Abnormal Expression of the Novel Epidermal Enzyme

Total Page:16

File Type:pdf, Size:1020Kb

Abnormal Expression of the Novel Epidermal Enzyme 0023-6837/03/8303-397$03.00/0 LABORATORY INVESTIGATION Vol. 83, No. 3, p. 397, 2003 Copyright © 2003 by The United States and Canadian Academy of Pathology, Inc. Printed in U.S.A. Abnormal Expression of the Novel Epidermal Enzyme, Glucosylceramide Deacylase, and the Accumulation of its Enzymatic Reaction Product, Glucosylsphingosine, in the Skin of Patients with Atopic Dermatitis Mutsumi Ishibashi, Junko Arikawa, Reiko Okamoto, Makoto Kawashima, Yutaka Takagi, Kenji Ohguchi, and Genji Imokawa Department of Dermatology (MI, JA, MK, GI), Tokyo Women’s Medical University, Tokyo, and Kao Biological Science Laboratories (YT, KO, GI), Tochigi, Japan SUMMARY: To clarify mechanisms underlying acylceramide deficiency as an causative factor of the permeability barrier disruption seen in the skin of patients with atopic dermatitis (AD), we hypothesized and then demonstrated the presence of a novel epidermal enzyme, termed glucosylceramide (GC) deacylase. This enzyme hydrolyzes (acyl)GC at the N-acyl site to yield its lysoform, glucosylsphingosine (GS), instead of the formation of (acyl)ceramides by ␤-glucocerebrosidase. Assays of enzymatic activity using [palmitic acid-14C] GC as a substrate revealed that extracts from the stratum corneum and from the epidermis (but not from the dermis) of patients with AD have the significantly higher potential to hydrolyze GC at the N-acyl site to release 14C-labeled free fatty acid than of healthy controls. To determine the in vivo physiologic function of this novel enzyme, we measured the metabolic product GS in the upper stratum corneum. In both the involved and the uninvolved stratum corneum from patients with AD, there were significant increases in the amounts of GS compared with healthy controls and there was a significant inverse correlation with the decreased content of ceramides or ceramide-1 (acylceramide). Thus, collectively these results strongly suggest the physiologic relevance of GC deacylase to the acylceramide deficiency seen in the stratum corneum of patients with AD. (Lab Invest 2003, 83:397–408). deficiency of ceramides in the stratum corneum is common substrate SM (Hara et al, 2000; Murata et al, A an causative factor of the barrier-disrupted and dry 1996). Recently, it was reported that omega-OH cer- skin of patients with atopic dermatitis (AD) (Imokawa et amide, an important acylceramide precursor, does not al, 1991). This dysfunction of the stratum corneum leads derive from SM in the mammalian stratum corneum, to a high vulnerability to irritants or allergens, which which suggests that it derives solely from glucosylcer- results in the induction, recurrence, or refractory nature amide (GC) precursors (Uchida et al, 2000). Thus, it is of the dermatitis. Thus, it is intriguing to determine the likely that acylceramides are biosynthesized not by the biochemical mechanism(s) underlying the ceramide de- hydrolysis of SM but through pathways involving the ficiency because it may be linked to the physiopatho- deglucosylation of acylglucosylceramides by genesis of AD. In the epidermis of patients with AD, we ␤-glucocerebrosidase (GlCdase). On the basis of these have previously demonstrated the accentuated expres- findings, the acylceramide deficiency observed in AD sion of a hitherto undiscovered epidermal enzyme, could not be explained in terms of the up-regulation of termed sphingomyelin (SM) deacylase, which was asso- SM deacylase. As a resolution for this discrepancy, we ciated with the reduced ceramide mass in the stratum hypothesized the existence of a novel epidermal en- corneum as a result of its competition with the ceramide- zyme, termed here GC deacylase, which hydrolyzes producing enzyme sphingomyelinase (SMase) for the (acyl)GC at the N-acyl site to yield its lysoform, glucosyl- sphingosine (GS), instead of the formation of (acyl)cer- amides by GlCdase. DOI: 10.1097/01.LAB.0000059931.66821.92 In this study, using [palmitic acid-14C] GC as a Received