Of Marine Fish
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Reef Snappers (Lutjanidae)
#05 Reef snappers (Lutjanidae) Two-spot red snapper (Lutjanus bohar) Mangrove red snapper Blacktail snapper (Lutjanus argentimaculatus) (Lutjanus fulvus) Common bluestripe snapper (Lutjanus kasmira) Humpback red snapper Emperor red snapper (Lutjanus gibbus) (Lutjanus sebae) Species & Distribution Habitats & Feeding The family Lutjanidae contains more than 100 species of Although most snappers live near coral reefs, some species tropical and sub-tropical fi sh known as snappers. are found in areas of less salty water in the mouths of rivers. Most species of interest in the inshore fi sheries of Pacifi c Islands belong to the genus Lutjanus, which contains about The young of some species school on seagrass beds and 60 species. sandy areas, while larger fi sh may be more solitary and live on coral reefs. Many species gather in large feeding schools One of the most widely distributed of the snappers in the around coral formations during daylight hours. Pacifi c Ocean is the common bluestripe snapper, Lutjanus kasmira, which reaches lengths of about 30 cm. The species Snappers feed on smaller fi sh, crabs, shrimps, and sea snails. is found in many Pacifi c Islands and was introduced into They are eaten by a number of larger fi sh. In some locations, Hawaii in the 1950s. species such as the two-spot red snapper, Lutjanus bohar, are responsible for ciguatera fi sh poisoning (see the glossary in the Guide to Information Sheets). #05 Reef snappers (Lutjanidae) Reproduction & Life cycle Snappers have separate sexes. Smaller species have a maximum lifespan of about 4 years and larger species live for more than 15 years. -
FISHES of the FAMILY LUTJANIDAE of Taiwanl
Bull. Inst. Zool., Academia Sinica 26(4): 279-303 (1987) FISHES OF THE FAMILY LUTJANIDAE OF TAIWANl SIN-CHE LEE. Institute of Zoology, Academia Sinica, Nankang, Taipei, Taiwan 11529 Republic of China (Received July 3, 1987) (Revision received July 11, 1987) (Accepted July 31, 1987) Sin-Che Lee (1987) Fishes of the family Lutjanidae of Taiwan. Bull. Inst. Zoology, Academia Sinica 26 (4): 279-303. Up to date, a total of 44 lutjanid species are confirmed to occur around the waters of Taiwan. They include 4 subfamilies and .10 genera: Paradicichthyinae (Symphorus, 1 species); Lutjaninae (Lutjanus, 23 species; Macolor, 1 species; Pinjalo, 2 species): Apsilinae (Paracaesio, 3 species); Etelinae (Aprion, 1 species; Aphareus, 2 species; Etelis, 3 species; Pristipomoides, 6 species; Tropidinius, 2 species). Among 44 species, Lutjanus ehrenbergii and Pristipomoides typus are not yet available and are 'provisionally excluded from this report. The remaining 42 species are provided with their distinctive characters with color photos as well as the keys for specific identification. The following 12 species namely Aphareus furcatus, A. rutilans, Etelis carbunculus E. radiosus, Lutjanus bengalensis, L. carponotatus, L. doedecanthoides, Pristipomoides auricilla, P. multidens, Tropidinius amoenus, T. zona/us, are first records from Taiwan, and Pinjalo microphthalmus is the new species. and Richardson added 5 species namely Fishes of Lutjanidae or snappers have Lutjanus fuscescens (=L. russelli) , L. quinque the dorsal fin continuou·s or with a shallow lineatus (L. spilurus is the synonym of it), L. notch, with 10-12 spines and 10-17 soft rays; kasmira,. L. lineolatus (=L. lutjanus) , and L. anal fin wi th 3 s pi nes and 7-11 soft rays; rivulatus. -
Morphology and Early Life History Pattern of Some Lutjanus Species: a Review
