Sphingolipids (GSL) Takes Place at the Intracellular Membranes of Endoplas- Mic Reticulum and the Golgi Apparatus in Eukaryonic Cells
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Spring 2013 Lecture 23
CHM333 LECTURES 23: 3/25/13 SPRING 2013 Professor Christine Hrycyna LIPIDS III EFFECT OF CHOLESTEROL ON MEMBRANES: - Bulky rigid molecule - Moderates fluidity of membranes – both increases and decreases o Cholesterol in membranes DECREASES fluidity because it is rigid o Prevents crystallization (making solid) of fatty acyl side chains by fitting between them. Disrupts close packing of fatty acyl chains. Therefore, INCREASED fluidity BIOLOGICAL MEMBRANES CONTAIN PROTEINS AS WELL AS LIPIDS: - Proteins are 20-80% of cell membrane - Rest is lipid or carbohydrate; supramolecular assembly of lipid, protein and carbohydrate - Proteins are also distributed asymmetrically - TWO classes of Membrane Proteins: o Integral Membrane Proteins o Peripheral Membrane Proteins 178 CHM333 LECTURES 23: 3/25/13 SPRING 2013 Professor Christine Hrycyna - INTEGRAL MEMBRANE PROTEINS o Located WITHIN the lipid bilayer o Usually span the bilayer one or more times – called transmembrane (TM) proteins o Hydrophobic amino acids interact with fatty acid chains in the hydrophobic core of the membrane o Can be removed from the membrane with detergents like SDS – need to disrupt the hydrophobic interactions § Membrane Disruption Animation: o http://www.youtube.com/watch?v=AHT37pvcjc0 o Function: § Transporters – moving molecules into or out of cells or cell membranes § Receptors – transmitting signals from outside of the cell to the inside - β Barrel Integral Membrane Proteins § Barrel-shaped membrane protein that is made up of antiparallel β-strands with hydrophilic (interior) and hydrophobic (facing lipid tails). § So far found only in outer membranes of Gram-negative bacteria, cell wall of Gram-positive bacteria, and outer membranes of mitochondria and chloroplasts. 179 CHM333 LECTURES 23: 3/25/13 SPRING 2013 Professor Christine Hrycyna - α-Helical Membrane Proteins - Can cross the membrane once or many times and have multiple transmembrane segments. -
Sphingolipid Metabolism Diseases ⁎ Thomas Kolter, Konrad Sandhoff
View metadata, citation and similar papers at core.ac.uk brought to you by CORE provided by Elsevier - Publisher Connector Biochimica et Biophysica Acta 1758 (2006) 2057–2079 www.elsevier.com/locate/bbamem Review Sphingolipid metabolism diseases ⁎ Thomas Kolter, Konrad Sandhoff Kekulé-Institut für Organische Chemie und Biochemie der Universität, Gerhard-Domagk-Str. 1, D-53121 Bonn, Germany Received 23 December 2005; received in revised form 26 April 2006; accepted 23 May 2006 Available online 14 June 2006 Abstract Human diseases caused by alterations in the metabolism of sphingolipids or glycosphingolipids are mainly disorders of the degradation of these compounds. The sphingolipidoses are a group of monogenic inherited diseases caused by defects in the system of lysosomal sphingolipid degradation, with subsequent accumulation of non-degradable storage material in one or more organs. Most sphingolipidoses are associated with high mortality. Both, the ratio of substrate influx into the lysosomes and the reduced degradative capacity can be addressed by therapeutic approaches. In addition to symptomatic treatments, the current strategies for restoration of the reduced substrate degradation within the lysosome are enzyme replacement therapy (ERT), cell-mediated therapy (CMT) including bone marrow transplantation (BMT) and cell-mediated “cross correction”, gene therapy, and enzyme-enhancement therapy with chemical chaperones. The reduction of substrate influx into the lysosomes can be achieved by substrate reduction therapy. Patients suffering from the attenuated form (type 1) of Gaucher disease and from Fabry disease have been successfully treated with ERT. © 2006 Elsevier B.V. All rights reserved. Keywords: Ceramide; Lysosomal storage disease; Saposin; Sphingolipidose Contents 1. Sphingolipid structure, function and biosynthesis ..........................................2058 1.1. -