November 7, 2002. substrate, we examined the activity of GC deacylase This study was performed as part of a research project on the Control of in the stratum corneum and in the epidermis of pa- Atopic Dermatitis by Skin Care: Regulatory Factor of Cutaneous Perme- tients with AD and compared that with levels found in ability, and was supported by the special coordination funds from the healthy controls. As additional confirmation of the ministry of education, culture, sports, science, and technology of the Japanese functional relevance of GC deacylase to the acylcer- Government. Present address for Dr. Kenji Ohguchi, Gifu International amide deficiency, we quantified the amount (per mil- Institute of Biotechnology, Mitake, Kani-gun, Gifu 505-0116, Japan. Address reprint requests to: Dr. Genji Imokawa, Kao Biological Science ligram of stratum corneum) of the metabolic product Laboratories, 2606 Akabane, Ichikai-machi, Haga, Tochigi 321-34 Ja- GS produced by GC deacylase in the stratum cor- pan. E-mail: [email protected] neum at the nanomolar level. Here we report that Laboratory Investigation • March 2003 • Volume 83 • Number 3 397 Ishibashi et al extracts from the stratum corneum and from the epidermis of patients with AD have the potential to hydrolyze GC at the N-acyl site to release 14C-labeled free fatty acid. There are significantly higher levels of this enzymatic property in skin with AD than in healthy controls. Consistent with the up-regulation of GC deacylase in skin with AD, there was a significant increase in the content of GS, its enzymatic reaction product, in both the involved and the uninvolved stratum corneum from patients with AD compared with healthy controls. The up-regulation of GC deacy- lase and its metabolic product GS in skin with AD strongly suggests the physiologic relevance of GC deacylase to the acylceramide deficiency in the stra- tum corneum of patients with AD. Results Distinction of GC Deacylase from GlCdase In assays to measure the release of [1-14C] palmitic acid as a criterion for GC deacylase activity, the released palmitic acid would not necessarily represent the activity of GC deacylase if both GlCdase and ceramidase (CDase) are present in extracts of the stratum corneum from patients with AD. This is be- Figure 1. cause the release of radiolabeled palmitic acid could Distinction of glucosylceramide (GC) deacylase from ␤-glucocerebrosidase also result from a two-step reaction sequence wherein (GlCdase). A, Chromatographic separation of GC deacylase and GlCdase using GC would be initially hydrolyzed by GlCdase to yield extracts of the stratum corneum from patients with atopic dermatitis (AD). An radiolabeled palmitoylsphingosine (ceramide), which extract of the stratum corneum was applied to CM-Sepharose equilibrated with in turn could be converted by acid CDase to radiola- elution buffer consisting of acetate buffer (pH 5.0 and 0.2 M NaCl) to obtain GC deacylase as the pass-through fraction; the column was then eluted with 0.5 beled palmitic acid. Thus, to determine whether the M NaCl to yield GlCdase. B, GC deacylase and GlCdase activities of fractions release of radiolabeled palmitic acid reflects the direct separated by CM Sepharose. Enzymatic activities were evaluated for each deacylation of GC or the two-step reaction sequence eluted fraction according to the methods described in “Materials and Meth- of deglucosylation and subsequent deacylation, we ods,” and results are expressed as picomoles of free fatty acid (FFA) or separated GC deacylase from GlCdase using cationic ceramide (CER) released in the final or first upper phase per fraction. exchange chromatography. This was based on their different pI values, presumably near 4.2 versus 8.0 GlCdase and GC Deacylase Activities in the (Higuchi et al, 2000), respectively. The release of Stratum Corneum radiolabeled free fatty acid and ceramide was then 14 characterized. Chromatographic analysis (Fig. 1A) re- Assays using [palmitic acid- C] GC as a substrate for vealed that whereas the unadsorbed fraction was able GlCdase (Fig. 2A) demonstrated that there