INT. J. BIOL. BIOTECH., 8 (3): 455-461, 2011. MORPHOLOGY AND EARLY LIFE HISTORY PATTERN OF SOME LUTJANUS SPECIES: A REVIEW *Zubia Masood and Rehana Yasmeen Farooq Department of Zoology, University of Karachi, Karachi-75270, Pakistan. *email: [email protected] ABSTRACT The present study was based on the literature review of the fishes belonging to the snapper family Lutjanidae. Data parameters about the morphology and early life history pattern not measured during the survey were taken from the FishBase data base (see www.fishbase.org and Froese et al., 2000). These data parameters included, Lmax (maximum length), Linf (length infinity); K (growth rate); M (natural mortality); LS (life span); Lm (length at maturity); tm (age at first maturity); to (age at zero length); tmax (longevity) and also the morphological data. Morphological and life history data were taken only for five species of fishes belongs to genus Lutjanus i.e., L.johnii, L.malabaricus, L.lutjanus, L.fulvus, L.russellii. The main objective of this study was to review some aspects of distribution, morphology and feeding habits, spawning and also acquired and analyze information on selected life history variables to described patterns of variation among different species of snappers. Keywords: Lutjanidae, morphology, life history. INTRODUCTION This family is commonly known as “Snappers” are perch-like fishes, moderately elongated, fairly compressed (Allen and Talbot, 1985). Small to large fishes, ranging from 15cm-120cm or 1m in length and 40 kg in weight. Mouth is terminal, jaw bear large canine teeth (no canines in Apherius); Preopercle usually serrate. Dorsal fin continuous or slightly notched with 10-12 spines and 10-17 soft rays; anal fin with 3 spines and 7-11 soft rays; pelvic fins originating just behind pectoral base. -
Appendices Appendices
APPENDICES APPENDICES APPENDIX 1 – PUBLICATIONS SCIENTIFIC PAPERS Aidoo EN, Ute Mueller U, Hyndes GA, and Ryan Braccini M. 2015. Is a global quantitative KL. 2016. The effects of measurement uncertainty assessment of shark populations warranted? on spatial characterisation of recreational fishing Fisheries, 40: 492–501. catch rates. Fisheries Research 181: 1–13. Braccini M. 2016. Experts have different Andrews KR, Williams AJ, Fernandez-Silva I, perceptions of the management and conservation Newman SJ, Copus JM, Wakefield CB, Randall JE, status of sharks. Annals of Marine Biology and and Bowen BW. 2016. Phylogeny of deepwater Research 3: 1012. snappers (Genus Etelis) reveals a cryptic species pair in the Indo-Pacific and Pleistocene invasion of Braccini M, Aires-da-Silva A, and Taylor I. 2016. the Atlantic. Molecular Phylogenetics and Incorporating movement in the modelling of shark Evolution 100: 361-371. and ray population dynamics: approaches and management implications. Reviews in Fish Biology Bellchambers LM, Gaughan D, Wise B, Jackson G, and Fisheries 26: 13–24. and Fletcher WJ. 2016. Adopting Marine Stewardship Council certification of Western Caputi N, de Lestang S, Reid C, Hesp A, and How J. Australian fisheries at a jurisdictional level: the 2015. Maximum economic yield of the western benefits and challenges. Fisheries Research 183: rock lobster fishery of Western Australia after 609-616. moving from effort to quota control. Marine Policy, 51: 452-464. Bellchambers LM, Fisher EA, Harry AV, and Travaille KL. 2016. Identifying potential risks for Charles A, Westlund L, Bartley DM, Fletcher WJ, Marine Stewardship Council assessment and Garcia S, Govan H, and Sanders J. -
Download Full Article in PDF Format
Notes on the status of the names of fi shes presented in the Planches de Seba (1827-1831) published by Guérin-Méneville Paolo PARENTI Department of Environmental Sciences, University of Milano-Bicocca, Piazza della Scienza 1, I-20126 Milano (Italy) [email protected] Martine DESOUTTER-MENIGER Muséum national d’Histoire naturelle, Département Systématique et Évolution, USM 602, Taxonomie et Collections, case postale 26, 57 rue Cuvier, F-75231 Paris cedex 05 (France) [email protected] Parenti P. & Desoutter-Meniger M. 2007. — Notes on the status of the names of fi shes presented in the Planches de Seba (1827-1831) published by Guérin-Méneville. Zoosystema 29 (2) : 393-403. ABSTRACT Th e Planches de Seba were published in 48 issues (livraisons) between 1827 and 1831 under the direction of Guérin-Méneville. Livraison 13 contains two sheets (eight pages) of text dealing with plates 1 to 48 of volume 3 of Seba’s Locupletissimi rerum naturalium Th esauri (1759). Plates 23 through 34 depict fi shes. No types are known for these specimens. Examination of the text published in the Planches de Seba reveals the presence of 94 specifi c names of fi shes. Th e present status of each of them is reported. In particular, we found that 16 binomina represent original combinations and all but one (Anampses moniliger) have never been recorded in the ichthyological literature, with Planches de Seba as reference. Except for one name (Amphiprion albiventris), which is completely unknown in the literature, all other names bear the date of the original description of well established fi sh names. -