The Neutral Glycosphingolipid Globotriaosylceramide Promotes Fusion Mediated by a CD4-Dependent CXCR4-Utilizing HIV Type 1 Envelope Glycoprotein
Proc. Natl. Acad. Sci. USA Vol. 95, pp. 14435–14440, November 1998 Medical Sciences The neutral glycosphingolipid globotriaosylceramide promotes fusion mediated by a CD4-dependent CXCR4-utilizing HIV type 1 envelope glycoprotein ANU PURI*, PETER HUG*, KRISTINE JERNIGAN*, JOSEPH BARCHI†,HEE-YONG KIM‡,JILLON HAMILTON‡, i JOE¨LLE WIELS§,GARY J. MURRAY¶,ROSCOE O. BRADY¶, AND ROBERT BLUMENTHAL* *Section of Membrane Structure and Function, Laboratory of Experimental and Computational Biology, Division of Basic Sciences, National Cancer Institute, National Institutes of Health, Frederick, MD 21702; †Laboratory of Medicinal Chemistry, Division of Basic Sciences, National Cancer Institute and ¶Developmental and Metabolic Neurology Branch, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD 20892; ‡Laboratory of Membrane Biochemistry and Biophysics, National Institute on Alcohol Abuse and Alcoholism, National Institutes of Health, Rockville, MD 20852; and §Centre National de la Recherche Scientifique Unite´Mixte de Recherche 1598, Institut Gustave Roussy, Villejuif Cedex 94805, France Contributed by Roscoe O. Brady, September 25, 1998 ABSTRACT Previously, we showed that the addition of enabling individual HIV strains to choose between alternate human erythrocyte glycosphingolipids (GSLs) to nonhuman modes of entry into cells. CD41 or GSL-depleted human CD41 cells rendered those cells The GSL hypothesis is based on a number of observations, susceptible to HIV-1 envelope glycoprotein-mediated cell fu- including recovery of fusion of nonsusceptible cells after sion. Individual components in the GSL mixture were isolated transfer of protease- and heat-resistant components from by fractionation on a silica-gel column and incorporated into human erythrocytes (12, 13), physicochemical studies on the the membranes of CD41 cells. -
Attenuation of Ganglioside GM1 Accumulation in the Brain of GM1 Gangliosidosis Mice by Neonatal Intravenous Gene Transfer
Gene Therapy (2003) 10, 1487–1493 & 2003 Nature Publishing Group All rights reserved 0969-7128/03 $25.00 www.nature.com/gt RESEARCH ARTICLE Attenuation of ganglioside GM1 accumulation in the brain of GM1 gangliosidosis mice by neonatal intravenous gene transfer N Takaura1, T Yagi2, M Maeda2, E Nanba3, A Oshima4, Y Suzuki5, T Yamano1 and A Tanaka1 1Department of Pediatrics, Osaka City University Graduate School of Medicine, Osaka, Japan; 2Department of Neurobiology and Anatomy, Osaka City University Graduate School of Medicine, Osaka, Japan; 3Gene Research Center, Tottori University, Yonago, Japan; 4Department of Pediatrics, Takagi Hospital, Saitama, Japan; and 5Pediatrics, Clinical Research Center, Nasu Institute for Developmental Disabilities, International University of Health and Welfare, Ohtawara, Japan A single intravenous injection with 4 Â 107 PFU of recombi- ganglioside GM1 was above the normal range in all treated nant adenovirus encoding mouse b-galactosidase cDNA to mice, which was speculated to be the result of reaccumula- newborn mice provided widespread increases of b-galacto- tion. However, the values were still definitely lower in most of sidase activity, and attenuated the development of the the treated mice than those in untreated mice. In the disease including the brain at least for 60 days. The b- histopathological study, X-gal-positive cells, which showed galactosidase activity showed 2–4 times as high a normal the expression of exogenous b-galactosidase gene, were activity in the liver and lung, and 50 times in the heart. In the observed in the brain. It is noteworthy that neonatal brain, while the activity was only 10–20% of normal, the administration via blood vessels provided access to the efficacy of the treatment was distinct. -