were no to release radiolabeled free fatty acid but not cer- significant differences in GlCdase activity between the amide, the adsorbed fraction eluted by an increase in stratum corneum from uninvolved or involved skin of salt concentration was able to release radiolabeled patients with AD and from healthy controls. In con- 14 ceramide but not free fatty acid. Analysis of radiola- trast, assays using [palmitic acid- C] GC as a sub- beled ceramide or free fatty acid released by the crude strate for GC deacylase (Fig. 2B) revealed that the extract and by unadsorbed fractions from the stratum stratum corneum from involved forearm skin of pa- corneum of five patients with AD (Fig. 1B) demon- tients with AD has an extremely high level of GC strated that whereas the crude extracts were able to deacylase activity that is 5.4 times higher than that in release both radiolabeled ceramide and free fatty acid, healthy controls. In uninvolved skin with AD, GC the unadsorbed fraction was able to release radiola- deacylase activity is still 2.8 times higher than that beled free fatty acid to an extent similar to the crude found in healthy controls. In contrast, the stratum extract but was not able to release radiolabeled cer- corneum from patients with chronic eczema shows amide. This suggests that despite that the unadsorbed levels similar for both enzyme activities to healthy fractions have been depleted of GlCdase, they still controls (Fig. 3). contain GC deacylase. This strongly suggests that the GC deacylase activity seen in crude extracts from the GC Deacylase in the Epidermis of Patients with AD stratum corneum of patients with AD is mainly attrib- utable to the direct deacylation of GC but not the Assays using [palmitic acid-14C] GC as a substrate for two-step reaction sequence consisting of deglucosy- GlCdase (Fig. 4A) demonstrated that there was no lation and subsequent deacylation. significant difference in GlCdase activity between the 398 Laboratory Investigation • March 2003 • Volume 83 • Number 3 Glucosylceramide Deacylase and Glucosylsphingosine in Atopic Dermatitis Figure 2.
Recommended publications
  • Sphingolipid Metabolism Diseases ⁎ Thomas Kolter, Konrad Sandhoff
    View metadata, citation and similar papers at core.ac.uk brought to you by CORE provided by Elsevier - Publisher Connector Biochimica et Biophysica Acta 1758 (2006) 2057–2079 www.elsevier.com/locate/bbamem Review Sphingolipid metabolism diseases ⁎ Thomas Kolter, Konrad Sandhoff Kekulé-Institut für Organische Chemie und Biochemie der Universität, Gerhard-Domagk-Str. 1, D-53121 Bonn, Germany Received 23 December 2005; received in revised form 26 April 2006; accepted 23 May 2006 Available online 14 June 2006 Abstract Human diseases caused by alterations in the metabolism of sphingolipids or glycosphingolipids are mainly disorders of the degradation of these compounds. The sphingolipidoses are a group of monogenic inherited diseases caused by defects in the system of lysosomal sphingolipid degradation, with subsequent accumulation of non-degradable storage material in one or more organs. Most sphingolipidoses are associated with high mortality. Both, the ratio of substrate influx into the lysosomes and the reduced degradative capacity can be addressed by therapeutic approaches. In addition to symptomatic treatments, the current strategies for restoration of the reduced substrate degradation within the lysosome are enzyme replacement therapy (ERT), cell-mediated therapy (CMT) including bone marrow transplantation (BMT) and cell-mediated “cross correction”, gene therapy, and enzyme-enhancement therapy with chemical chaperones. The reduction of substrate influx into the lysosomes can be achieved by substrate reduction therapy. Patients suffering from the attenuated form (type 1) of Gaucher disease and from Fabry disease have been successfully treated with ERT. © 2006 Elsevier B.V. All rights reserved. Keywords: Ceramide; Lysosomal storage disease; Saposin; Sphingolipidose Contents 1. Sphingolipid structure, function and biosynthesis ..........................................2058 1.1.
