Ampithoe Valida Class: Malacostraca Order: Amphipoda, Gammaridea a Gammarid Amphipod Family: Ampithoidae

Total Page:16

File Type:pdf, Size:1020Kb

Ampithoe Valida Class: Malacostraca Order: Amphipoda, Gammaridea a Gammarid Amphipod Family: Ampithoidae Phylum: Arthropoda, Crustacea Ampithoe valida Class: Malacostraca Order: Amphipoda, Gammaridea A gammarid amphipod Family: Ampithoidae Description Coxae: Coxa one extended Size: Both illustrated specimens (from Coos anteriorly, particularly coxal plate one (Fig. 1) Bay), a male and female, were 10 mm in (Barnard 1965). length. Size range up to 12.5 mm (Chapman Gnathopod 1: Male gnathopod article 2007). five has a distal projection and is slightly Color: Green with black chromatophores and longer than article six. Article two is very red eyes. setose and article six has an oblique angle to General Morphology: The body of the palm (Fig. 3). The gnathopod palm in amphipod crustaceans can be divided into females is also oblique (not figured). three major regions. The cephalon (head) or Gnathopod 2: Male gnathopod cephalothorax includes antennules, antennae, articles two and three have large rounded mandibles, maxillae and maxillipeds lobes. Article five is with a narrow hind lobe, (collectively the mouthparts). Posterior to article six is elongate, rectangular, with a the cephalon is the pereon (thorax) with transverse palm and a quadrate middle bump seven pairs of pereopods attached to and dactyl (article seven) is curved (Fig. 4). pereonites followed by the pleon (abdomen) Female gnathopod two is like female with six pairs of pleopods. The first three sets gnathopod one (palm oblique), but stouter. of pleopods are generally used for swimming, Pereopods 3 through 7: while the last three are simpler and surround Pleon: the telson at the animal posterior. Ampithoid Pleonites: amphipods are in the suborder gammaridea, Urosomites: All three urosomites one of the largest groups of amphipods in short and the first two have spines (Fig. 1). marine and estuarine habitats. They have Uropod one is with a vestigial peduncular smooth bodies that are only slightly process. Third uropods are with two hooks compressed (Conlan and Bousfield 1982). on the stout outer ramus (Barnard 1965) and Keys to the Ampithoidae generally refer to the inner ramus is flattened, with bristles male specimens, although sexual dimorphism (Kozloff 1974) (Fig. 6). may be weaker in this group than others Epimera: The second and third (Chapman 2007). epimera are rounded, with very slight points Cephalon: (Barnard 1965) (Fig. 1). Rostrum: Telson: Telson is blunt and with small knobs Eyes: at posterior corners (Fig. 6). Antenna 1: The first and second Sexual Dimorphism: Among amphipods, antennae are of equal length in males (Fig. males generally have larger eyes, antennae 1), but the first antenna is slightly longer in and gnathopods (Straude 1987). Sexual females. Both first and second antennae dimorphism in A. valida is pronounced in the bear a few setae, but no spines (Barnard antennae and gnathopods, particularly the 1965). No accessory flagellae are present. second gnathopods (Alonso et al. 1995), and Antenna 2: species determination must be made from Mouthparts: Lower lip with a notch male specimen. between the sublobes and outer lobes (Fig. 5) (Ampithoidae, Barnard 1965) and sublobes Possible Misidentifications are compressed. Mandible is with a large The Ampithoidae are a family of gammarid palp and an obvious rasping surface (Fig. 2). amphipods characterized by short third Pereon: uropods and rami that possess 1–2 Hiebert, T.C. 2015. Ampithoe valida. In: Oregon Estuarine Invertebrates: Rudys' Illustrated Guide to Common Species, 3rd ed. T.C. Hiebert, B.A. Butler and A.L. Shanks (eds.). University of Oregon Libraries and Oregon Institute of Marine Biology, Charleston, OR. A publication of the University of Oregon Libraries and the Oregon Institute of Marine Biology Individual species: http://hdl.handle.net/1794/12691 and full 3rd edition: http://hdl.handle.net/1794/18839 Email corrections to: [email