Five Decades of Structure: a Retrospective View*
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Thomas Kuhn on Paradigms
Vol. 29, No. 7, July 2020, pp. 1650–1657 DOI 10.1111/poms.13188 ISSN 1059-1478|EISSN 1937-5956|20|2907|1650 © 2020 Production and Operations Management Society Thomas Kuhn on Paradigms Gopesh Anand Department of Business Administration, Gies College of Business, University of Illinois at Urbana-Champaign, 469 Wohlers Hall, 1206 South Sixth Street, Champaign, Illinois 61820, USA, [email protected] Eric C. Larson Department of Business Administration, Gies College of Business, University of Illinois at Urbana-Champaign, 8 Wohlers Hall, 1206 S. Sixth, Champaign, Illinois 61820, USA, [email protected] Joseph T. Mahoney* Department of Business Administration, Gies College of Business, University of Illinois at Urbana-Champaign, 140C Wohlers Hall, 1206 South Sixth Street, Champaign, Illinois 61820, USA, [email protected] his study provides key arguments and contributions of Kuhn (1970) concerning paradigms, paradigm shifts, and sci- T entific revolutions. We provide interpretations of Kuhn’s (1970) key ideas and concepts, especially as they relate to business management research. We conclude by considering the practical implications of paradigms and paradigm shifts for contemporary business management researchers and suggest that ethical rules of conversation are at least as critical for the health of a scientific community as methodological rules (e.g., the rules of logical positivism) derived from the phi- losophy of science. Key words: Paradigms; paradigm shifts; scientific revolutions; normal science History: Received: February 2019; Accepted: March 2020 by Kalyan Singhal, after 3 revisions. The Structure of Scientific Revolutions the rich descriptions of the process of advancing this theory. SSR showed that science primarily advances Thomas S. -
Thomas Kuhn and Perspectival Realism a Thesis Presented to The
Thomas Kuhn and Perspectival Realism A thesis presented to the faculty of the College of Arts and Sciences of Ohio University In partial fulfillment of the requirements for the degree Master of Arts Ryan J. O'Loughlin April 2017 © 2017 Ryan J. O'Loughlin. All Rights Reserved. 2 This thesis titled Thomas Kuhn and Perspectival Realism by RYAN J. O'LOUGHLIN has been approved for the Department of Philosophy and the College of Arts and Sciences by Philip Ehrlich Professor of Philosophy Robert Frank Dean, College of Arts and Sciences 3 ABSTRACT O'LOUGHLIN, RYAN J., M.A., April 2017, Philosophy Thomas Kuhn and Perspectival Realism Director of Thesis: Philip Ehrlich In this paper I discuss Giere’s reading of Kuhn as affirming perspectival realism and I present evidence demonstrating that this reading of Kuhn is correct. I consider several scientific realist theses that Kuhn rejects and discuss whether and to what extent perspectival realism may be regarded as a scientific realist position. I suggest adding Kuhn’s account of incommensurability, understood in its later form, to Giere’s account of perspectival realism. I conclude by providing a definition of perspectival realism that incorporates Kuhn’s incommensurability thesis as well as the specific claims of scientific realism that are compatible with perspectival realism. Perspectival realism thus understood is, at most, a weak form of scientific realism. 4 TABLE OF CONTENTS Page Abstract .............................................................................................................................. -
Persp V1n2 Final4pdf
MODERN SCIENCE AND THE SEARCH FOR TRUTH Brian Tonks—Department of Physics have pondered the question, “What is truth?” for many years. My I intellectual journey has convinced me that truth comes in many ways through a variety of sources. I began my schooling believing that scientists were searching for the truth, but my undergraduate training included classes in the history and philosophy of science that disillusioned me towards the scientific process. Then my service in the United States Navy showed me the practical utility of scientific principles, and my graduate studies provided real experience in how science really works. For five years I was involved in nearly all facets of the scientific process. My adult life spans the period of the Voyager missions to the outer planets, the Viking, Pathfinder, and Global Surveyor missions to Mars, and the Pioneer and Magellan missions to Venus. These missions demonstrated the power of scientific observation. Before Voyager, we knew little about the outer planets and even less about their satellites. Even in the largest ground-based telescopes, these appeared as mere pinpoints of light. Voyager revealed them as real worlds with actual, albeit bizarre, geology. Years of speculation were dispelled in a relative moment, reminding me of the Prophet Joseph Smith’s state- ment, “Could you gaze into heaven five minutes, you would know more than you would by reading all that was written on the subject” (History I have come full of the Church, 6:50). I have come full circle, believing today that science is an important source of truth. -
The Critique of the Principle of Uniformitarianism and the Analysis