    [Show full text]
  • Sphingolipids and Cell Signaling: Relationship Between Health and Disease in the Central Nervous System
    Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 6 April 2021 doi:10.20944/preprints202104.0161.v1 Review Sphingolipids and cell signaling: Relationship between health and disease in the central nervous system Andrés Felipe Leal1, Diego A. Suarez1,2, Olga Yaneth Echeverri-Peña1, Sonia Luz Albarracín3, Carlos Javier Alméciga-Díaz1*, Angela Johana Espejo-Mojica1* 1 Institute for the Study of Inborn Errors of Metabolism, Faculty of Science, Pontificia Universidad Javeriana, Bogotá D.C., 110231, Colombia; [email protected] (A.F.L.), [email protected] (D.A.S.), [email protected] (O.Y.E.P.) 2 Faculty of Medicine, Universidad Nacional de Colombia, Bogotá D.C., Colombia; [email protected] (D.A.S.) 3 Nutrition and Biochemistry Department, Faculty of Science, Pontificia Universidad Javeriana, Bogotá D.C., Colombia; [email protected] (S.L.A.) * Correspondence: [email protected]; Tel.: +57-1-3208320 (Ext 4140) (C.J.A-D.). [email protected]; Tel.: +57-1-3208320 (Ext 4099) (A.J.E.M.) Abstract Sphingolipids are lipids derived from an 18-carbons unsaturated amino alcohol, the sphingosine. Ceramide, sphingomyelins, sphingosine-1-phosphates, gangliosides and globosides, are part of this group of lipids that participate in important cellular roles such as structural part of plasmatic and organelle membranes maintaining their function and integrity, cell signaling response, cell growth, cell cycle, cell death, inflammation, cell migration and differentiation, autophagy, angiogenesis, immune system. The metabolism of these lipids involves a broad and complex network of reactions that convert one lipid into others through different specialized enzymes. Impairment of sphingolipids metabolism has been associated with several disorders, from several lysosomal storage diseases, known as sphingolipidoses, to polygenic diseases such as diabetes and Parkinson and Alzheimer diseases.
    [Show full text]
  • Ceramide and Related Molecules in Viral Infections
    International Journal of Molecular Sciences Review Ceramide and Related Molecules in Viral Infections Nadine Beckmann * and Katrin Anne Becker Department of Molecular Biology, University of Duisburg-Essen, 45141 Essen, Germany; [email protected] * Correspondence: [email protected]; Tel.: +49-201-723-1981 Abstract: Ceramide is a lipid messenger at the heart of sphingolipid metabolism. In concert with its metabolizing enzymes, particularly sphingomyelinases, it has key roles in regulating the physical properties of biological membranes, including the formation of membrane microdomains. Thus, ceramide and its related molecules have been attributed significant roles in nearly all steps of the viral life cycle: they may serve directly as receptors or co-receptors for viral entry, form microdomains that cluster entry receptors and/or enable them to adopt the required conformation or regulate their cell surface expression. Sphingolipids can regulate all forms of viral uptake, often through sphingomyelinase activation, and mediate endosomal escape and intracellular trafficking. Ceramide can be key for the formation of viral replication sites. Sphingomyelinases often mediate the release of new virions from infected cells. Moreover, sphingolipids can contribute to viral-induced apoptosis and morbidity in viral diseases, as well as virus immune evasion. Alpha-galactosylceramide, in particular, also plays a significant role in immune modulation in response to viral infections. This review will discuss the roles of ceramide and its related molecules in the different steps of the viral life cycle. We will also discuss how novel strategies could exploit these for therapeutic benefit. Keywords: ceramide; acid sphingomyelinase; sphingolipids; lipid-rafts; α-galactosylceramide; viral Citation: Beckmann, N.; Becker, K.A.
    [Show full text]
  • Liposomal Nanovaccine Containing Α-Galactosylceramide and Ganglioside GM3 Stimulates Robust CD8+ T Cell Responses Via CD169+ Macrophages and Cdc1
    Article Liposomal Nanovaccine Containing α-Galactosylceramide and Ganglioside GM3 Stimulates Robust CD8+ T Cell Responses via CD169+ Macrophages and cDC1 Joanna Grabowska 1,†, Dorian A. Stolk 1,† , Maarten K. Nijen Twilhaar 1, Martino Ambrosini 1, Gert Storm 2,3,4, Hans J. van der Vliet 5,6, Tanja D. de Gruijl 5, Yvette van Kooyk 1 and Joke M.M. den Haan 1,* 1 Department of Molecular Cell Biology and Immunology, Amsterdam UMC, Cancer Center Amsterdam, Amsterdam Infection and Immunity Institute, Vrije Universiteit Amsterdam, 1081 HZ Amsterdam, The Netherlands; [email protected] (J.G.); [email protected] (D.A.S.); [email protected] (M.K.N.T.); [email protected] (M.A.); [email protected] (Y.v.K.) 2 Department of Pharmaceutics, Utrecht Institute for Pharmaceutical Sciences, Utrecht University, 3584 CG Utrecht, The Netherlands; [email protected] 3 Department of Biomaterials Science and Technology, University of Twente, 7500 AE Enschede, The Netherlands 4 Department of Surgery, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 119228, Singapore 5 Department of Medical Oncology, Amsterdam UMC, Cancer Center Amsterdam, Amsterdam Infection and Immunity Institute, Vrije Universiteit Amsterdam, 1081 HV Amsterdam, The Netherlands; [email protected] (H.J.v.d.V.); [email protected] (T.D.d.G.) 6 Lava Therapeutics, 3584 CM Utrecht, The Netherlands * Correspondence: [email protected]; Tel.: +31-20-4448080 Citation: Grabowska, J.; Stolk, D.A.; † Authors contributed equally. Nijen Twilhaar, M.K.; Ambrosini, M.; Storm, G.; van der Vliet, H.J.; Abstract: Successful anti-cancer vaccines aim to prime and reinvigorate cytotoxic T cells and should de Gruijl, T.D.; van Kooyk, Y.; therefore comprise a potent antigen and adjuvant.