Structural Evidence for Adaptive Ligand Binding of Glycolipid Transfer Protein
doi:10.1016/j.jmb.2005.10.031 J. Mol. Biol. (2006) 355, 224–236 Structural Evidence for Adaptive Ligand Binding of Glycolipid Transfer Protein Tomi T. Airenne†, Heidi Kidron†, Yvonne Nymalm, Matts Nylund Gun West, Peter Mattjus and Tiina A. Salminen* Department of Biochemistry Glycolipids participate in many important cellular processes and they are and Pharmacy, A˚ bo Akademi bound and transferred with high specificity by glycolipid transfer protein University, Tykisto¨katu 6A (GLTP). We have solved three different X-ray structures of bovine GLTP at FIN-20520 Turku, Finland 1.4 A˚ , 1.6 A˚ and 1.8 A˚ resolution, all with a bound fatty acid or glycolipid. The 1.4 A˚ structure resembles the recently characterized apo-form of the human GLTP but the other two structures represent an intermediate conformation of the apo-GLTPs and the human lactosylceramide-bound GLTP structure. These novel structures give insight into the mechanism of lipid binding and how GLTP may conformationally adapt to different lipids. Furthermore, based on the structural comparison of the GLTP structures and the three-dimensional models of the related Podospora anserina HET-C2 and Arabidopsis thaliana accelerated cell death protein, ACD11, we give structural explanations for their specific lipid binding properties. q 2005 Elsevier Ltd. All rights reserved. Keywords: crystal structure; homology modeling; conformational change; *Corresponding author cavity; fluorescence Introduction to the diverse roles of glycolipids in the cell, GLTP could potentially function as a modulator -
Improvement of Spontaneous Alternation Behavior Deficit by Activation Ofα4β2 Nicotinic Acetylcholine Receptor Signaling in the Ganglioside GM3-Deficient Mice
Biomedical Research 34 (4) 189-195, 2013 Improvement of spontaneous alternation behavior deficit by activation of α4β2 nicotinic acetylcholine receptor signaling in the ganglioside GM3- deficient mice 1 1 2 1 2 1 Kimie NIIMI , Chieko NISHIOKA , Tomomi MIYAMOTO , Eiki TAKAHASHI , Ichiro MIYOSHI , Chitoshi ITAKURA , 3, 4 and Tadashi YAMASHITA 1 Riken Brain Science Institute, Saitama 351-0198, Japan; 2 Graduate School of Medical Sciences, Nagoya City University, Nagoya 467- 8601, Japan; 3 Graduate School of Veterinary Medicine, Azabu University, Sagamihara 252-5201, Japan; and 4 World Class University Program, Kyungpook National University School of Medicine, Daegu, South Korea (Received 13 May 2013; and accepted 17 June 2013) ABSTRACT We have reported that in ganglioside GM3-deficient (GM3−/−) mice, spontaneous alternation be- havior assessed by a Y-maze task was significantly lower, and total arm entries were significantly higher than in wild-type mice. The objective of the present study was to examine the role of nico- tinic acetylcholine receptor (nAChR) signaling in impairment of spontaneous alternation behavior of GM3−/− mice. Nicotine treatment (0.3, 1.0 mg/kg, s.c.) dose dependently improved the sponta- neous alternation deficit without affecting total arm entries in GM3−/− mice. The nicotine-induced (1.0 mg/kg, s.c.) improvement was significantly abolished by the nAChR antagonist mecamyla- mine (1.0 mg/kg, i.p.). The α4β2 nAChR antagonist dihydro-β-erythroidine (2.5, 10.0 mg/kg, i.p.) dose dependently counteracted the nicotine-induced improvement of spontaneous alternation in GM3−/− mice, whereas the α7 nAChR antagonist methyllycaconitine (2.5, 10.0 mg/kg, i.p.) did not. -