The Critique ofthe Principle ofUniformitarianism and the Analysis of High School Earth Science Textbooks Ho Jang Song and Hui Soo An Department ojEarth Science Education, Seoul National University Although uniformitarianism is widely recognized as the basic principle upon which the structure of historical geology has been erected, a closer investigation on the basis of present scientific knowledge and the philosophy of science reveals some of its invalid aspects. The concept of uniformitarianism wasdeveloped in a dual concept in Lyellian days. Substantive uniformitarianism (a testable theory of geologic change postulating uniformity of rates or material conditions) is false, ambiguous and stifling to hypotheses formation. Methodological uniformitarianism (a procedural principle asserting that former changes of the Earth's surface may be explained by reference to causes now in operation) belongs to the defmition of science and is not unique to geology. Moreover, it also has some methodological defects in forming bold and novel working hypotheses. Methodological uniformitarianism today should take the form of a much older and more general scientific principle: Occam's Razor, the principle of simplicity. Accordingly, substantive uniformitarianism, an incorrect theory, should be abandoned. Methodological uniformi tarianism, now a superfluous term, should be best confined to the historical roles in geology. In this connection, the presentation of uniformitarianism in high school textbooks was analyzed. It was revealed that text books were riddled with false and misleading statements as to what uniformi tarianism means. Since uniformitarianism, as presented in many textbooks, is in direct contradiction to the philosophy of Inquiry learning, it is important to rethink the direction of uniformitarianism presentation in Earth Science curriculum development. -
Contrastive Empiricism
Elliott Sober Contrastive Empiricism I Despite what Hegel may have said, syntheses have not been very successful in philosophical theorizing. Typically, what happens when you combine a thesis and an antithesis is that you get a mishmash, or maybe just a contradiction. For example, in the philosophy of mathematics, formalism says that mathematical truths are true in virtue of the way we manipulate symbols. Mathematical Platonism, on the other hand, holds that mathematical statements are made true by abstract objects that exist outside of space and time. What would a synthesis of these positions look like? Marks on paper are one thing, Platonic forms an other. Compromise may be a good idea in politics, but it looks like a bad one in philosophy. With some trepidation, I propose in this paper to go against this sound advice. Realism and empiricism have always been contradictory tendencies in the philos ophy of science. The view I will sketch is a synthesis, which I call Contrastive Empiricism. Realism and empiricism are incompatible, so a synthesis that merely conjoined them would be a contradiction. Rather, I propose to isolate important elements in each and show that they combine harmoniously. I will leave behind what I regard as confusions and excesses. The result, I hope, will be neither con tradiction nor mishmash. II Empiricism is fundamentally a thesis about experience. It has two parts. First, there is the idea that experience is necessary. Second, there is the thesis that ex perience suffices. Necessary and sufficient for what? Usually this blank is filled in with something like: knowledge of the world outside the mind. -
Popper and Kuhn: Where They Clash, How They Compliment Each Other, and Drawing Conclusions
Popper and Kuhn: Where they Clash, How They Compliment Each Other, and Drawing Conclusions It has been said that the epistemological premises of Thomas Kuhn and Karl Popper have every reason to negate one another. For the last half century, these men have had to withstand the onslaught of intellectual and ideological attacks for their claims of scientific development and evolution. Popper, a follower of Charles Pierce, developed his unique theory of falsification as a form of natural selection in the scientific sphere. Kuhn, a graduate student during Popper‟s time, formulated his own ideas about science as a social development defined by the presence or absence of a paradigm. Pat Hutcheon in her essay “Popper and Kuhn on the Evolution of Science” lays out an argument for the “promising complimentarity” the science community can gain from the comparison of these two men‟s claims. Hutcheon she is able to identify specific instances of similarity, undeniable differentiation, as well as areas of “promising complimentarity” between Popper and Kuhn. In an analysis of a 1965 debate between Popper and Kuhn sponsored by Imre Lakatos, M. G. Narasimhan outlines just how different the two philosophers are. Hutcheon and Narasimhan share an understanding of the contrasting views between Kuhn and Popper however, Hutcheon‟s argument for the agreeability of their theories is overlooked by Narasimhan and what undercuts his analysis. Thomas Kuhn and Karl Popper contributed valuable insights about the “nature of science and the way in which scientific knowledge evolves (Hutcheon 1).” Generally speaking, a theory‟s “unfitness” and falsification, Popper‟s and Kuhn‟s ideas, respectively, share a common perspective on the growth of scientific knowledge. -
1 1 Catastrophism, Uniformitarianism, and a Scientific