    [Show full text]
  • L-Glucosylceramide: Synthesis, Properties, and Resistance
    Proc. Natl. Acad. Sci. USA Vol. 76, No. 7, pp. 3083-3086, July 1979 Biochemistry L-Glucosylceramide: Synthesis, properties, and resistance to catabolism by glucocerebrosidase in vitro (glucocerebroside/Gaucher disease/animal model/chemical sphingolipidosis) ANDREW E. GAL, PETER G. PENTCHEV, JANICE M. MASSEY, AND ROSCOE 0. BRADY Developmental and Metabolic Neurology Branch, National Institutes of Neurological and Communicative Disorders and Stroke, National Institutes of Health, Bethesda, Maryland 20205 Contributed by Roscoe 0. Brady, March 16, 1979 ABSTRACT Procedures for the synthesis and radioactive activity by the administration of conduritol-3-epoxide to induce labeling of L-glucosylceramide are described. This compound a syndrome resembling Gaucher disease in mice (6). However, is a stereoisomeric analogue of D-glucosylceramide which oc- the quantity of glucosylceramide that accumulated in liver and curs in nature and accumulates in pathological quantity in the 2- to 3-fold than that in normal mice organs and tissues of patients with Gaucher disease. The prop- spleen was only greater erties of L-glucosylceramide that have been examined so far and is therefore far below that found in patients with Gaucher have been found to be indistinguishable from those of the nat- disease (4). In addition, the typical Gaucher bodies or tubular urally occurring glycolipid. However, L-glucosylceramide is structures characteristic of the disorder were not observed in completely refractory to enzymatic hydrolysis by purified pla- spleen, liver, or bone marrow of mice treated with this reagent cental glucocerebrosidase and enzyme(s) present in whole tissue (7). extracts. It is anticipated that L-glucosylceramide will be a disease model at uniquely useful substance for exploring pathogenetic processes Because of the lack of a suitable Gaucher in animal analogues of Gaucher disease.
    [Show full text]
  • Trans Interactions Between Galactosylceramide and Cerebroside Sulfate Across Apposed Bilayers
    View metadata, citation and similar papers at core.ac.uk brought to you by CORE provided by Elsevier - Publisher Connector 874 Biophysical Journal Volume 78 February 2000 874–885 Trans Interactions between Galactosylceramide and Cerebroside Sulfate across Apposed Bilayers Joan M. Boggs,*† Abdellah Menikh,* and Godha Rangaraj* *The Research Institute, The Hospital for Sick Children, Toronto M5G 1X8, Canada and †Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, Ontario M5G 1L5, Canada ABSTRACT The two glycosphingolipids galactosylceramide (GalC) and its sulfated form, cerebroside sulfate (CBS), are present at high concentrations in the multilayered myelin sheath and are involved in carbohydrate-carbohydrate interactions between the lipid headgroups. In order to study the structure of the complex of these two glycolipids by Fourier transform infrared (FTIR) spectroscopy, GalC dispersions were combined with CBS dispersions in the presence and absence of Ca2ϩ. The FTIR spectra indicated that a strong interaction occurred between these glycolipids even in the absence of Ca2ϩ. The interaction resulted in dehydration of the sulfate, changes in the intermolecular hydrogen bonding interactions of the sugar and other oxygens, decreased intermolecular hydrogen bonding of the amide CAO of GalC and dehydration of the amide region of one or both of the lipids in the mixture, and disordering of the hydrocarbon chains of both lipids. The spectra also show that Ca2ϩ interacts with the sulfate of CBS. Although they do not reveal which other groups of CBS and GalC interact with Ca2ϩ or which groups participate in the interaction between the two lipids, they do show that the sulfate is not directly involved in interaction with GalC, since it can still bind to Ca2ϩ in the mixture.