protected] distinctive and stout hooks on the outer differs chiefly in its lower lip, which gapes. ramus (Myers and Lowry 2003). They are The antennae are unequal in A. lacertosa, usually sexually dimorphic and males are the first being longer than the second. The easier to identify than females. They are sixth article of the second gnathopod is herbivorous and live in nests they create transverse and sinous, but lacks the central amongst algal blades or within algae stipes. bump present in A. valida. The fifth article There are 10–11 local species in the genus of gnathopod one also lacks the distal Ampithoe (A. corallina is currently a projection present in A. valda. questionable species, Chapman 2007), which are generally larger than other Ecological Information amphipod genera (Kozloff 1993). See Range: Type locality is Long Island Sound in Conlan and Bousfield (1982) for detailed the North Atlantic (Alonso et al. 1995). account of Ampithoe characters. Known Pacific range includes British Ampithoe simulans is also found in Columbia to southern California and also marine intertidal habitats of Coos Bay Japan (Carlton 1979) and Korea (Alonso et al. (Barnard 1965). This species has an oblique 1995). Range on Atlantic coast extends from and concave article on the second New Hampshire to Chesapeake Bay (Carlton gnathopod, not a transverse one. This 1979). This species is native to the Atlantic article has a large sinus, and a small coast and was introduced to the western process on its inner margin (Barnard 1954). coast (Chapman 2007). The range of this This species is primarily found on the open species was recently extended as far south coast and lives within Phyllospadix spp. and as Quequen and Chubut Argentina (Alonso et other types of algae (Chapman 2007). al. 1995). Recent genetic analysis of Ampithoe plumulosa, as its name suggests, northeast Pacific A. valida populations has a very setose second antenna and the suggests three distinct lineages that may first antenna is very long. The lower lips represent three cryptic species. Furthermore, gape and are not compressed as they are in these lineages suggest three separate A. valida. This likely introduced species and introductions to the western coast of the is often found in mussel beds (Chapman United States (see Figs. 4–5, Pilgrim and 2007). Ampithoe pollex does have Darling 2010). compressed lower lips and its name comes Local Distribution: Coos Bay sites in South from its large pointed process or thumb Slough (Barnard 1954), especially in the which meets the dactyl (the sixth article of Metcalf Preserve. the second gnathopod in males). Ampithoe Habitat: Tube dweller amongst eelgrass aptos has two enlarged lobes on the apex of (Barnard 1975) and green and red algae the teslon and the fifth article of pereopod (Alonso et al. 1995), especially Enteromorpha five is less than half as long as the sixth. and Ulva spp. habitats. (This specimen built a On the other hand, Ampithoe sectimanus tube in lab petri dish.) Ampithoe valida is a has a telson with small knobs and the fifth biofouling organism, and is often found on article of pereopod five is more than half as floats, pilings and docks (Chapman 2007; long as the sixth. Ampithoe dalli has Pilgrim and Darling 2010). plumose setae on the anterior edge of the Salinity: Collected at salinities as low as 5 second article of gnathopod one (in males). and occurs in brackish waters. Ampithoe longimana is North Atlantic Temperature: species, introduced to southern California, Tidal Level: Collected at + 0.15 m MLLW and A. ramondi is a cosmopolitan species and found subtidally at depths up to 30 m that is currently not reported farther north (Chapman 2007). than Point Conception, California. Neither Associates: Associates in South Slough of these species are found in current local include the introduced corophiid amphipod, intertidal keys (Chapman 2007). Grandidierella japonica, and the sacoglossan, Ampithoe lacertosa, another Aplysiopsis enteromorphae (=smithi). common local species found in estuaries, is Abundance: