complete species phylogenies for large clades. International Journal of Plant Sciences, 169(3):377-390. Postprint available at: http://www.zora.uzh.ch University of Zurich Posted at the Zurich Open Repository and Archive, University of Zurich. Zurich Open Repository and Archive http://www.zora.uzh.ch Originally published at: International Journal of Plant Sciences 2008, 169(3):377-390. Winterthurerstr. 190 CH-8057 Zurich http://www.zora.uzh.ch Year: 2008 A phylogeny for the African Restionaceae and new perspectives on morphology's role in generating complete species phylogenies for large clades Hardy, C R; Moline, P ; Linder, H P Hardy, C R; Moline, P; Linder, H P (2008). A phylogeny for the African Restionaceae and new perspectives on morphology's role in generating complete species phylogenies for large clades. International Journal of Plant Sciences, 169(3):377-390. Postprint available at: http://www.zora.uzh.ch Posted at the Zurich Open Repository and Archive, University of Zurich. http://www.zora.uzh.ch Originally published at: International Journal of Plant Sciences 2008, 169(3):377-390. A phylogeny for the African Restionaceae and new perspectives on morphology's role in generating complete species phylogenies for large clades Abstract Difficulties with obtaining complete species-level phylogenies include (1) the accurate identification and sampling of species, (2) obtaining a complete species sampling, and (3) resolving relationships among closely related species.We addressed these in a study of 317 species and subspecies of the African Restionaceae.
    [Show full text]
  • Field Guide for Wild Flower Harvesting
    FIELD GUIDE FOR WILD FLOWER HARVESTING 1 Contents Introducing the Field Guide for Wild Flower Harvesting 3 Glossary 4 Introducing The Field Guide Fynbos 6 for Wild Flower Harvesting What is fynbos? 7 The Cape Floral Kingdom 7 Many people in the Overberg earn a living from the region’s wild flowers, known as South African plants 8 fynbos. Some pick flowers for markets to sell, some remove invasive alien plants, and Threats to fynbos 8 others are involved in conservation and nature tourism. It is important that people The value of fynbos 9 who work in the veld know about fynbos plants. This Field Guide for Wild Flower Harvesting describes 41 of the most popular types of fynbos plants that are picked from Fynbos and fire 9 our region for the wild flower market. It also provides useful information to support Classification of plants 9 sustainable harvesting in particular and fynbos conservation in general. Naming of plants 10 Picking flowers has an effect or impact on the veld. If we are not careful, we can Market for fynbos 10 damage, or even kill, plants. So, before picking flowers, it is important to ask: Picking fynbos with care 11 • What can be picked? The Sustainable Harvesting Programme 12 • How much can be picked? • How should flowers be picked? The SHP Code of Best Practice for Wild Harvesters 12 Ten principles of good harvesting 13 This guide aims to help people understand: The Vulnerability Index and the Red Data List 13 • the differences between the many types of fynbos plants that grow in the veld; and Know how much fynbos you have 14 • which fynbos plants can be picked, and which are scarce and should rather be Fynbos plants of the Agulhas Plain and beyond 14 left in the veld.
    [Show full text]
  • Towards a Phylogenetic Classification of Lychnophorinae (Asteraceae: Vernonieae)
    Benoît Francis Patrice Loeuille Towards a phylogenetic classification of Lychnophorinae (Asteraceae: Vernonieae) São Paulo, 2011 Benoît Francis Patrice Loeuille Towards a phylogenetic classification of Lychnophorinae (Asteraceae: Vernonieae) Tese apresentada ao Instituto de Biociências da Universidade de São Paulo, para a obtenção de Título de Doutor em Ciências, na Área de Botânica. Orientador: José Rubens Pirani São Paulo, 2011 Loeuille, Benoît Towards a phylogenetic classification of Lychnophorinae (Asteraceae: Vernonieae) Número de paginas: 432 Tese (Doutorado) - Instituto de Biociências da Universidade de São Paulo. Departamento de Botânica. 1. Compositae 2. Sistemática 3. Filogenia I. Universidade de São Paulo. Instituto de Biociências. Departamento de Botânica. Comissão Julgadora: Prof(a). Dr(a). Prof(a). Dr(a). Prof(a). Dr(a). Prof(a). Dr(a). Prof. Dr. José Rubens Pirani Orientador To my grandfather, who made me discover the joy of the vegetal world. Chacun sa chimère Sous un grand ciel gris, dans une grande plaine poudreuse, sans chemins, sans gazon, sans un chardon, sans une ortie, je rencontrai plusieurs hommes qui marchaient courbés. Chacun d’eux portait sur son dos une énorme Chimère, aussi lourde qu’un sac de farine ou de charbon, ou le fourniment d’un fantassin romain. Mais la monstrueuse bête n’était pas un poids inerte; au contraire, elle enveloppait et opprimait l’homme de ses muscles élastiques et puissants; elle s’agrafait avec ses deux vastes griffes à la poitrine de sa monture et sa tête fabuleuse surmontait le front de l’homme, comme un de ces casques horribles par lesquels les anciens guerriers espéraient ajouter à la terreur de l’ennemi.