    [Show full text]
  • Disorders of Sphingolipid Synthesis, Sphingolipidoses, Niemann-Pick Disease Type C and Neuronal Ceroid Lipofuscinoses
    551 38 Disorders of Sphingolipid Synthesis, Sphingolipidoses, Niemann-Pick Disease Type C and Neuronal Ceroid Lipofuscinoses Marie T. Vanier, Catherine Caillaud, Thierry Levade 38.1 Disorders of Sphingolipid Synthesis – 553 38.2 Sphingolipidoses – 556 38.3 Niemann-Pick Disease Type C – 566 38.4 Neuronal Ceroid Lipofuscinoses – 568 References – 571 J.-M. Saudubray et al. (Eds.), Inborn Metabolic Diseases, DOI 10.1007/978-3-662-49771-5_ 38 , © Springer-Verlag Berlin Heidelberg 2016 552 Chapter 38 · Disor ders of Sphingolipid Synthesis, Sphingolipidoses, Niemann-Pick Disease Type C and Neuronal Ceroid Lipofuscinoses O C 22:0 (Fatty acid) Ganglio- series a series b HN OH Sphingosine (Sphingoid base) OH βββ β βββ β Typical Ceramide (Cer) -Cer -Cer GD1a GT1b Glc ββββ βββ β Gal -Cer -Cer Globo-series GalNAc GM1a GD1b Neu5Ac βαββ -Cer Gb4 ββ β ββ β -Cer -Cer αβ β -Cer GM2 GD2 Sphingomyelin Pcholine-Cer Gb3 B4GALNT1 [SPG46] [SPG26] β β β ββ ββ CERS1-6 GBA2 -Cer -Cer ST3GAL5 -Cer -Cer So1P So Cer GM3 GD3 GlcCer - LacCer UDP-Glc UDP Gal CMP -Neu5Ac - UDP Gal PAPS Glycosphingolipids GalCer Sulfatide ββ Dihydro -Cer -Cer SO 4 Golgi Ceramide apparatus 2-OH- 2-OH-FA Acyl-CoA FA2H CERS1-6 [SPG35] CYP4F22 ω-OH- ω-OH- FA Acyl-CoA ULCFA ULCFA-CoA ULCFA GM1, GM2, GM3: monosialo- Sphinganine gangliosides Endoplasmic GD3, GD2, GD1a, GD1b: disialo-gangliosides reticulum KetoSphinganine GT1b: trisialoganglioside SPTLC1/2 [HSAN1] N-acetyl-neuraminic acid: sialic acid found in normal human cells Palmitoyl-CoA Deoxy-sphinganine + Serine +Ala or Gly Deoxymethylsphinganine 38 . Fig. 38.1 Schematic representation of the structure of the main sphingolipids , and their biosynthetic pathways.
