Metabolism of Cerebroside Sulfate and Subcellular Distribution of Its

Total Page:16

File Type:pdf, Size:1020Kb

Metabolism of Cerebroside Sulfate and Subcellular Distribution of Its Metabolism of cerebroside sulfate and subcellular distribution of its metabolites in cultured skin fibroblasts from controls, metachromatic leukodystrophy, and globoid cell leukodystrophy. K Inui, … , S Okada, H Yabuuchi J Clin Invest. 1988;81(2):310-317. https://doi.org/10.1172/JCI113322. Research Article With pulse-chase study of 1-[14C]stearic acid-labeled cerebroside sulfate (14C-CS) and subsequent subcellular fractionation by Percoll gradient, the metabolism of CS and translocation of its metabolites in human skin fibroblasts from controls, metachromatic leukodystrophy (MLD), and globoid cell leukodystrophy (GLD) were studied. In control skin fibroblasts, CS was transported to lysosome and metabolized there to galactosylceramide (GalCer) and ceramide (Cer) within 1 h. During the chase period, radioactivity was increased at plasma membrane plus Golgi as phospholipids and no accumulation of GalCer or Cer was found in lysosome. In MLD fibroblasts, 95% of 14C-CS taken up was unhydrolyzed at 24 h-chase and accumulated at not only lysosome but also plasma membrane. In GLD fibroblasts, GalCer was accumulated throughout the subcellular fractions and more accumulated mainly at plasma membrane plus Golgi with longer pulse. This translocation of lipid from lysosome seems to have considerable function, even in lipidosis, which may result in an imbalance of the sphingolipid pattern on the cell surface and these changes might be one of causes of neuronal dysfunction in sphingolipidosis. Find the latest version: https://jci.me/113322/pdf Metabolism of Cerebroside Sulfate and Subcellular Distribution of Its Metabolites in Cultured Skin Fibroblasts from Controls, Metachromatic Leukodystrophy, and Globoid Cell Leukodystrophy Koji Inui, Masumi Furukawa, Shintaro Okada, and Hyakuji Yabuuchi Department ofPediatrics, Osaka University Medical School, Osaka 553, Japan Abstract each step result in metachromatic leukodystrophy (MLD), globoid cell leukodystrophy (GLD), and Farber disease. Due With pulse-chase study of 1-['4CJstearic acid-labeled cerebro- to enzyme deficiencies, massive lysosomal storage of lipids is side sulfate ('4C-CS) and subsequent subcellular fractionation demonstrated in MLD (4) and Farber disease (5). In GLD it is by Percoll gradient, the metabolism of CS and translocation of well known that there is no accumulation of galactosylcera- its metabolites in human skin fibroblasts from controls, meta- mide and that the major abnormalities are the presence of a chromatic leukodystrophy (MLD), and globoid cell leukodys- large number of globoid cells, a severe lack of myelin and trophy (GLD) were studied. In control skin fibroblasts, CS was astrogliosis in the nervous system (6). transported to lysosome and metabolized there to galactosyl- The enzymic defects of most lysosomal storage disorders ceramide (GalCer) and ceramide (Cer) within 1 h. During the have been clarified, but the molecular mechanisms that lead to chase period, radioactivity was increased at plasma membrane the clinical and pathological manifestations remain largely plus Golgi as phospholipids and no accumulation of GalCer or obscure. Recent morphological studies of neurons from Cer was found in lysosome. In MLD fibroblasts, 95% of '4C- humans (7), cats (8), and dogs (9) with gangliosidoses have CS taken up was unhydrolyzed at 24 h-chase and accumulated shown meganeurities, inappropriate proliferation of secondary at not only lysosome but also plasma membrane. In GLD fibro- neurites, aberrant synaptogenesis, somatic swelling, and ab- blasts, GalCer was accumulated throughout the subcellular normal somatic processes. Biochemically, impaired neuro- fractions and more accumulated mainly at plasma membrane transmitter metabolism was suggested in cerebral cortical and plus Golgi with longer pulse. This translocation of lipid from cerebellar synaptosomes from cats with GM, gangliosidosis lysosome seems to have considerable function, even in lipi- (10) and increased amount of ganglioside in synaptosomal dosis, which may result in an imbalance of the sphingolipid membranes from feline GM, and GM2 gangliosidosis was pre- pattern on the cell surface and these changes might be one of sented (11). These studies suggested that altered membrane causes of neuronal dysfunction in sphingolipidosis. structure could be one of causes of neuronal dysfunction. To understand the mechanism causing