Sphingolipids and Cell Signaling: Relationship Between Health and Disease in the Central Nervous System
Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 6 April 2021 doi:10.20944/preprints202104.0161.v1 Review Sphingolipids and cell signaling: Relationship between health and disease in the central nervous system Andrés Felipe Leal1, Diego A. Suarez1,2, Olga Yaneth Echeverri-Peña1, Sonia Luz Albarracín3, Carlos Javier Alméciga-Díaz1*, Angela Johana Espejo-Mojica1* 1 Institute for the Study of Inborn Errors of Metabolism, Faculty of Science, Pontificia Universidad Javeriana, Bogotá D.C., 110231, Colombia; [email protected] (A.F.L.), [email protected] (D.A.S.), [email protected] (O.Y.E.P.) 2 Faculty of Medicine, Universidad Nacional de Colombia, Bogotá D.C., Colombia; [email protected] (D.A.S.) 3 Nutrition and Biochemistry Department, Faculty of Science, Pontificia Universidad Javeriana, Bogotá D.C., Colombia; [email protected] (S.L.A.) * Correspondence: [email protected]; Tel.: +57-1-3208320 (Ext 4140) (C.J.A-D.). [email protected]; Tel.: +57-1-3208320 (Ext 4099) (A.J.E.M.) Abstract Sphingolipids are lipids derived from an 18-carbons unsaturated amino alcohol, the sphingosine. Ceramide, sphingomyelins, sphingosine-1-phosphates, gangliosides and globosides, are part of this group of lipids that participate in important cellular roles such as structural part of plasmatic and organelle membranes maintaining their function and integrity, cell signaling response, cell growth, cell cycle, cell death, inflammation, cell migration and differentiation, autophagy, angiogenesis, immune system. The metabolism of these lipids involves a broad and complex network of reactions that convert one lipid into others through different specialized enzymes. Impairment of sphingolipids metabolism has been associated with several disorders, from several lysosomal storage diseases, known as sphingolipidoses, to polygenic diseases such as diabetes and Parkinson and Alzheimer diseases. -
Occurrence of Sulfatide As a Major Glycosphingolipid in WHHL Rabbit Serum Lipoproteins1
J. Biochem. 102, 83-92 (1987) Occurrence of Sulfatide as a Major Glycosphingolipid in WHHL Rabbit Serum Lipoproteins1 Atsushi HARA and Tamotsu TAKETOMI Department of Lipid Biochemistry, Institute of Cardiovascular Disease , Shinshu University School of Medicine, Matsumoto , Nagano 390 Received for publication, February 12, 1987 Glycosphingolipids in serum and lipoproteins from Watanabe hereditable hyper li pidemic rabbit (WHHL rabbit), which is an animal model for human familial hypercholesterolemia (FH), were analyzed for the first time in this study . Chylo microns and very low density, low density, and high density lipoproteins contained sulfatide as a major glycosphingolipid (12nmol/ƒÊmol total phospholipids (PL) in chylomicrons, 19nmol/ƒÊmol PL in VLDL, 18nmol/ƒÊmol PL in LDL, and 14nmol/ƒÊ mol PL in HDL) with other minor glycosphingolipids such as glucosylceramide, galactosylceramide, GM3 ganglioside, lactosylceramide, and globotriaosylceramide. The concentration of sulfatide as a major glycosphingolipid in WHHL rabbit serum (121nmol/ml) was much higher than that in normal rabbit serum (3nmol/ml). Fatty acids of the sulfatides comprised mainly nonhydroxy fatty acids (C22, 23, and 24) and significant amounts of hydroxy fatty acids (about 10%), whereas long chain bases of the sulfatides comprised mostly (4E)-sphingenine with a significant amount of 4D-hydroxysphinganine (about 10%). Furthermore, sulfatides in the liver and small intestine from normal and WHHL rabbits (where serum lipoproteins are produced) were determined to amount to 260nmol/g liver in WHHL rabbit, 104 nmol/g liver in control rabbit, 99.6nmol/g small intestine in WHHL rabbit, and 31.2nmol/g small intestine in control rabbit. Ceramide portions of the sulfatides in the liver were mainly composed of (4E)-sphingenine and nonhydroxy fatty acids, while those in the small intestine were mainly composed of 4D-hydroxysphinganine and hydroxy fatty acids. -