    [Show full text]
  • Lysosomal Storage Disorders
    Lysosomal Storage Disorders Lysosomal storage diseases are a group of metabolic disorders caused by the lack of key enzymes important for lysosomes to perform their normal function. While clinical trials are underway, there are few approved treatments for lysosomal storage diseases. Current research is focused on finding reliable biomarkers that can be used in these screening programs. Cayman scientists have developed LC-MS/MS assay workflows for quantitative measurement of the activity of certain key enzymes. We also offer a wide range of glycosphingolipid standards associated with the ten main sphingolipidoses that affect the glycosphingolipid pathway. Determination of Lysosomal Acid Lipase Deficiency Lysosomal Acid Lipase Activity MaxSpec® Assay Kit – Item No. 24854 · Easy-to-use reagent kit for the quantification of lysosomal acid lipase activity in dried blood spots · Designed for use in LC-MS-based or fluorometry applications · Includes necessary substrate, product, and internal standard, each provided at known concentrations O O O O LC-MS/MS LAL Activity MaxSpec® Assay Substrate HO O O HO O O 13C Detect LAL 13CH Product and 13C calculate enzyme 13 H2 C activity LAL Activity ® LAL Activity MaxSpec Assay Internal Standard MaxSpec® Assay Product 13 (aka C4-PMHC) Fluorometry Dried Blood Spot Lysosomal Acid Lipase Activity MaxSpec® Assay Kit Workflow Related Products Item No. Product Name Description 16089 4-Methylumbelliferyl Palmitate Fluorogenic substrate for LAL 23891 Lalistat 1 An inhibitor of LAL (IC50 = 68 nM) 25347 Lalistat 2
    [Show full text]
  • Mechanism of Secondary Ganglioside and Lipid Accumulation in Lysosomal Disease
    International Journal of Molecular Sciences Review Mechanism of Secondary Ganglioside and Lipid Accumulation in Lysosomal Disease Bernadette Breiden and Konrad Sandhoff * Membrane Biology and Lipid Biochemistry Unit, LIMES Institute, University of Bonn, 53121 Bonn, Germany; [email protected] * Correspondence: sandhoff@uni-bonn.de; Tel.: +49-228-73-5346 Received: 5 March 2020; Accepted: 4 April 2020; Published: 7 April 2020 Abstract: Gangliosidoses are caused by monogenic defects of a specific hydrolase or an ancillary sphingolipid activator protein essential for a specific step in the catabolism of gangliosides. Such defects in lysosomal function cause a primary accumulation of multiple undegradable gangliosides and glycosphingolipids. In reality, however, predominantly small gangliosides also accumulate in many lysosomal diseases as secondary storage material without any known defect in their catabolic pathway. In recent reconstitution experiments, we identified primary storage materials like sphingomyelin, cholesterol, lysosphingolipids, and chondroitin sulfate as strong inhibitors of sphingolipid activator proteins (like GM2 activator protein, saposin A and B), essential for the catabolism of many gangliosides and glycosphingolipids, as well as inhibitors of specific catabolic steps in lysosomal ganglioside catabolism and cholesterol turnover. In particular, they trigger a secondary accumulation of ganglioside GM2, glucosylceramide and cholesterol in Niemann–Pick disease type A and B, and of GM2 and glucosylceramide in Niemann–Pick disease
    [Show full text]
  • Download Product Insert (PDF)
    PRODUCT INFORMATION C18 3’-sulfo Galactosylceramide (d18:1/18:0) Item No. 24863 CAS Registry No.: 244215-65-4 Formal Name: N-[(1S,2R,3E)-2-hydroxy-1-[[(3- O-sulfo-β-D-galactopyranosyl) oxy]methyl]-3-heptadecen-1-yl]- O octadecanamide H Synonym: 3’-sulfo Galactosylceramide N O O (d18:1/18:0), (3’-sulfo)Galβ- HO Cer(d18:1/18:0), N-Octadecanoyl OH HO OH Sulfatide, C18 Sulfatide O O MF: C42H81NO11S S O FW: 808.2 OH Purity: ≥98% Supplied as: A solid Storage: -20°C Stability: ≥2 years Information represents the product specifications. Batch specific analytical results are provided on each certificate of analysis. Laboratory Procedures C18 3’-sulfo Galactosylceramide (d18:1/18:0) is supplied as a solid. A stock solution may be made by dissolving the C18 3’-sulfo Galactosylceramide (d18:1/18:0) in the solvent of choice. C18 3’-sulfo galactosylceramide (d18:1/18:0) is soluble in a 5:1 solution of chloroform:methanol. Description C18 3’-sulfo Galactosylceramide is a member of the sulfatide class of glycolipids. Levels of short-chain sulfatides, including C18 3’-sulfo galactosylceramide, decrease with age in mice and humans.1,2 It is increased in brain from mice with an arylsulfatase A deficiency (ASA-KO), particularly in lipid raft fractions.1,3 Plasma levels of C18 3’-sulfo galactosylceramide positively correlate with disability progression in patients with relapsing-remitting multiple sclerosis using the Expanded Disability Status Scale.4 It is also increased in plasma from patients with metachromatic leukodystrophy (MLD).5 References 1. Isaac, G., Pernber, Z., Gieselmann, V., et al.