neurological dys- Introduction function in sphingolipidoses, clarification of the synthesis, translocation and insertion of sphingolipids in the different Sphingolipids are important membrane lipids and particularly subcellular components in normal and pathological states is abundant in neuronal membranes. As outer surface mem- essential. In the present study, using I-['4C]stearic acid-labeled brane constituents of animal cells, they play important roles, cerebroside sulfate (14C-CS), we studied the metabolism of CS including membrane stability, nerve conduction, receptor ac- and the subcellular distribution of its metabolites in cultured tion, oncogenic transformation and other functions that are skin fibroblasts from normal control, MLD, and GLD. Our necessary for growth, differentiation, and survival ( 1-3). Cere- findings indicated that enzyme-deficient cells stored lipid in broside sulfate (CS),' galactocerebroside with a sulfate esteri- both lysosomes and plasma membranes, suggesting that the fying carbon-3 of the galactosyl moiety, is one of myelin con- altered lipid composition of membrane is a possible pathogen- stituents and has an important role during developmental pe- esis of neuronal dysfunctions in sphingolipidoses. riod encompassing myelination (4). The metabolic pathway of is well known and defects of the catabolism at this lipid genetic Methods Address reprint requests to Dr. Inui, Department of Pediatrics, Osaka Materials. Chemicals were purchased from the indicated sources: University Medical School, Fukushima-ku, Osaka 553, Japan. Eagle's minimum essential medium (Nissui Seiyaku Co., Tokyo, Receivedfor publication 25 November 1986 and in revisedform 8 Japan); HRP-wheat germ agglutinin (Seikagaku Co., Tokyo, Japan); September 1987. ovalbumin grade V (Sigma Chemical Co., St. Louis, MO); Percoll and density marker beads (Pharmacia Fine Chemicals, Uppsala, Sweden); 1. Abbreviations used in this paper: Cer, ceramide; CS, cerebroside cerebroside sulfate (Supelco, Inc., Bellefonte, PA); phospholipid kit sulfate; '4C-CS, 1-['4C]stearic acid-labeled cerebroside sulfate; FFA, (Serdary Research Laboratories, Inc., Ontario, Canada); choline- stearic acid; GalCer, galactosylceramide; GLD, globoid cell leukodys- methyl-['4C]sphingomyelin, 1-['4C]stearic acid and UDP-['4C(U)]- trophy; MLD, metachromatic leukodystrophy; PC, phosphatidylcho- galactose (New England Nuclear, Boston, MA); 4-methylumbelliferyl line; PE, phosphatidylethanolamine; PI, phosphatidylinositol; PS, glycosides (Koch-Light Laboratories, Colnbrook, United Kingdom). phosphatidylserine. All other reagents were purchased from standard commercial sup- pliers. J. Clin. Invest. Preparation oflipids. 14C-CS was prepared according to the method © The American Society for Clinical Investigation, Inc. of Dubois et al. (12) and purified by silica gel column chromatography 0021-9738/88/02/0310/08 $2.00 and preparative TLC. The radiopurity was 99% checked by TLC. Volume 81, February 1988, 310-317 Cell culture. Human skin fibroblasts were grown from forearm skin 310 K. Inui, M. Furukawa, S. Okada, and H. Yabuuchi biopsies with Eagle's minimum essential medium supplemented with 5 min and the lower phase was transferred to a small tube. After 10% fetal calf serum, glutamine (5 mM), and fungizone (25 ,ug/ml) evaporation under nitrogen stream, cellular lipid extracts were ana- (complete medium) and maintained in a 5% CO2 incubator at 37°C. lyzed by silica gel TLC (HPTLC; Merck & Co., Rahway, NJ) with The cell lines from two patients with infantile GLD were supplied by chloroform/methanol/water (70:30:4, by volume) and the plate ex- Dr. K. Suzuki, Albert Einstein College (New York) and Dr. D. A. posed to x-ray film (Fuji RX) for 7-14 d as described by Kudoh et al. Wenger, University of Colorado Health Sciences Center (Denver, CO). ( 13). For lipid extract from subcellular fractions, every three fractions The other cell lines from control subjects, patients with late infantile starting from a light density were combined to make eight fractions MLD and infantile GLD were established in this laboratory with in- after the assay of marker enzymes. These eight fractions were ultra- formed consents. centrifuged at 100,000 g for 90 min at 4°C to remove Percoll. The CS feeding experiments. `4C-CS was dissolved in the medium as supernatant was taken into a glass tube and the surface of pellet was described by Kudoh et al. (13) with minor modification (lipid concen- rinsed with small amount of distilled water. Then 4 ml of chloroform- tration changed to 10 nmol/ml). In some CS feeding experiments, FCS methanol (2:1, by volume) was added, well vortexed and kept standing was omitted. For pulse and chase studies, cells were incubated with 4 overnight. Then the upper phase was removed by centrifugation, 2 ml ml of complete medium (40 nmol, specific activity of "4C-CS; 15,000 of the theoretical upper phase was added. After mixing and sitting dpm/nmol) for 1 h and the feeding was terminated by changing the overnight, the lower phase was taken to a small tube and evaporated medium to 10 ml of fresh complete medium without '4C-CS. Sterile under nitrogen