Locally common and abundant very similar in appearance to A. valida. It in South Slough. In Argentina, abundance of Hiebert, T.C. 2015. Ampithoe valida. In: Oregon Estuarine Invertebrates: Rudys' Illustrated Guide to Common Species, 3rd ed. T.C. Hiebert, B.A. Butler and A.L. Shanks (eds.). University of Oregon Libraries and Oregon Institute of Marine Biology, Charleston, OR. A. valida was highest in the summer months days post fertilization, but remain in the with 727 individuals per 0.125 square meter female brood pouch for another 19 days size (Alonso et al. 1995). In Portugal, A. valida (Heller 1968). densities showed a direct and positive Larva: Since most amphipods are direct correlation with areas of nutrient enrichment, developing, they lack a definite larval stage. where abundances were up to 2026 Instead this young developmental stage individuals per square meter in areas of high resembles small adults (e.g. Fig. 39.1, Wolff eutrophication (Pardal et al. 2000). 2014). Juvenile: Immature females can be Life-History Information differentiated from mature females by the Reproduction: Most amphipods have presence of a brood pouch and associated separate sexes with some sex determination setae for securing embryos (Alonso et al. correlated with environmental conditions 1995). Males reach sexual maturity earlier (Straude 1987). Females brood embryos in than females (compare 24–44 days with 28– an external thoracic brood chamber and 61 days, Pardal et al. 2000). irrigate embryos with water flow produced by Longevity: Range from 191–242 days pleopod movement. Development within this (Pardal et al. 2000). brood chamber is direct and individuals hatch Growth Rate: Amphipod growth occurs in as juveniles that resemble small adults, with conjunction with molting where the no larval stage. The embryos of A. valida are exoskeleton is shed and replaced. Post-molt oval in shape, white to yellow in color, individuals will have soft shells as the cuticle females produce 2–3 broods each year and gradually hardens (Ruppert et al. 2004). the number of embryos per brood may Ampithoe valida grows at a rate of 1 mm per (Alonso et al.
Recommended publications
  • A New Amphipod Species (Peracarida: Amphipoda
    Available online at www.sciencedirect.com Revista Mexicana de Biodiversidad Revista Mexicana de Biodiversidad 86 (2015) 332–336 www.ib.unam.mx/revista/ Taxonomy and systematics A new amphipod species (Peracarida: Amphipoda: Ampithoidae) collected from Cenote Aerolito, Cozumel Island, Quintana Roo Una especie nueva de anfípodo (Peracarida: Amphipoda: Ampithoidae) recolectado del cenote Aerolito, isla Cozumel, Quintana Roo Manuel Ortiz, Ignacio Winfield ∗ Laboratorio de Crustáceos, Facultad de Estudios Superiores Iztacala, Universidad Nacional Autónoma de México, Av. de los Barrios 1, Los Reyes Iztacala, 54090 Tlalnepantla, Estado de México, Mexico Received 10 February 2014; accepted 2 February 2015 Available online 28 May 2015 Abstract A new species of amphipod belonging to the family Ampithoidae was collected from Cenote Aerolito, Cozumel Island, Quintana Roo associated with a macroalgae bed. The main differences between the new species and the previously recorded species in the Gulf of Mexico and Caribbean Sea, Cymadusa compta and Cymadusa setosa respectively, are also presented. The new species increases the globally described number of Cymadusa species to 33. All Rights Reserved © 2015 Universidad Nacional Autónoma de México, Instituto de Biología. This is an open access item distributed under the Creative Commons CC License BY-NC-ND 4.0. Keywords: Crustacea; Ampithoidae; Cymadusa; Anchialine system; Mexican Caribbean Resumen Se describe una especie nueva de anfípodo de la familia Ampithoidae recolectada de macroalgas del Cenote Aerolito, Isla Cozumel, Quintana Roo. Se presentan las principales diferencias entre la especie nueva y las especies previamente documentadas para el golfo de México y el mar Caribe, C. compta y C. setosa. Esta especie nueva incrementa el número de especies de Cymadusa a 33 a nivel global.