Pre-Assessment of the Groundfish Fisheries in Indonesia
CONFIDENTIAL DOCUMENT PO Box 371 Port Douglas,QLD, Australia Tel: (+61) 7 42042060 Email:[email protected] Pre-Assessment of the Groundfish fisheries in Indonesia Prepared for The Nature Conservancy - Indonesia Fisheries Conservation Program Prepared by Poseidon Aquatic Resource Management (Pty) Ltd. May, 2019 CONFIDENTIAL DOCUMENT TABLE OF CONTENTS GLOSSARY ................................................................................................................................... 3 EXECUTIVE SUMMARY ....................................................................................................... 4 1 INTRODUCTION ........................................................................................................... 15 1.1 Aims/scope of pre-assessment ................................................................................................. 15 1.2 Constraints to the pre-assessment of the fishery ................................................................. 15 1.3 Unit of Assessment ..................................................................................................................... 16 1.4 Total Allowable Catch (TAC) and Catch Data ......................................................................... 21 2 DESCRIPTION OF THE FISHERY ............................................................................ 22 2.1 Scope of the fishery in relation to the MSC programme....................................................... 22 2.2 Background.................................................................................................................................. -
Lutjanus Malabaricus) Di Tempat Pelelangan Ikan Brondong Lamongan
IR - PERPUSTAKAAN UNIVERSITAS AIRLANGGA DAFTAR PUSTAKA Adawiyah, R., E. Maryanti, F.E. Siagian. 2014. Anisakis sp. dan Alergi yang Diakibatkannya. Jurnal Ilmu Kedokteran. 8(1): 38-45 Aline, M.D.S.S., K. Marcelo, N. Felizardo and C. Sergio. 2017. Nematode and Cestode Larvae of Hygienic-Sanitary Importance in Lopholatilus villarii (Actinopterygii) in the State of Rio de Janeiro, Brazil. Boletim do Instituto de Pesca, São Paulo. 43(3): 358-398. Allen, G.R. 1985. FAO Species Catalogue Vol.6 Snappers of The World an Annotated and Illustrated Catalogue of Lutjanid Species Known to Date. FAO Fish Synopsis. 6(125):103 Anshary, H. 2011. Identifikasi Molekuler dengan Teknik PCR-RFLP Larva Parasit Anisakis spp. (Nematoda: Anisakidae) pada Ikan Tongkol (Auxis thazard) dan Kembung (Rastrelliger Kanagurta) dari Perairan Makassar. Jurnal Perikanan (J. Fish. Sci.) XIII (2): 70-77 Arai, H.P and J.W. Smith. 2016. Guide to the Parasites of Fishes of Canada. Part V: Nematoda. Zootaxa 4185. (1): 001–274. Azkia, L.I., A.D.P. Fitri, I. Triarso. 2015. Analisis Hasil Tangkapan Per Upaya Penangkapan dan Pola Musim Penangkapan Sumberdaya Ikan Kakap Merah (Lutjanus sp.) yang Didaratkan di PPN Brondong, Lamongan, Jawa Timur. Journal of Fisheries Resources Utilization Management and Technology. 4(4):1- 7 Batara, J.R. 2008. Deskripsi Morfologi Cacing Nematoda pada Saluran Pencernaan Ikan Gurami (Osphronemus gouramy ) dan Ikan Kakap Merah (Lutjanus spp.) [Skripsi]. Fakultas Kedokteran Hewan Institut Pertanian Bogor. Bogor. Hal.45 Beverley-Burton, M. 1984. Monogenea and Turbellaria, p. 5-209. In L. Margolis and Z. Kabata [ed] Guide to the Parasites of Fishes of Canada. -
Pisces: Lutjanidae: Lutjanus) from the Indo-West Pacific