Recommended publications
  • Sphingolipid Metabolism Diseases ⁎ Thomas Kolter, Konrad Sandhoff
    View metadata, citation and similar papers at core.ac.uk brought to you by CORE provided by Elsevier - Publisher Connector Biochimica et Biophysica Acta 1758 (2006) 2057–2079 www.elsevier.com/locate/bbamem Review Sphingolipid metabolism diseases ⁎ Thomas Kolter, Konrad Sandhoff Kekulé-Institut für Organische Chemie und Biochemie der Universität, Gerhard-Domagk-Str. 1, D-53121 Bonn, Germany Received 23 December 2005; received in revised form 26 April 2006; accepted 23 May 2006 Available online 14 June 2006 Abstract Human diseases caused by alterations in the metabolism of sphingolipids or glycosphingolipids are mainly disorders of the degradation of these compounds. The sphingolipidoses are a group of monogenic inherited diseases caused by defects in the system of lysosomal sphingolipid degradation, with subsequent accumulation of non-degradable storage material in one or more organs. Most sphingolipidoses are associated with high mortality. Both, the ratio of substrate influx into the lysosomes and the reduced degradative capacity can be addressed by therapeutic approaches. In addition to symptomatic treatments, the current strategies for restoration of the reduced substrate degradation within the lysosome are enzyme replacement therapy (ERT), cell-mediated therapy (CMT) including bone marrow transplantation (BMT) and cell-mediated “cross correction”, gene therapy, and enzyme-enhancement therapy with chemical chaperones. The reduction of substrate influx into the lysosomes can be achieved by substrate reduction therapy. Patients suffering from the attenuated form (type 1) of Gaucher disease and from Fabry disease have been successfully treated with ERT. © 2006 Elsevier B.V. All rights reserved. Keywords: Ceramide; Lysosomal storage disease; Saposin; Sphingolipidose Contents 1. Sphingolipid structure, function and biosynthesis ..........................................2058 1.1.
    [Show full text]
  • Sphingolipids and Cell Signaling: Relationship Between Health and Disease in the Central Nervous System
    Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 6 April 2021 doi:10.20944/preprints202104.0161.v1 Review Sphingolipids and cell signaling: Relationship between health and disease in the central nervous system Andrés Felipe Leal1, Diego A. Suarez1,2, Olga Yaneth Echeverri-Peña1, Sonia Luz Albarracín3, Carlos Javier Alméciga-Díaz1*, Angela Johana Espejo-Mojica1* 1 Institute for the Study of Inborn Errors of Metabolism, Faculty of Science, Pontificia Universidad Javeriana, Bogotá D.C., 110231, Colombia; [email protected] (A.F.L.), [email protected] (D.A.S.), [email protected] (O.Y.E.P.) 2 Faculty of Medicine, Universidad Nacional de Colombia, Bogotá D.C., Colombia; [email protected] (D.A.S.) 3 Nutrition and Biochemistry Department, Faculty of Science, Pontificia Universidad Javeriana, Bogotá D.C., Colombia; [email protected] (S.L.A.) * Correspondence: [email protected]; Tel.: +57-1-3208320 (Ext 4140) (C.J.A-D.). [email protected]; Tel.: +57-1-3208320 (Ext 4099) (A.J.E.M.) Abstract Sphingolipids are lipids derived from an 18-carbons unsaturated amino alcohol, the sphingosine. Ceramide, sphingomyelins, sphingosine-1-phosphates, gangliosides and globosides, are part of this group of lipids that participate in important cellular roles such as structural part of plasmatic and organelle membranes maintaining their function and integrity, cell signaling response, cell growth, cell cycle, cell death, inflammation, cell migration and differentiation, autophagy, angiogenesis, immune system. The metabolism of these lipids involves a broad and complex network of reactions that convert one lipid into others through different specialized enzymes. Impairment of sphingolipids metabolism has been associated with several disorders, from several lysosomal storage diseases, known as sphingolipidoses, to polygenic diseases such as diabetes and Parkinson and Alzheimer diseases.