    [Show full text]
  • 1 Genetic Diversity in Two Introduced Biofouling Amphipods
    1 Genetic diversity in two introduced biofouling amphipods (Ampithoe valida & Jassa 2 marmorata) along the Pacific North American coast: investigation into molecular 3 identification and cryptic diversity 4 5 Erik M. Pilgrim and John A. Darling 6 US Environmental Protection Agency 7 Ecological Exposure Research Division 8 26 W. Martin Luther King Drive, Cincinnati, OH 45268, USA. 9 10 Running Title: Genetic diversity of introduced Ampithoe and Jassa 11 12 Article Type: Biodiversity Research 13 14 ABSTRACT 15 Aim We investigated patterns of genetic diversity among invasive populations of A. valida and J. 16 marmorata from the Pacific North American coast to assess the accuracy of morphological 17 identification and determine whether or not cryptic diversity and multiple introductions 18 contribute to the contemporary distribution of these species in the region. 19 Location Native range: Atlantic North American coast; Invaded range: Pacific North American 20 coast. 21 Methods We assessed indices of genetic diversity based on DNA sequence data from the 22 mitochondrial cytochrome c oxidase subunit I (COI) gene, determined the distribution of COI 23 haplotypes among populations in both the invasive and putative native ranges of A. valida and J. 24 marmorata, and reconstructed phylogenetic relationships among COI haplotypes using both 25 maximum parsimony and Bayesian approaches. 26 Results Phylogenetic inference indicates that inaccurate species level identifications by 27 morphological criteria are common among Jassa specimens. In addition, our data reveal the 28 presence of three well supported but previously unrecognized clades of A. valida among 29 specimens in the northeastern Pacific. Different species of Jassa and different genetic lineages of 1 30 Ampithoe exhibit striking disparity in geographic distribution across the region as well as 31 substantial differences in genetic diversity indices.
    [Show full text]
  • Additions to and Revisions of the Amphipod (Crustacea: Amphipoda) Fauna of South Africa, with a List of Currently Known Species from the Region
    Additions to and revisions of the amphipod (Crustacea: Amphipoda) fauna of South Africa, with a list of currently known species from the region Rebecca Milne Department of Biological Sciences & Marine Research Institute, University of CapeTown, Rondebosch, 7700 South Africa & Charles L. Griffiths* Department of Biological Sciences & Marine Research Institute, University of CapeTown, Rondebosch, 7700 South Africa E-mail: [email protected] (with 13 figures) Received 25 June 2013. Accepted 23 August 2013 Three species of marine Amphipoda, Peramphithoe africana, Varohios serratus and Ceradocus isimangaliso, are described as new to science and an additional 13 species are recorded from South Africa for the first time. Twelve of these new records originate from collecting expeditions to Sodwana Bay in northern KwaZulu-Natal, while one is an introduced species newly recorded from Simon’s Town Harbour. In addition, we collate all additions and revisions to the regional amphipod fauna that have taken place since the last major monographs of each group and produce a comprehensive, updated faunal list for the region. A total of 483 amphipod species are currently recognized from continental South Africa and its Exclusive Economic Zone . Of these, 35 are restricted to freshwater habitats, seven are terrestrial forms, and the remainder either marine or estuarine. The fauna includes 117 members of the suborder Corophiidea, 260 of the suborder Gammaridea, 105 of the suborder Hyperiidea and a single described representative of the suborder Ingolfiellidea.