Two new species of snappers (Pisces: Lutjanidae: Lutjanus) from the Indo-West Pacific GERALD R. ALLEN Western Australian Museum, Locked Bag 49, Welshpool DC Perth, Western Australia 6986, Australia. E-mail: [email protected] WILLIAM T. WHITE CSIRO Marine Research, Wealth from Oceans Flagship, GPO Box 1538, Hobart, Tasmania 7011, Australia MARK V. ERDMANN Conservation International, Jl. Dr. Muwardi No. 17, Renon, Denpasar, Bali 80235, Indonesia Abstract Two new species of snappers, genus Lutjanus, are described from Indo-West Pacific seas.Lutjanus indicus is de- scribed from 20 specimens, 54.7–226 mm SL, from western Thailand, India, Sri Lanka, and Bahrain. It has also been photographed at Oman and the Andaman Islands (tissue sample also taken). It has invariably been confused with its sibling species, L. russellii, from the western Pacific. Comparison of the mitochondrial cytochrome c oxidase subunit 1 (CO1) genetic marker utilised in DNA barcoding produced a genetic divergence of about 4.1 % between L. indicus and its closest congener, L. russellii. In addition, significant colour differences are useful for separating the two species, specifically a series of seven narrow yellow-to-brown stripes on the side, obliquely rising (except lower two) dorsally and posteriorly, which are present on both juveniles and adults of L. indicus. Lutjanus papuensis is described from four specimens, 173–259 mm SL, collected at Cenderawasih Bay, West Papua and purchased from fish markets at Bali and western Java, Indonesia. It has also been observed at Timor Leste, northern Papua New Guinea, and the Solomon Islands. It is most closely related to L. -
Using a Collaborative Data Collection Method to Update Life-History Values for Snapper And
bioRxiv preprint doi: https://doi.org/10.1101/655571; this version posted May 30, 2019. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY 4.0 International license. 1 Using a collaborative data collection method to update life-history values for snapper and 2 grouper in Indonesia’s deep-slope demersal fishery 3 4 Elle Wibisono1*, Peter Mous2, Austin Humphries1,3 5 1 Department of Fisheries, Animal and Veterinary Sciences, University of Rhode Island, 6 Kingston, Rhode Island, USA 7 2 The Nature Conservancy Indonesia Fisheries Conservation Program, Bali, Indonesia 8 3 Graduate School of Oceanography, University of Rhode Island, Narragansett, Rhode Island, 9 USA 10 11 12 *Corresponding author 13 E-mail: [email protected] (EW) 14 15 1 bioRxiv preprint doi: https://doi.org/10.1101/655571; this version posted May 30, 2019. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY 4.0 International license. 16 Abstract 17 The deep-slope demersal fishery that targets snapper and grouper species is an important fishery 18 in Indonesia. Boats operate at depths between 50-500 m using drop lines and bottom long lines. 19 There are few data, however, on the basic characteristics of the fishery which impedes accurate 20 stock assessments and the establishment of harvest control rules. -
Argyro ZENETOS 1*, Georgos APOSTOLOPOULOS 2, Andfabio
ACTA ICHTHYOLOGICA ET PISCATORIA (2016) 46 (3): 255–262 DOI: 10.3750/AIP2016.46.3.10 AQUARIA KEPT MARINE FISH SPECIES POSSIBLY RELEASED IN THE MEDITERRANE- AN SEA: FIRST CONFIRMATION OF INTENTIONAL RELEASE IN THE WILD Argyro ZENETOS 1*, Georgos APOSTOLOPOULOS 2, and Fabio CROCETTA 1 1 Institute of Marine Biological Resources and Inland Waters, Hellenic Centre for Marine Research, Anavissos, Greece 2 Kallidromiou 41, Athens, GR-10681, Greece Zenetos A., Apostolopoulos G., Crocetta F. 2016. Aquaria kept marine fi sh species possibly released in the Mediterranean Sea: First confi rmation of intentional release in the wild. Acta Ichthyol. Piscat. 46 (3): 255–262. Abstract. This work reviews the introduced marine fi sh species in the Mediterranean Sea, whose mechanism of introduction is potentially linked to aquarium trade. The list includes 19 species, all listed in FishBase as commercially exploited species in the aquarium trade. Whilst transport-stowaway (shipping) may be considered as a potential pathway for almost all of them, 7 of these also live in the Red Sea, and therefore could have entered unintentionally via the Suez Canal. We also here report the fi rst Mediterranean sighting of the emperor red snapper, Lutjanus sebae (Cuvier, 1816), on the basis of one specimen sampled in Saronikos Gulf. A research carried out by one of the authors led us to trace its entire life in Greece, from the presence in a local pet store to its intentional release in nature and subsequent collection. Keywords: marine aquarium hobbyist, alien fi sh, Lutjanus sebae, Greece The aquarium trade is responsible for transportation The review of fi sh taxa possibly introduced in the of thousands of species around the world. -