    [Show full text]
  • Ceramide and Related Molecules in Viral Infections
    International Journal of Molecular Sciences Review Ceramide and Related Molecules in Viral Infections Nadine Beckmann * and Katrin Anne Becker Department of Molecular Biology, University of Duisburg-Essen, 45141 Essen, Germany; [email protected] * Correspondence: [email protected]; Tel.: +49-201-723-1981 Abstract: Ceramide is a lipid messenger at the heart of sphingolipid metabolism. In concert with its metabolizing enzymes, particularly sphingomyelinases, it has key roles in regulating the physical properties of biological membranes, including the formation of membrane microdomains. Thus, ceramide and its related molecules have been attributed significant roles in nearly all steps of the viral life cycle: they may serve directly as receptors or co-receptors for viral entry, form microdomains that cluster entry receptors and/or enable them to adopt the required conformation or regulate their cell surface expression. Sphingolipids can regulate all forms of viral uptake, often through sphingomyelinase activation, and mediate endosomal escape and intracellular trafficking. Ceramide can be key for the formation of viral replication sites. Sphingomyelinases often mediate the release of new virions from infected cells. Moreover, sphingolipids can contribute to viral-induced apoptosis and morbidity in viral diseases, as well as virus immune evasion. Alpha-galactosylceramide, in particular, also plays a significant role in immune modulation in response to viral infections. This review will discuss the roles of ceramide and its related molecules in the different steps of the viral life cycle. We will also discuss how novel strategies could exploit these for therapeutic benefit. Keywords: ceramide; acid sphingomyelinase; sphingolipids; lipid-rafts; α-galactosylceramide; viral Citation: Beckmann, N.; Becker, K.A.
    [Show full text]
  • Sphingolipid Metabolism in Cultured Fibroblasts: Microscopic And
    Proc. Nati Acad. Sci. USA Vol. 80, pp. 2608-2612, May 1983 Cell Biology Sphingolipid metabolism in cultured fibroblasts: Microscopic and biochemical studies employing a fluorescent ceramide analogue (Golgi apparatus/sphingomyelin/cerebrosides/liposomes/fluorescence) NAOMI G. LPSKY AND RICHARD E. PAGANO Department of Embryology, Carnegie Institution of Washington, 115 West University Parkway, Baltimore, Maryland 21210 Communicated by Harden M. McConnell, December 30, 1982 ABSTRACT A fluorescent analogue of ceramide, N-[7-(4-ni- HI trobenzo-2-oxa-1,3-diazole)]-e-aminocaproyl sphingosine (C6-NBD- ceramide), was used to investigate sphingolipid metabolism in HO-C-H Chinesehamster fibroblasts. C6-NBD-ceramide was incorporated | /~~~~0 into small unilamellar dioleoyl phosphatidylcholine vesicles and N N incubated with cells in monolayer culture at 20C, resulting in rapid 0 /9 and preferential transfer of the labeled ceramide from vesicles to HI ° cells. The cells were then washed and subsequently incubated at H-C-N- C-(CH2)5-N NO2 37°C for various intervals. The metabolism of C6-NBD-ceramide was monitored by lipid extraction and analysis, and the intracel- lular distribution of the labeled molecule was followed by fluo- H rescence microscopy. Initially, fluorescence was detected almost HO-C-C =C-(CH2)12- CH3 exclusively in mitochondria, with over 90% of the extractable lipid I fluorescence due to C6-NBD-ceramide. After 30 min at 370C, in- H H tense fluorescence. appeared in the Golgi apparatus. This organ- elle was identified by colocalization of NBD fluorescence with a FIG. 1. Structure of C6-NBD-ceramide. Golgi-apparatus-specific stain. At later times the plasma mem- brane became visibly labeled as well, at which point 90% of the orescent of the cell-associated fluorescence was recovered as NBD-labeled sphin- tracer allows direct microscopic observation gomyelin and NBD-labeled cerebroside.