    [Show full text]
  • Impacts and Control of Alien Proteaceae Invasion in the Western Cape Province, South Africa
    Impacts and control of alien Proteaceae invasion in the Western Cape Province, South Africa by Laimi Nelago Koskima Erckie Dissertation submitted in fulfilment of the requirements for the degree MAGISTER SCIENTIAE in BIODIVERSITY AND CONSERVATION BIOLOGY in the FACULTY OF NATURAL SCIENCES at the University of the Western Cape Supervisor: Prof. JS Boatwright Co-supervisor: Dr. E. van Wyk Co-supervisor: Dr. S. Geerts November 2017 University of the Western Cape Private Bag X17, Bellville 7535, South Africa Telephone: ++27-21- 959 2255/959 2762 Fax: ++27-21- 959 1268/2266 Email: [email protected] FACULTY OF NATURAL SCIENCE DECLARATION PLAGIARISM DECLARATION TO BE INCLUDED IN ALL ASSIGNMENTS, THESIS PROPOSALS ETC, BE IT FOR MARKS OR NOT: I……..Laimi Nelago Koskima Erckie………………………………………………………… Student number….......3418027……………………….declare that the attached thesis entitled ……Impacts and control of alien Proteaceae invasion in the Western Cape Province, South Africa………………………………………………………………………………….. is my own work and that all the sources I have quoted have been indicated and acknowledged by means of complete references. Signed this day……20…… of ……November…….. 2017……. at ..........Bellville………… _____________________________ Signature i http://etd.uwc.ac.za/ ABSTRACT Research focused on ecological impacts and control of invasive alien species (IAS) is gaining attention worldwide. The eradication and control of invasive alien plants (IAP) is essential for the restoration of native plant communities. Understanding ecological impacts and potential invasive risks of IAP is important for their effective management, particularly for prioritisation. Most studies concerning impacts on vegetation structure and plant-pollinator interactions have measured few ecological metrics, resulting in a superficial understanding of plant species invasion.
    [Show full text]
  • Effects of a Fire Response Trait on Diversification in Replicated Radiations
    ORIGINAL ARTICLE doi:10.1111/evo.12273 EFFECTS OF A FIRE RESPONSE TRAIT ON DIVERSIFICATION IN REPLICATED RADIATIONS Glenn Litsios,1,2 Rafael O. Wuest,¨ 3 Anna Kostikova,1,2 Felix´ Forest,4 Christian Lexer,5 H. Peter Linder,6 Peter B. Pearman,3 Niklaus E. Zimmermann,3 and Nicolas Salamin1,2,7 1Department of Ecology and Evolution, Biophore, University of Lausanne, CH-1015 Lausanne, Switzerland 2Swiss Institute of Bioinformatics, Quartier Sorge, CH-1015 Lausanne, Switzerland 3Landscape Dynamics, Swiss Federal Research Institute WSL, CH-8903 Birmensdorf, Switzerland 4Jodrell Laboratory, Royal Botanic Gardens, Kew, Richmond, Surrey, TW9 3DS, United Kingdom 5Unit of Ecology and Evolution, Department of Biology, University of Fribourg, Chemin du Musee´ 10, CH-1700 Fribourg, Switzerland 6Insitute for Systematic Botany, University of Zurich, 8008 Zurich, Switzerland 7E-mail: [email protected] Received May 14, 2013 Accepted September 9, 2013 Fire has been proposed as a factor explaining the exceptional plant species richness found in Mediterranean regions. A fire response trait that allows plants to cope with frequent fire by either reseeding or resprouting could differentially affect rates of species diversification. However, little is known about the generality of the effects of differing fire response on species evolution. We study this question in the Restionaceae, a family that radiated in Southern Africa and Australia. These radiations occurred independently and represent evolutionary replicates. We apply Bayesian approaches to estimate trait-specific diversification rates and patterns of climatic niche evolution. We also compare the climatic heterogeneity of South Africa and Australia. Reseeders diversify faster than resprouters in South Africa, but not in Australia.