    [Show full text]
  • Metabolism of Cerebroside Sulfate and Subcellular Distribution of Its
    Metabolism of cerebroside sulfate and subcellular distribution of its metabolites in cultured skin fibroblasts from controls, metachromatic leukodystrophy, and globoid cell leukodystrophy. K Inui, … , S Okada, H Yabuuchi J Clin Invest. 1988;81(2):310-317. https://doi.org/10.1172/JCI113322. Research Article With pulse-chase study of 1-[14C]stearic acid-labeled cerebroside sulfate (14C-CS) and subsequent subcellular fractionation by Percoll gradient, the metabolism of CS and translocation of its metabolites in human skin fibroblasts from controls, metachromatic leukodystrophy (MLD), and globoid cell leukodystrophy (GLD) were studied. In control skin fibroblasts, CS was transported to lysosome and metabolized there to galactosylceramide (GalCer) and ceramide (Cer) within 1 h. During the chase period, radioactivity was increased at plasma membrane plus Golgi as phospholipids and no accumulation of GalCer or Cer was found in lysosome. In MLD fibroblasts, 95% of 14C-CS taken up was unhydrolyzed at 24 h-chase and accumulated at not only lysosome but also plasma membrane. In GLD fibroblasts, GalCer was accumulated throughout the subcellular fractions and more accumulated mainly at plasma membrane plus Golgi with longer pulse. This translocation of lipid from lysosome seems to have considerable function, even in lipidosis, which may result in an imbalance of the sphingolipid pattern on the cell surface and these changes might be one of causes of neuronal dysfunction in sphingolipidosis. Find the latest version: https://jci.me/113322/pdf Metabolism of Cerebroside Sulfate and Subcellular Distribution of Its Metabolites in Cultured Skin Fibroblasts from Controls, Metachromatic Leukodystrophy, and Globoid Cell Leukodystrophy Koji Inui, Masumi Furukawa, Shintaro Okada, and Hyakuji Yabuuchi Department ofPediatrics, Osaka University Medical School, Osaka 553, Japan Abstract each step result in metachromatic leukodystrophy (MLD), globoid cell leukodystrophy (GLD), and Farber disease.
    [Show full text]
  • Glucocerebrosidase: Functions in and Beyond the Lysosome
    Journal of Clinical Medicine Review Glucocerebrosidase: Functions in and Beyond the Lysosome Daphne E.C. Boer 1, Jeroen van Smeden 2,3, Joke A. Bouwstra 2 and Johannes M.F.G Aerts 1,* 1 Medical Biochemistry, Leiden Institute of Chemistry, Leiden University, Faculty of Science, 2333 CC Leiden, The Netherlands; [email protected] 2 Division of BioTherapeutics, Leiden Academic Centre for Drug Research, Leiden University, Faculty of Science, 2333 CC Leiden, The Netherlands; [email protected] (J.v.S.); [email protected] (J.A.B.) 3 Centre for Human Drug Research, 2333 CL Leiden, The Netherlands * Correspondence: [email protected] Received: 29 January 2020; Accepted: 4 March 2020; Published: 9 March 2020 Abstract: Glucocerebrosidase (GCase) is a retaining β-glucosidase with acid pH optimum metabolizing the glycosphingolipid glucosylceramide (GlcCer) to ceramide and glucose. Inherited deficiency of GCase causes the lysosomal storage disorder named Gaucher disease (GD). In GCase-deficient GD patients the accumulation of GlcCer in lysosomes of tissue macrophages is prominent. Based on the above, the key function of GCase as lysosomal hydrolase is well recognized, however it has become apparent that GCase fulfills in the human body at least one other key function beyond lysosomes. Crucially, GCase generates ceramides from GlcCer molecules in the outer part of the skin, a process essential for optimal skin barrier property and survival. This review covers the functions of GCase in and beyond lysosomes and also pays attention to the increasing insight in hitherto unexpected catalytic versatility of the enzyme. Keywords: glucocerebrosidase; lysosome; glucosylceramide; skin; Gaucher disease 1.
    [Show full text]