1 Catastrophism, Uniformitarianism, and a Scientific Realism Debate That Makes a Difference P. Kyle Stanford ([email protected]) Department of Logic and Philosophy of Science UC Irvine Abstract Some scientific realists suggest that scientific communities have improved in their ability to discover alternative theoretical possibilities and that the problem of unconceived alternatives therefore poses a less significant threat to contemporary scientific communities than it did to their historical predecessors. I first argue that the most profound and fundamental historical transformations of the scientific enterprise have actually increased rather than decreased our vulnerability to the problem. I then argue that whether we are troubled by even the prospect of increasing theoretical conservatism in science should depend on the position we occupy in the ongoing debate concerning scientific realism itself. Acknowledgements I would like to acknowledge useful discussions concerning the material in this paper with Kevin Zollman, Penelope Maddy, Jeff Barrett, Pat Forber, Peter Godfrey-Smith, Steve Shapin, Fred Kronz, John Norton, Michael Weisberg, Jane Maienschein, Julia Bursten, Carole Lee, and Arash Pessian, as well as audiences at the Durham University Conference on Unconceived Alternatives and Scientific Realism, the University of Vienna’s (Un)Conceived Alternatives Symposium, the University of Pittsburgh’s Conference on Choosing the Future of Science, Lingnan University’s ‘Science: The Real Thing?’ Conference, the American Association for the Advancement of Science, Cambridge University, the University of Vienna, the University of Pennsylvania, UC San Diego, the University of Washington, the University of Western Ontario, the Pittsburgh Center for the Philosophy of Science, Washington University in St. Louis, Bloomsburg University, Indiana University, the Universidad Nacional Autónoma de México, and the Australian National University. -
1 Carnap, Kuhn , and the History of Science J.C. Pinto De Oliveira IFCH
1 Carnap, Kuhn , and the history of science J.C. Pinto de Oliveira IFCH - Department of Philosophy State University of Campinas - Brazil [email protected] Abstract The purpose of this article is to respond to Thomas Uebel´s criticisms of my comments regarding the current revisionism of Carnap´s work and its relations to Kuhn. I begin by pointing out some misunderstandings in the interpretation of my article. I then discuss some aspects related to Carnap´s view of the history of science. First, I emphasize that it was not due to a supposed affinity between Kuhn´s conceptions and those of logical positivism that Kuhn was invited to write the monograph on the history of science for the Encyclopedia. Three other authors had been invited first, including George Sarton whose conception was entirely different from Kuhn´s. In addition, I try to show that Carnap attributes little importance to history of science. He seldom refers to it and, when he does, he clearly defends (like Sarton) a Whig or an “old” historiography of science, to which Kuhn opposes his “new historiography of science”. It is argued that this raises serious difficulties for those, like Uebel, who hold the view that Carnap includes the historical or the social within the rational. Keywords: Carnap, History of science, Kuhn, Logical positivism, New historiography of science, Philosophy of science, Revisionism, Sarton 1. Introduction In his article “Carnap and Kuhn: On the Relation between the Logic of Science and the History of Science”, published in 2011 in the Journal for General Philosophy of Science, Thomas Uebel responds to my criticism of what I call the revisionism of the logical positivist work, particularly its thesis regarding the compatibility or intimate relation between the philosophies of science of Carnap and Kuhn. -
Catastrophism and Uniformitarianism: Logical Roots and Current Relevance in Geology
Downloaded from http://sp.lyellcollection.org/ by guest on September 29, 2021 Catastrophism and uniformitarianism" logical roots and current relevance in geology VICTOR R. BAKER Department of Hydrology and Water Resources, The University of Arizona, Tucson, AZ 85721-0011, USA Abstract, Catastrophism in the Earth sciences is rooted in the view that Earth signifies its causative processes via landforms, structures and rock. Processes of types, rates and magnitudes not presently in evidence may well be signified this way. Uniformitarianism, in contrast, is a regulative stipulation motivated by the presumed necessity that science achieves logical validity in what can be said (hypothesized) about the Earth. Regulative principles, including simplicity, actualism and gradualism, are imposed a priori to insure valid inductive reasoning. This distinction lies at the heart of the catastrophist versus uniformitarian debates in the early nine- teenth century and it continues to influence portions of the current scientific program. Uniform- itarianism, as introduced by Charles Lyell in 1830, is specifically tied to an early nineteenth century view of inductive inference. Catastrophism involves a completely different form of inference in which hypotheses are generated retroductively. This latter form of logical inference remains relevant to modern science, while the outmoded notions of induction that warranted the doctrine of uniformitarianism were long ago shown to be overly restrictive in scientific practice. The latter should be relegated solely to historical interest in the progress of ideas. On 4 July 1997, the Mars Pathfinder spacecraft Antarctic ice, was interpreted as showing various made a highly successful landing in the Ares Vallis indicators of possible relic biogenic activity region of Mars. -
1 Phil. 4400 Notes #1: the Problem of Induction I. Basic Concepts