    [Show full text]
  • Kirstenbosch NBG List of Plants That Provide Food for Honey Bees
    Indigenous South African Plants that Provide Food for Honey Bees Honey bees feed on nectar (carbohydrates) and pollen (protein) from a wide variety of flowering plants. While the honey bee forages for nectar and pollen, it transfers pollen from one flower to another, providing the service of pollination, which allows the plant to reproduce. However, bees don’t pollinate all flowers that they visit. This list is based on observations of bees visiting flowers in Kirstenbosch National Botanical Garden, and on a variety of references, in particular the following: Plant of the Week articles on www.PlantZAfrica.com Johannsmeier, M.F. 2005. Beeplants of the South-Western Cape, Nectar and pollen sources of honeybees (revised and expanded). Plant Protection Research Institute Handbook No. 17. Agricultural Research Council, Plant Protection Research Institute, Pretoria, South Africa This list is primarily Western Cape, but does have application elsewhere. When planting, check with a local nursery for subspecies or varieties that occur locally to prevent inappropriate hybridisations with natural veld species in your vicinity. Annuals Gazania spp. Scabiosa columbaria Arctotis fastuosa Geranium drakensbergensis Scabiosa drakensbergensis Arctotis hirsuta Geranium incanum Scabiosa incisa Arctotis venusta Geranium multisectum Selago corymbosa Carpanthea pomeridiana Geranium sanguineum Selago canescens Ceratotheca triloba (& Helichrysum argyrophyllum Selago villicaulis ‘Purple Turtle’ carpenter bees) Helichrysum cymosum Senecio glastifolius Dimorphotheca
    [Show full text]
  • A Phytosociological Study of the Cape Fynbos and Other Vegetation at Jonkershoek, Stellenbosch by M
    Bothalia, 10, 4: 599-614 A Phytosociological Study of the Cape Fynbos and other Vegetation at Jonkershoek, Stellenbosch by M. J. A. Werger,* F. J. Krugerf and H. C. Taylor J A b s t r a c t The Braun-Blanquet phytosociological method was tested in the complex Fynbos vegetation of the South-western Cape Region of South Africa. In the Swartboschkloof Nature Reserve, Jonkers- hoek, the Fynbos, riverine scrub and forest vegetation was classified preliminarily into eight com­ munities, which are described floristically and related to habitat. The results hold promise, and the possibilities of classifying the Cape Fynbos in a formal phytosociological system are discussed. I ntroduction The Braun-Blanquet phytosociological method commonly used in Europe has remained relatively unknown in Southern Africa. Possible reasons for this are language difficulties, the need for more general, rather than more detailed information on the vegetation, and the general non-acceptance of the method by English and American plant ecologists. For many years the only source of information in the English-speaking world was Fuller & Conard’s (1932) authorised translation of Braun-Blanquet’s first edition of Pflanzensoziologie (1928), a work that omitted certain important details of the phytosociological technique. More detailed German works of the phytosociological school were largely inaccessible (for example Ellenberg, 1956; Braun-Blanquet, 1951. 1964). In recent years an English evaluation of the method was given by Poore (1955, 1956), although his main criticisms were shown by Moore (1962) to be largely unfounded. Becking (1957) reviewed the phytosociological school and its concepts, and Kiichler (1967) translated the tabulation techniques from Ellenberg (1956).1 Originally, nearly all vegetation surveys undertaken in Southern Africa were on a physiognomic or on a non-formal descriptive basis, with the exception of Acocks (1953) who used his own floristic technique to construct a system of veld types.
    [Show full text]
  • The Potential of South African Indigenous Plants for the International Cut flower Trade ⁎ E.Y
    Available online at www.sciencedirect.com South African Journal of Botany 77 (2011) 934–946 www.elsevier.com/locate/sajb The potential of South African indigenous plants for the international cut flower trade ⁎ E.Y. Reinten a, J.H. Coetzee b, B.-E. van Wyk c, a Department of Agronomy, Stellenbosch University, Private Bag, Matieland 7606, South Africa b P.O. Box 2086, Dennesig 7601, South Africa c Department of Botany and Plant Biotechnology, University of Johannesburg, P.O. Box 524, Auckland Park 2006, South Africa Abstract A broad review is presented of recent developments in the commercialization of southern Africa indigenous flora for the cut flower trade, in- cluding potted flowers and foliages (“greens”). The botany, horticultural traits and potential for commercialization of several indigenous plants have been reported in several publications. The contribution of species indigenous and/or endemic to southern Africa in the development of cut flower crop plants is widely acknowledged. These include what is known in the trade as gladiolus, freesia, gerbera, ornithogalum, clivia, agapan- thus, strelitzia, plumbago and protea. Despite the wealth of South African flower bulb species, relatively few have become commercially important in the international bulb industry. Trade figures on the international markets also reflect the importance of a few species of southern African origin. The development of new research tools are contributing to the commercialization of South African plants, although propagation, cultivation and post-harvest handling need to be improved. A list of commercially relevant southern African cut flowers (including those used for fresh flowers, dried flowers, foliage and potted flowers) is presented, together with a subjective evaluation of several genera and species with perceived potential for the development of new crops for the florist trade.
    [Show full text]