    [Show full text]
  • The 17Th International Colloquium on Amphipoda
    Biodiversity Journal, 2017, 8 (2): 391–394 MONOGRAPH The 17th International Colloquium on Amphipoda Sabrina Lo Brutto1,2,*, Eugenia Schimmenti1 & Davide Iaciofano1 1Dept. STEBICEF, Section of Animal Biology, via Archirafi 18, Palermo, University of Palermo, Italy 2Museum of Zoology “Doderlein”, SIMUA, via Archirafi 16, University of Palermo, Italy *Corresponding author, email: [email protected] th th ABSTRACT The 17 International Colloquium on Amphipoda (17 ICA) has been organized by the University of Palermo (Sicily, Italy), and took place in Trapani, 4-7 September 2017. All the contributions have been published in the present monograph and include a wide range of topics. KEY WORDS International Colloquium on Amphipoda; ICA; Amphipoda. Received 30.04.2017; accepted 31.05.2017; printed 30.06.2017 Proceedings of the 17th International Colloquium on Amphipoda (17th ICA), September 4th-7th 2017, Trapani (Italy) The first International Colloquium on Amphi- Poland, Turkey, Norway, Brazil and Canada within poda was held in Verona in 1969, as a simple meet- the Scientific Committee: ing of specialists interested in the Systematics of Sabrina Lo Brutto (Coordinator) - University of Gammarus and Niphargus. Palermo, Italy Now, after 48 years, the Colloquium reached the Elvira De Matthaeis - University La Sapienza, 17th edition, held at the “Polo Territoriale della Italy Provincia di Trapani”, a site of the University of Felicita Scapini - University of Firenze, Italy Palermo, in Italy; and for the second time in Sicily Alberto Ugolini - University of Firenze, Italy (Lo Brutto et al., 2013). Maria Beatrice Scipione - Stazione Zoologica The Organizing and Scientific Committees were Anton Dohrn, Italy composed by people from different countries.
    [Show full text]
  • (Crustacea : Amphipoda) of the Lower Chesapeake Estuaries
    W&M ScholarWorks Reports 1971 The distribution and ecology of the Gammaridea (Crustacea : Amphipoda) of the lower Chesapeake estuaries James Feely Virginia Institute of Marine Science Marvin L. Wass Virginia Institute of Marine Science Follow this and additional works at: https://scholarworks.wm.edu/reports Part of the Marine Biology Commons, Oceanography Commons, Terrestrial and Aquatic Ecology Commons, and the Zoology Commons Recommended Citation Feely, J., & Wass, M. L. (1971) The distribution and ecology of the Gammaridea (Crustacea : Amphipoda) of the lower Chesapeake estuaries. Special papers in marine science No.2. Virginia Institute of Marine Science, College of William and Mary. http://doi.org/10.21220/V5H01D This Report is brought to you for free and open access by W&M ScholarWorks. It has been accepted for inclusion in Reports by an authorized administrator of W&M ScholarWorks. For more information, please contact [email protected]. THE DISTRIBUTION AND ECOLOGY OF THE GAMMARIDEA (CRUSTACEA: AMPHIPODA) OF THE LOWER CHESAPEAKE ESTUARIES James B. Feeley and Marvin L. Wass SPECIAL PAPERS IN MARINE SCIENCE NO. 2 VIRGIN IA INSTITUTE OF MARINE SC IE NCE Gloucester Point, Virginia 23062 1971 THE DISTRIBUTION AND ECOLOGY OF THE GAMMARIDEA (CRUSTACEA: AMPHIPODA) OF THE LOWER 1 CHESAPEAKE ESTUARIES James B. Feeley and Marvin L. Wass SPECIAL PAPERS IN MARINE SCIENCE NO. 2 1971 VIRGINIA INSTITUTE OF MARINE SCIENCE Gloucester Point, Virginia 23062 This document is in part a thesis by James B. Feeley presented to the School of Marine Science of the College of William and Mary in Virginia in partial fulfillment of the requirements for the degree of Master of Arts.