GM2 Gangliosidoses: Clinical Features, Pathophysiological Aspects, and Current Therapies
International Journal of Molecular Sciences Review GM2 Gangliosidoses: Clinical Features, Pathophysiological Aspects, and Current Therapies Andrés Felipe Leal 1 , Eliana Benincore-Flórez 1, Daniela Solano-Galarza 1, Rafael Guillermo Garzón Jaramillo 1 , Olga Yaneth Echeverri-Peña 1, Diego A. Suarez 1,2, Carlos Javier Alméciga-Díaz 1,* and Angela Johana Espejo-Mojica 1,* 1 Institute for the Study of Inborn Errors of Metabolism, Faculty of Science, Pontificia Universidad Javeriana, Bogotá 110231, Colombia; [email protected] (A.F.L.); [email protected] (E.B.-F.); [email protected] (D.S.-G.); [email protected] (R.G.G.J.); [email protected] (O.Y.E.-P.); [email protected] (D.A.S.) 2 Faculty of Medicine, Universidad Nacional de Colombia, Bogotá 110231, Colombia * Correspondence: [email protected] (C.J.A.-D.); [email protected] (A.J.E.-M.); Tel.: +57-1-3208320 (ext. 4140) (C.J.A.-D.); +57-1-3208320 (ext. 4099) (A.J.E.-M.) Received: 6 July 2020; Accepted: 7 August 2020; Published: 27 August 2020 Abstract: GM2 gangliosidoses are a group of pathologies characterized by GM2 ganglioside accumulation into the lysosome due to mutations on the genes encoding for the β-hexosaminidases subunits or the GM2 activator protein. Three GM2 gangliosidoses have been described: Tay–Sachs disease, Sandhoff disease, and the AB variant. Central nervous system dysfunction is the main characteristic of GM2 gangliosidoses patients that include neurodevelopment alterations, neuroinflammation, and neuronal apoptosis. Currently, there is not approved therapy for GM2 gangliosidoses, but different therapeutic strategies have been studied including hematopoietic stem cell transplantation, enzyme replacement therapy, substrate reduction therapy, pharmacological chaperones, and gene therapy. -
Ceramide and Related Molecules in Viral Infections
International Journal of Molecular Sciences Review Ceramide and Related Molecules in Viral Infections Nadine Beckmann * and Katrin Anne Becker Department of Molecular Biology, University of Duisburg-Essen, 45141 Essen, Germany; [email protected] * Correspondence: [email protected]; Tel.: +49-201-723-1981 Abstract: Ceramide is a lipid messenger at the heart of sphingolipid metabolism. In concert with its metabolizing enzymes, particularly sphingomyelinases, it has key roles in regulating the physical properties of biological membranes, including the formation of membrane microdomains. Thus, ceramide and its related molecules have been attributed significant roles in nearly all steps of the viral life cycle: they may serve directly as receptors or co-receptors for viral entry, form microdomains that cluster entry receptors and/or enable them to adopt the required conformation or regulate their cell surface expression. Sphingolipids can regulate all forms of viral uptake, often through sphingomyelinase activation, and mediate endosomal escape and intracellular trafficking. Ceramide can be key for the formation of viral replication sites. Sphingomyelinases often mediate the release of new virions from infected cells. Moreover, sphingolipids can contribute to viral-induced apoptosis and morbidity in viral diseases, as well as virus immune evasion. Alpha-galactosylceramide, in particular, also plays a significant role in immune modulation in response to viral infections. This review will discuss the roles of ceramide and its related molecules in the different steps of the viral life cycle. We will also discuss how novel strategies could exploit these for therapeutic benefit. Keywords: ceramide; acid sphingomyelinase; sphingolipids; lipid-rafts; α-galactosylceramide; viral Citation: Beckmann, N.; Becker, K.A. -