Phil. 4400 Notes #1: The problem of induction I. Basic concepts: The problem of induction: • Philosophical problem concerning the justification of induction. • Due to David Hume (1748). Induction: A form of reasoning in which a) the premises say something about a certain group of objects (typically, observed objects) b) the conclusion generalizes from the premises: says the same thing about a wider class of objects, or about further objects of the same kind (typically, the unobserved objects of the same kind). • Examples: All observed ravens so far have been The sun has risen every day for the last 300 black. years. So (probably) all ravens are black. So (probably) the sun will rise tomorrow. Non-demonstrative (non-deductive) reasoning: • Reasoning that is not deductive. • A form of reasoning in which the premises are supposed to render the conclusion more probable (but not to entail the conclusion). Cogent vs. Valid & Confirm vs. Entail : ‘Cogent’ arguments have premises that confirm (render probable) their conclusions. ‘Valid’ arguments have premises that entail their conclusions. The importance of induction: • All scientific knowledge, and almost all knowledge depends on induction. • The problem had a great influence on Popper and other philosophers of science. Inductive skepticism: Philosophical thesis that induction provides no justification for ( no reason to believe) its conclusions. II. An argument for inductive skepticism 1. There are (at most) 3 kinds of knowledge/justified belief: a. Observations b. A priori knowledge c. Conclusions based on induction 2. All inductive reasoning presupposes the “Inductive Principle” (a.k.a. the “uniformity principle”): “The course of nature is uniform”, “The future will resemble the past”, “Unobserved objects will probably be similar to observed objects” 3. -
Kuhn's Philosophy of Science Liberal Arts Honors Program
Providence College DigitalCommons@Providence Spring 2013, Kuhn's Philosophy of Science Liberal Arts Honors Program Spring 2013 Syllabus: Kuhn's Philosophy of Science Joseph Torchia Providence College Follow this and additional works at: https://digitalcommons.providence.edu/kuhn_2013 Part of the Philosophy Commons Torchia, Joseph, "Syllabus: Kuhn's Philosophy of Science" (2013). Spring 2013, Kuhn's Philosophy of Science. 2. https://digitalcommons.providence.edu/kuhn_2013/2 This Article is brought to you for free and open access by the Liberal Arts Honors Program at DigitalCommons@Providence. It has been accepted for inclusion in Spring 2013, Kuhn's Philosophy of Science by an authorized administrator of DigitalCommons@Providence. For more information, please contact [email protected]. Providence College Department of Philosophy 1 "Let us then assume that crises are a necessary precondition for the emergence of novel theories and ask next how scientists respond to their existence. Part of the answer, as obvious as it is important, can be discovered by noting first what scientists never do when confronted by even severe and prolonged anomalies. Though they may begin to lose faith and then to consider alternatives, they do not renounce the paradigm that has led them into crisis. Once it has achieved the status of a paradigm, a scientific theory is declared invalid only if an alternate candidate is available to take its place." Thomas Kuhn, The Structure of Scientific Revolutions Introductory Remarks Welcome to your Honors Colloquium "Kuhn's Philosophy of Science". The following pages provide important information regarding its organization and objectives, basic requirements, attendance policy, a thematic outline, and a tentative schedule of readings. -
“Thomas Kuhn.” in “The Stanford Encyclopedia of Philosophy”, Edward Zalta, Ed
Thomas Kuhn Reference: Bird, Alexander, 2005: “Thomas Kuhn.” In “The Stanford Encyclopedia of Philosophy”, Edward Zalta, Ed. (online at plato.stanford.edu/archives/spr2005/entries/thomas-kuhn ) Thomas Samuel Kuhn (1922-1996) became the one of most influential philosophers of science of the twentieth century, perhaps the most influential—his The Structure of Scientific Revolutions is one of the most cited academic books of all time. His contribution to the philosophy science marked not only a break with several key positivist doctrines but also inaugurated a new style of philosophy of science that brought it much closer to the history of science. His account of the development of science held that science enjoys periods of stable growth punctuated by revisionary revolutions, to which he added the controversial ‘incommensurability thesis’, that theories from differing periods suffer from certain deep kinds of failure of comparability. • 1. Life and Career • 2. The Development of Science • 3. The Paradigm Concept • 4. Perception, World-Change, and Incommensurability _ 4.1 Methodological Incommensurability _ 4.2 Perception, Observational Incommensurability, and World-Change _ 4.3 Kuhn's Early Semantic Incommensurability Thesis _ 4.4 Kuhn's Later Semantic Incommensurability Thesis • 5. History of Science • 6. Criticism and Influence _ 6.1 Scientific Change _ 6.2 Incommensurability _ 6.3 Kuhn and Social Science _ 6.4 Assessment • Bibliography • Other Internet Resources • Related Entries 1. Life and Career Thomas Kuhn's academic life started in physics. He then switched to history of science, and as his career developed he moved over to philosophy of science, although retaining a strong interest in the history of physics.