    [Show full text]
  • Hard Bottom Substrate Monitoring Horns Rev Offshore Wind Farm
    Engineering Hard Bottom Substrate Monitoring Horns Rev Offshore Wind Farm Annual Status Report 2004 v 'TW- ELsam Engineering Hard Bottom Substrate Monitoring Horns Rev Offshore Wind Farm Annual Status Report 2004 Published: 2. May 2005 Prepared: Simon B. Leonhard Editing: Gitte Spanggaard John Pedersen Checked: Bjame Moeslund Artwork: Kirsten Nygaard Approved: Simon B. Leonhard Cover photos: Jens Christensen Simon B. Leonhard Photos: Jens Christensen Maks Klaustmp Simon B. Leonhard English review: Matthew Cochran © No part of this publication may be reproduced by any means without clear reference to the source. Homs Rev. Hard Bottom Substrate Monitoring Page 3 Annual Status Report 2004 TABLE OF CONTENTS PAGE Summary.................................................................................................................................... 4 Sammenfatning (in Danish) ....................................................................................................... 7 1. Introduction ......................................................................................................................... 10 2. Methodology....................................................................................................................... 11 2.1. The research area...........................................................................................................11 2.2. Field activities................................................................................................................13 2.3. Test fishing..................................................................................................................
    [Show full text]
  • Amphipod Newsletter 39 (2015)
    AMPHIPOD NEWSLETTER 39 2015 Interviews BIBLIOGRAPHY THIS NEWSLETTER PAGE 19 FEATURES INTERVIEWS WITH ALICJA KONOPACKA AND KRZYSZTOF JAŻDŻEWSKI PAGE 2 MICHEL LEDOYER WORLD AMPHIPODA IN MEMORIAM DATABASE PAGE 14 PAGE 17 AMPHIPOD NEWSLETTER 39 Dear Amphipodologists, Statistics from We are delighted to present to you Amphipod Newsletter 39! this Newsletter This issue includes interviews with two members of our amphipod family – Alicja Konopacka and Krzysztof Jazdzewski. Both tell an amazing story of their lives and work 2 new subfamilies as amphipodologists. Sadly we lost a member of our amphipod 21 new genera family – Michel Ledoyer. Denise Bellan-Santini provides us with a fitting memorial to his life and career. Shortly many 145 new species members of the amphipod family will gather for the 16th ICA in 5 new subspecies Aveiro, Portugal. And plans are well underway for the 17th ICA in Turkey (see page 64 for more information). And, as always, we provide you with a Bibliography and index of amphipod publications that includes citations of 376 papers that were published in 2013-2015 (or after the publication of Amphipod Newsletter 38). Again, what an amazing amount of research that has been done by you! Please continue to notify us when your papers are published. We hope you enjoy your Amphipod Newsletter! Best wishes from your AN Editors, Wim, Adam, Miranda and Anne Helene !1 AMPHIPOD NEWSLETTER 39 2015 Interview with two prominent members of the “Polish group”. The group of amphipod workers in Poland has always been a visible and valued part of the amphipod society. They have organised two of the Amphipod Colloquia and have steadily provided important results in the world of amphipod science.
    [Show full text]
  • OREGON ESTUARINE INVERTEBRATES an Illustrated Guide to the Common and Important Invertebrate Animals
    OREGON ESTUARINE INVERTEBRATES An Illustrated Guide to the Common and Important Invertebrate Animals By Paul Rudy, Jr. Lynn Hay Rudy Oregon Institute of Marine Biology University of Oregon Charleston, Oregon 97420 Contract No. 79-111 Project Officer Jay F. Watson U.S. Fish and Wildlife Service 500 N.E. Multnomah Street Portland, Oregon 97232 Performed for National Coastal Ecosystems Team Office of Biological Services Fish and Wildlife Service U.S. Department of Interior Washington, D.C. 20240 Table of Contents Introduction CNIDARIA Hydrozoa Aequorea aequorea ................................................................ 6 Obelia longissima .................................................................. 8 Polyorchis penicillatus 10 Tubularia crocea ................................................................. 12 Anthozoa Anthopleura artemisia ................................. 14 Anthopleura elegantissima .................................................. 16 Haliplanella luciae .................................................................. 18 Nematostella vectensis ......................................................... 20 Metridium senile .................................................................... 22 NEMERTEA Amphiporus imparispinosus ................................................ 24 Carinoma mutabilis ................................................................ 26 Cerebratulus californiensis .................................................. 28 Lineus ruber .........................................................................