List of Compounds 2018 年12 月
List of Compounds 2018 年12 月 長良サイエンス株式会社 Nagara Science Co., Ltd. 〒501-1121 岐阜市古市場 840 840 Furuichiba, Gifu 501-1121, JAPAN Phone : +81-58-234-4257、Fax : +81-58-234-4724 E-mail : [email protected] 、http : //www.nsgifu.jp Storage Product Name・Purity・Molecular Formula=Molecular Weight・〔 CAS Quantity Source Code No. C o n di t i o n s Registry Number 〕 ・Price ( JPY ) NH020102 2-10 ℃ (-)-Epicatechin [ (-)-EC ] ≧99% (HPLC) 10mg 8,000 NH020103 C15H14O6 = 290.27 〔490-46-0〕 100mg 44,000 NH020202 2-10 ℃ (-)-Epigallocatechin [ (-)-EGC ] ≧99% (HPLC) 10mg 12,000 NH020203 C15H14O7 = 306.27 〔970-74-1〕 100mg 66,000 NH020302 2-10 ℃ (-)-Epicatechin gallate [ (-)-ECg ] ≧99% (HPLC) 10mg 12,000 NH020303 C22H18O10 = 442.37 〔1257-08-5〕 100mg 52,000 NH020403 2-10 ℃ (-)-Epigallocatechin gallate [ (-)-EGCg ] ≧98% (HPLC) 100mg 12,000 〔 〕 C22H18O11 = 458.37 989-51-5 NH020602 2-10 ℃ (-)-Epigallocatechin gallate [ (-)-EGCg ] ≧99% (HPLC) 20mg 12,000 NH020603 C22H18O11 = 458.37 〔989-51-5〕 100mg 30,000 NH020502 2-10 ℃ (+)-Catechin hydrate [ (+)-C ] ≧99% (HPLC) 10mg 5,000 NH020503 C15H14O6 ・H2O = 308.28 〔88191-48-4〕 100mg 32,000 NH021102 2-10 ℃ (-)-Catechin [ (-)-C ] ≧98% (HPLC) 10mg 23,000 C15H14O6 = 290.27 〔18829-70-4〕 NH021202 2-10 ℃ (-)-Gallocatechin [ (-)-GC ] ≧98% (HPLC) 10mg 34,000 〔 〕 C15H14O7 = 306.27 3371-27-5 NH021302 - ℃ ≧ 10mg 34,000 2 10 (-)-Catechin gallate [ (-)-Cg ] 98% (HPLC) C22H18O10 = 442.37 〔130405-40-2〕 NH021402 2-10 ℃ (-)-Gallocatechin gallate [ (-)-GCg ] ≧98% (HPLC) 10mg 23,000 C22H18O11 = 458.37 〔4233-96-9〕 NH021502 2-10 ℃ (+)-Epicatechin [ (+)-EC -
The Membrane
The Membrane Natalie Gugala1*, Stephana J Cherak1 and Raymond J Turner1 1Department of Biological Sciences, University of Calgary, Canada *Corresponding author: RJ Turner, Department of Biological Sciences, University of Calgary, Alberta, Canada, Tel: 1-403-220-4308; Fax: 1-403-289-9311; Email: [email protected] Published Date: February 10, 2016 ABSTRACT and continues to be studied. The biological membrane is comprised of numerous amphiphilic The characterization of the cell membrane has significantly extended over the past century lipids, sterols, proteins, carbohydrates, ions and water molecules that result in two asymmetric polar leaflets, in which the interior is hydrophobic due to the hydrocarbon tails of the lipids. generated a dynamic heterogonous image of the membrane that includes lateral domains and The extension of the Fluid Mosaic Model, first proposed by Singer and Nicolson in 1972, has clusters perpetrated by lipid-lipid, protein-lipid and protein-protein interactions. Proteins found within the membrane, which are generally characterized as either intrinsic or extrinsic, have an array of biological functions vital for cell activity. The primary role of the membrane, among many, is to provide a barrier that conveys both separation and protection, thus maintaining the integrity of the cell. However, depending on the permeability of the membrane several ions are able to move down their concentration gradients. In turn this generates a membrane potential difference between the cytosol, which is found to have an excess negative charge, and surrounding extracellular fluid. Across a biological cell membrane, several potentials can be found. These include the Nernst or equilibrium potential, in which there is no overall flow of a Basicparticular Biochemistry ion and | www.austinpublishinggroup.com/ebooks the Donnan potential, created by an unequal distribution of ions.