    [Show full text]
  • Metabolism of Brain Glycolipid Fatty Acids '': Yasuo Kishimoto and Norman S
    Metabolism of Brain Glycolipid Fatty Acids '': Yasuo Kishimoto and Norman S. Radin, Mental Health Research Institute, University of Michigan, Ann Arbor, Michigan ABSTRACT and sulfatides contain NFA and tIFA, The metabolism of the fatty acid moieties saturated and unsaturated; the gangliosides, of brain cerebrosides, sulfatides, and however, contain only NFA in which there are gangliosides is reviewed and discussed. only traces of unsaturated acids. In the cere- The methodology involved in the isolation t)rosides and sulfatides there are two clusters of the fatty acids is described briefly. It of FA: those around 18 carbons long and those seems clear now that most of these acids around 24 carbons long. In the gangliosides are made by chain elongation of inter- there is only one cluster, centering around 18:0, mediate length fatty acids by addition of with negligible amounts of 22:0 and 24:0. acetate residues. The unsaturated acids Other points of contrast between gangliosides are made by desaturation of the inter- and the other two can be made: the former mediate length acids (palmitic, heptade- occurs primarily in brain gray matter, the canoic, stearic) followed by chain elonga- latter are primarily in white. The former tion. The hydroxy acids are made directly has glucose attached to the ceramide residue, from the corresponding nonhydroxy acids, the latter have galactose. The former has saturated, unsaturated, and odd-numbered. only traces of odd-numbered FA; the latter All the hydroxy acids undergo oxidative can contain considerable amounts of C~ and decarboxylation to yield fatty acids con- C2.~ FA. Further differences, particularly in taining one less carbon atom.
    [Show full text]
  • Liposomal Nanovaccine Containing Α-Galactosylceramide and Ganglioside GM3 Stimulates Robust CD8+ T Cell Responses Via CD169+ Macrophages and Cdc1
    Article Liposomal Nanovaccine Containing α-Galactosylceramide and Ganglioside GM3 Stimulates Robust CD8+ T Cell Responses via CD169+ Macrophages and cDC1 Joanna Grabowska 1,†, Dorian A. Stolk 1,† , Maarten K. Nijen Twilhaar 1, Martino Ambrosini 1, Gert Storm 2,3,4, Hans J. van der Vliet 5,6, Tanja D. de Gruijl 5, Yvette van Kooyk 1 and Joke M.M. den Haan 1,* 1 Department of Molecular Cell Biology and Immunology, Amsterdam UMC, Cancer Center Amsterdam, Amsterdam Infection and Immunity Institute, Vrije Universiteit Amsterdam, 1081 HZ Amsterdam, The Netherlands; [email protected] (J.G.); [email protected] (D.A.S.); [email protected] (M.K.N.T.); [email protected] (M.A.); [email protected] (Y.v.K.) 2 Department of Pharmaceutics, Utrecht Institute for Pharmaceutical Sciences, Utrecht University, 3584 CG Utrecht, The Netherlands; [email protected] 3 Department of Biomaterials Science and Technology, University of Twente, 7500 AE Enschede, The Netherlands 4 Department of Surgery, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 119228, Singapore 5 Department of Medical Oncology, Amsterdam UMC, Cancer Center Amsterdam, Amsterdam Infection and Immunity Institute, Vrije Universiteit Amsterdam, 1081 HV Amsterdam, The Netherlands; [email protected] (H.J.v.d.V.); [email protected] (T.D.d.G.) 6 Lava Therapeutics, 3584 CM Utrecht, The Netherlands * Correspondence: [email protected]; Tel.: +31-20-4448080 Citation: Grabowska, J.; Stolk, D.A.; † Authors contributed equally. Nijen Twilhaar, M.K.; Ambrosini, M.; Storm, G.; van der Vliet, H.J.; Abstract: Successful anti-cancer vaccines aim to prime and reinvigorate cytotoxic T cells and should de Gruijl, T.D.; van Kooyk, Y.; therefore comprise a potent antigen and adjuvant.