NORTH COAST FISH IDENTIFICATION GUIDE Ben M
NORTH COAST FISH IDENTIFICATION GUIDE Ben M. Rome and Stephen J. Newman Department of Fisheries 3rd floor SGIO Atrium 168-170 St George’s Terrace PERTH WA 6000 Telephone (08) 9482 7333 Facsimile (08) 9482 7389 Website: www.fish.wa.gov.au ABN: 55 689 794 771 Published by Department of Fisheries, Perth, Western Australia. Fisheries Occasional Publications No. 80, September 2010. ISSN: 1447 - 2058 ISBN: 1 921258 90 X Information about this guide he intention of the North Coast Fish Identification Guide is to provide a simple, Teasy to use manual to assist commercial, recreational, charter and customary fishers to identify the most commonly caught marine finfish species in the North Coast Bioregion. This guide is not intended to be a comprehensive taxonomic fish ID guide for all species. It is anticipated that this guide will assist fishers in providing a more comprehensive species level description of their catch and hence assist scientists and managers in understanding any variation in the species composition of catches over both spatial and temporal scales. Fish taxonomy is a dynamic and evolving field. Advances in molecular analytical techniques are resolving many of the relationships and inter-relationships among species, genera and families of fishes. In this guide, we have used and adopted the latest taxonomic nomenclature. Any changes to fish taxonomy will be updated and revised in subsequent editions. The North Coast Bioregion extends from the Ashburton River near Onslow to the Northern Territory border. Within this region there is a diverse range of habitats from mangrove creeks, rivers, offshore islands, coral reef systems to continental shelf and slope waters. -
Size Structure and Gonad Maturity of Red Snapper Lutjanus Malabaricus in Pinrang Waters, Makassar Strait, South Sulawesi, Indonesia
Eco. Env. & Cons. 26 (November Suppl. Issue) : 2020; pp. (S61-S64) Copyright@ EM International ISSN 0971–765X Size structure and gonad maturity of red snapper Lutjanus malabaricus in Pinrang waters, Makassar Strait, South Sulawesi, Indonesia Nuraeni L Rapi1*, Mesalina Tri Hidayani1, Murwantoko2, Djumanto2 and Agoes Soegianto3* 1Sekolah Tinggi Teknologi Kelautan Balik Diwa, Makassar, South Sulawesi, Indonesia 2Gadjah Mada University, Yogyakarta, Central Java, Indonesia 3Department of Biology, Airlangga University, Surabaya Indonesia (Received 20 February, 2020; Accepted 18 June, 2020) ABSTRACT The aim of this study was to determine the size structure, gonad maturity and sex ratio of red snapper Lutjanus malabaricusi. The present research was conducted from March to July 2020 in Pinrang waters, Makassar Strait South Sulawesi. The parameters observed including size structure, gonad maturity and sex ratio. Data analysis was used Chi- square for sex ratio and size at first maturity was calculated using Spearman Karber equations, the gonad sample was histological analyzed. The results showed that a total of 1040 fish which consisted of 505 males and 535 females. The total length of snapper ranged from 19.5 to 69.5 cm with the sex ratio is equally distributed. Gonadal maturity level was under immature (36%) and mature gonad (64%). The size of the first-time maturity was 29 cm (male) and 37 cm (female). Key words: Red snapper, Size structure, Gonad maturity, Sex ratio Introduction needs major improvement in managements of red snapper. Thus, baseline data related to reproductive Red snapper fish or Lutjanus malabaricusi is known biology of red snapper in the Pinrang waters of as one of sought-after fisheries commodity in the South Sulawesi are required.