    [Show full text]
  • Ampithoe Valida Class: Multicrustacea, Malacostraca, Eumalacostraca
    Phylum: Arthropoda, Crustacea Ampithoe valida Class: Multicrustacea, Malacostraca, Eumalacostraca Order: Peracarida, Amphipoda, Senticaudata, A gammarid amphipod Corophiida, Corophiidira Family: Corophioidea, Ampithoidae Description Antenna 2: Size: Both illustrated specimens (from Coos Mouthparts: Lower lip with a notch be- Bay), a male and female, were 10 mm in tween the sublobes and outer lobes (Fig. 5) length. Size range up to 12.5 mm (Ampithoidae, Barnard 1965) and sublobes (Chapman 2007). are compressed. Mandible is with a large Color: Green with black chromatophores palp and an obvious rasping surface (Fig. 2). and red eyes. Pereon: General Morphology: The body of amphi- Coxae: Coxa one extended anteriorly, pod crustaceans can be divided into three particularly coxal plate one (Fig. 1) (Barnard major regions. The cephalon (head) or 1965). cephalothorax includes antennules, anten- Gnathopod 1: Male gnathopod article nae, mandibles, maxillae and maxillipeds five has a distal projection and is slightly lon- (collectively the mouthparts). Posterior to ger than article six. Article two is very setose the cephalon is the pereon (thorax) with and article six has an oblique angle to the seven pairs of pereopods attached to pere- palm (Fig. 3). The gnathopod palm in females onites followed by the pleon (abdomen) with is also oblique (not figured). six pairs of pleopods. The first three sets of Gnathopod 2: Male gnathopod articles pleopods are generally used for swimming, two and three have large rounded lobes. Ar- while the last three are simpler and surround ticle five is with a narrow hind lobe, article six the telson at the animal posterior. Am- is elongate, rectangular, with a transverse pithoid amphipods are in the suborder gam- palm and a quadrate middle bump and dactyl maridea, one of the largest groups of amphi- (article seven) is curved (Fig.
    [Show full text]
  • Zootaxa, Ampithoidae
    Zootaxa 2260: 153–219 (2009) ISSN 1175-5326 (print edition) www.mapress.com/zootaxa/ Article ZOOTAXA Copyright © 2009 · Magnolia Press ISSN 1175-5334 (online edition) Ampithoidae* L.E. HUGHES & J.K. LOWRY Crustacea Section, Australian Museum, 6 College Street, Sydney, New South Wales, 2010, Australia. ([email protected], [email protected]) * In: Lowry, J.K. & Myers, A.A. (Eds) (2009) Benthic Amphipoda (Crustacea: Peracarida) of the Great Barrier Reef, Australia. Zootaxa, 2260, 1–930. Abstract Five genera and 19 species of ampithoid amphipods are reported from the Great Barrier Reef, Queensland, Australia. Seven species are new to science. The majority of species occur in the genus Cymadusa. Key words: Crustacea, Amphipoda, Ampithoidae, Great Barrier Reef, Australia, taxonomy, new species, Ampithoe cookana, Ampithoe katae, Ampithoe kava, Ampithoe meganae, Ampithoe waialua, Cymadusa alyxis, Cymadusa cavimana, Cymadusa heronensis, Cymadusa hoeyae, Cymadusa khbarnardi, Cymadusa mariabyrneae, Cymadusa imbroglio, Cymadusa smilodonta, Cymadusa tattersalli, Cymadusa thagaay, Cymadusa wistari, Paragrubia edgari, Plumithoe quadrimana, Sunamphitoe fantome Introduction Ampithoids are shallow-water tropical to temperate herbivorous amphipods found around the world. Previous to this study 42 ampithoid species were known from Australia (Just 2002 (1); Lowry & Stoddart 2003 (12); Peart 2004 (1); Peart 2006 (3); Peart 2007a, b (25)). We report 19 species in five genera from the Great Barrier Reef and increase the Australian ampithoid fauna to 49 species. About 75% of the 19 Great Barrier Reef ampithoid species, including seven new species described here, have been reported in the last four years (Peart 2004, 2007a, b). Such a high species richness of ampithoid amphipods in a tropical reef system has not been reported from any other reef system (J.L.