    [Show full text]
  • L-Glucosylceramide: Synthesis, Properties, and Resistance
    Proc. Natl. Acad. Sci. USA Vol. 76, No. 7, pp. 3083-3086, July 1979 Biochemistry L-Glucosylceramide: Synthesis, properties, and resistance to catabolism by glucocerebrosidase in vitro (glucocerebroside/Gaucher disease/animal model/chemical sphingolipidosis) ANDREW E. GAL, PETER G. PENTCHEV, JANICE M. MASSEY, AND ROSCOE 0. BRADY Developmental and Metabolic Neurology Branch, National Institutes of Neurological and Communicative Disorders and Stroke, National Institutes of Health, Bethesda, Maryland 20205 Contributed by Roscoe 0. Brady, March 16, 1979 ABSTRACT Procedures for the synthesis and radioactive activity by the administration of conduritol-3-epoxide to induce labeling of L-glucosylceramide are described. This compound a syndrome resembling Gaucher disease in mice (6). However, is a stereoisomeric analogue of D-glucosylceramide which oc- the quantity of glucosylceramide that accumulated in liver and curs in nature and accumulates in pathological quantity in the 2- to 3-fold than that in normal mice organs and tissues of patients with Gaucher disease. The prop- spleen was only greater erties of L-glucosylceramide that have been examined so far and is therefore far below that found in patients with Gaucher have been found to be indistinguishable from those of the nat- disease (4). In addition, the typical Gaucher bodies or tubular urally occurring glycolipid. However, L-glucosylceramide is structures characteristic of the disorder were not observed in completely refractory to enzymatic hydrolysis by purified pla- spleen, liver, or bone marrow of mice treated with this reagent cental glucocerebrosidase and enzyme(s) present in whole tissue (7). extracts. It is anticipated that L-glucosylceramide will be a disease model at uniquely useful substance for exploring pathogenetic processes Because of the lack of a suitable Gaucher in animal analogues of Gaucher disease.
    [Show full text]
  • Sphingomyelin of Red Blood Cells in Lipidosis and in Dementia of Unknown Origin in Children
    Arch Dis Child: first published as 10.1136/adc.44.234.197 on 1 April 1969. Downloaded from Arch. Dis. Childh., 1969, 44, 197. Sphingomyelin of Red Blood Cells in Lipidosis and in Dementia of Unknown Origin in Children G. J. M. HOOGHWINKEL, H. H. VAN GELDEREN, and A. STAAL From the Laboratory of Medical Chemistry and the Departments of Paediatrics and Neurology, University of Leiden, The Netherlands Histological and chemical examinations of biopsy no diagnosis could be made, are briefly described in specimens from cerebral tissue of children suffering Table I. Incomplete investigation made it impossible to from undiagnosed progressive brain disease are reach a diagnosis in Cases 7 and 8. The molar con- performed increasingly. Important information centrations of phospholipids in the red blood cells therapeutic have been determined as described by Hooghwinkel is provided, which, though rarely of and Niekerk (1960), Hooghwinkel and Borri (1964), value, does increase precision of diagnosis, and Hooghwinkel, Borri, and Bruyn (1966). The prognosis, and genetic advice (Cumings, 1965a, amounts of the various phospholipids of red blood b, c; Poser, 1962; Adams, 1965). This is especially cells have been expressed as molar percentages of true of the chemical investigations, and it is likely total phospholipids. Absolute values of phospho- that chernical analyses will challenge the current lipids depend a good deal on size and shape of the classifications of progressive brain disease. Amaur- otic idiocy has already proved to be more hetero- 36 copyright. 0 geneous than was thought hitherto, while supposedly -a .A a different diseases, such as Niemann-Pick's and 0 34 .
    [Show full text]
  • Metabolism of Cerebroside Sulfate and Subcellular Distribution of Its
    Metabolism of Cerebroside Sulfate and Subcellular Distribution of Its Metabolites in Cultured Skin Fibroblasts from Controls, Metachromatic Leukodystrophy, and Globoid Cell Leukodystrophy Koji Inui, Masumi Furukawa, Shintaro Okada, and Hyakuji Yabuuchi Department ofPediatrics, Osaka University Medical School, Osaka 553, Japan Abstract each step result in metachromatic leukodystrophy (MLD), globoid cell leukodystrophy (GLD), and Farber disease. Due With pulse-chase study of 1-['4CJstearic acid-labeled cerebro- to enzyme deficiencies, massive lysosomal storage of lipids is side sulfate ('4C-CS) and subsequent subcellular fractionation demonstrated in MLD (4) and Farber disease (5). In GLD it is by Percoll gradient, the metabolism of CS and translocation of well known that there is no accumulation of galactosylcera- its metabolites in human skin fibroblasts from controls, meta- mide and that the major abnormalities are the presence of a chromatic leukodystrophy (MLD), and globoid cell leukodys- large number of globoid cells, a severe lack of myelin and trophy (GLD) were studied. In control skin fibroblasts, CS was astrogliosis in the nervous system (6). transported to lysosome and metabolized there to galactosyl- The enzymic defects of most lysosomal storage disorders ceramide (GalCer) and ceramide (Cer) within 1 h. During the have been clarified, but the molecular mechanisms that lead to chase period, radioactivity was increased at plasma membrane the clinical and pathological manifestations remain largely plus Golgi as phospholipids and no accumulation of GalCer or obscure. Recent morphological studies of neurons from Cer was found in lysosome. In MLD fibroblasts, 95% of '4C- humans (7), cats (8), and dogs (9) with gangliosidoses have CS taken up was unhydrolyzed at 24 h-chase and accumulated shown meganeurities, inappropriate proliferation ofsecondary at not only lysosome but also plasma membrane.
    [Show full text]
  • Trans Interactions Between Galactosylceramide and Cerebroside Sulfate Across Apposed Bilayers
    View metadata, citation and similar papers at core.ac.uk brought to you by CORE provided by Elsevier - Publisher Connector 874 Biophysical Journal Volume 78 February 2000 874–885 Trans Interactions between Galactosylceramide and Cerebroside Sulfate across Apposed Bilayers Joan M. Boggs,*† Abdellah Menikh,* and Godha Rangaraj* *The Research Institute, The Hospital for Sick Children, Toronto M5G 1X8, Canada and †Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, Ontario M5G 1L5, Canada ABSTRACT The two glycosphingolipids galactosylceramide (GalC) and its sulfated form, cerebroside sulfate (CBS), are present at high concentrations in the multilayered myelin sheath and are involved in carbohydrate-carbohydrate interactions between the lipid headgroups. In order to study the structure of the complex of these two glycolipids by Fourier transform infrared (FTIR) spectroscopy, GalC dispersions were combined with CBS dispersions in the presence and absence of Ca2ϩ. The FTIR spectra indicated that a strong interaction occurred between these glycolipids even in the absence of Ca2ϩ. The interaction resulted in dehydration of the sulfate, changes in the intermolecular hydrogen bonding interactions of the sugar and other oxygens, decreased intermolecular hydrogen bonding of the amide CAO of GalC and dehydration of the amide region of one or both of the lipids in the mixture, and disordering of the hydrocarbon chains of both lipids. The spectra also show that Ca2ϩ interacts with the sulfate of CBS. Although they do not reveal which other groups of CBS and GalC interact with Ca2ϩ or which groups participate in the interaction between the two lipids, they do show that the sulfate is not directly involved in interaction with GalC, since it can still bind to Ca2ϩ in the mixture.