    [Show full text]
  • 1 Amphipoda of the Northeast Pacific (Equator to Aleutians, Intertidal to Abyss): IX. Photoidea
    Amphipoda of the Northeast Pacific (Equator to Aleutians, intertidal to abyss): IX. Photoidea - a review Donald B. Cadien, LACSD 22 July 2004 (revised 21 May 2015) Preface The purpose of this review is to bring together information on all of the species reported to occur in the NEP fauna. It is not a straight path to the identification of your unknown animal. It is a resource guide to assist you in making the required identification in full knowledge of what the possibilities are. Never forget that there are other, as yet unreported species from the coverage area; some described, some new to science. The natural world is wonderfully diverse, and we have just scratched its surface. Introduction to the Photoidea Over more than a century the position of the photids has been in dispute. Their separation was recommended by Boeck (1871), a position maintained by Stebbing (1906). Others have relegated the photids to the synonymy of the isaeids, and taxa considered here as photids have been listed as members of the Family Isaeidae in most west coast literature (i.e. J. L. Barnard 1969a, Conlan 1983). J. L. Barnard further combined both families, along with the Aoridae, into an expanded Corophiidae. The cladistic examination of the corophioid amphipods by Myers and Lowry (2003) offered support to the separation of the photids from the isaeids, although the composition of the photids was not the same as viewed by Stebbing or other earlier authors. The cladistic analysis indicated the Isaeidae were a very small clade separated at superfamily level from the photids, the neomegamphopids, and the caprellids within the infraorder Caprellida.
    [Show full text]
  • Bering Sea Marine Invasive Species Assessment Alaska Center for Conservation Science
    Bering Sea Marine Invasive Species Assessment Alaska Center for Conservation Science Scientific Name: Jassa marmorata Phylum Arthropoda Common Name a tube-building amphipod Class Malacostraca Order Amphipoda Family Ischyroceridae Z:\GAP\NPRB Marine Invasives\NPRB_DB\SppMaps\JASMAR.pn g 24 Final Rank 57.18 Data Deficiency: 11.25 Category Scores and Data Deficiencies Total Data Deficient Category Score Possible Points Distribution and Habitat: 25 26 3.75 Anthropogenic Influence: 6.75 10 0 Biological Characteristics: 16 25 5.00 Impacts: 3 28 2.50 Figure 1. Occurrence records for non-native species, and their geographic proximity to the Bering Sea. Ecoregions are based on the classification system by Spalding et al. (2007). Totals: 50.75 88.75 11.25 Occurrence record data source(s): NEMESIS and NAS databases. General Biological Information Tolerances and Thresholds Minimum Temperature (°C) -2 Minimum Salinity (ppt) 12 Maximum Temperature (°C) 27 Maximum Salinity (ppt) 38 Minimum Reproductive Temperature (°C) NA Minimum Reproductive Salinity (ppt) 31* Maximum Reproductive Temperature (°C) NA Maximum Reproductive Salinity (ppt) 35* Additional Notes J. marmot is a tube-building amphipod, greyish in color with red-brown markings. Its maximum length is 10 mm and there are two distinct morphs of males with two different mating strategies. The 'major' morphs are fighter males, while the 'minor' morphs are sneaker males. This species is difficult to identify in the field, and easily confused with other Jassa species. There is some uncertainty around its native distribution due to the difficulty of distinguishing between J. marmorata and similar species, but it is likely native to the northwest Atlantic.
    [Show full text]