    [Show full text]
  • Properties and Units in the Clinical Laboratory Sciences Part X
    Pure Appl. Chem., Vol. 72, No. 5, pp. 747–972, 2000. © 2000 IUPAC INTERNATIONAL FEDERATION OF CLINICAL CHEMISTRY AND LABORATORY MEDICINE SCIENTIFIC DIVISION COMMITTEE ON NOMENCLATURE, PROPERTIES AND UNITS (C-NPU)# and INTERNATIONAL UNION OF PURE AND APPLIED CHEMISTRY CHEMISTRY AND HUMAN HEALTH DIVISION CLINICAL CHEMISTRY SECTION COMMISSION ON NOMENCLATURE, PROPERTIES AND UNITS (C-NPU)§ PROPERTIES AND UNITS IN THE CLINICAL LABORATORY SCIENCES PART X. PROPERTIES AND UNITS IN GENERAL CLINICAL CHEMISTRY (Technical Report) (IFCC–IUPAC 1999) Prepared for publication by HENRIK OLESEN1, INGE IBSEN1, IVAN BRUUNSHUUS1, DESMOND KENNY2, RENÉ DYBKÆR3, XAVIER FUENTES-ARDERIU4, GILBERT HILL5, PEDRO SOARES DE ARAUJO6, AND CLEM McDONALD7 1Office of Laboratory Informatics, Copenhagen University Hospital (Rigshospitalet), Copenhagen, Denmark; 2Dept. of Clinical Biochemistry, Our Lady’s Hospital for Sick Children, Dublin, Ireland; 3Dept. of Standardisation in Laboratory Medicine, Kommunehospitalet, Copenhagen, Denmark; 4Dept. of Clinical Biochemistry, Ciutat Sanitària i Universitària de Bellvitge, Barcelona, Spain; 5Dept. of Clinical Chemistry, Hospital for Sick Children, Toronto, Canada; 6Dept. of Biochemistry, IQUSP, São Paolo, Brazil; 7Regenstrief Inst. for Health Care, Indiana University School of Medicine, Indianapolis, Indiana, USA #§The combined Memberships of the Committee and the Commission (C-NPU) during the preparation of this report (1994 to 1996) were as follows: Chairman: H. Olesen (Denmark, 1989–1995); D. Kenny (Ireland, 1996). Members: X. Fuentes-Arderiu (Spain, 1991–1997); J. G. Hill (Canada; 1987–1997); D. Kenny (Ireland, 1994–1997); H. Olesen (Denmark, 1985–1995); P. L. Storring (UK, 1989–1995); P. Soares de Araujo (Brazil, 1994–1997); R. Dybkær (Denmark, 1996–1997); C. McDonald (USA, 1996–1997). Please forward comments to: H.
    [Show full text]
  • Abnormal Expression of the Novel Epidermal Enzyme
    0023-6837/03/8303-397$03.00/0 LABORATORY INVESTIGATION Vol. 83, No. 3, p. 397, 2003 Copyright © 2003 by The United States and Canadian Academy of Pathology, Inc. Printed in U.S.A. Abnormal Expression of the Novel Epidermal Enzyme, Glucosylceramide Deacylase, and the Accumulation of its Enzymatic Reaction Product, Glucosylsphingosine, in the Skin of Patients with Atopic Dermatitis Mutsumi Ishibashi, Junko Arikawa, Reiko Okamoto, Makoto Kawashima, Yutaka Takagi, Kenji Ohguchi, and Genji Imokawa Department of Dermatology (MI, JA, MK, GI), Tokyo Women’s Medical University, Tokyo, and Kao Biological Science Laboratories (YT, KO, GI), Tochigi, Japan SUMMARY: To clarify mechanisms underlying acylceramide deficiency as an causative factor of the permeability barrier disruption seen in the skin of patients with atopic dermatitis (AD), we hypothesized and then demonstrated the presence of a novel epidermal enzyme, termed glucosylceramide (GC) deacylase. This enzyme hydrolyzes (acyl)GC at the N-acyl site to yield its lysoform, glucosylsphingosine (GS), instead of the formation of (acyl)ceramides by ␤-glucocerebrosidase. Assays of enzymatic activity using [palmitic acid-14C] GC as a substrate revealed that extracts from the stratum corneum and from the epidermis (but not from the dermis) of patients with AD have the significantly higher potential to hydrolyze GC at the N-acyl site to release 14C-labeled free fatty acid than of healthy controls. To determine the in vivo physiologic function of this novel enzyme, we measured the metabolic product GS in the upper stratum corneum. In both the involved and the uninvolved stratum corneum from patients with AD, there were significant increases in the amounts of GS compared with healthy controls and there was a significant inverse correlation with the decreased content of ceramides or ceramide-1 (acylceramide).
    [Show full text]