Inactivate the C5a Receptor Neutrophil Serine Proteases

Total Page:16

File Type:pdf, Size:1020Kb

Inactivate the C5a Receptor Neutrophil Serine Proteases Mechanism of Neutrophil Dysfunction: Neutrophil Serine Proteases Cleave and Inactivate the C5a Receptor This information is current as Carmen W. van den Berg, Denise V. Tambourgi, Howard of September 27, 2021. W. Clark, S. Julie Hoong, O. Brad Spiller and Eamon P. McGreal J Immunol 2014; 192:1787-1795; Prepublished online 20 January 2014; doi: 10.4049/jimmunol.1301920 Downloaded from http://www.jimmunol.org/content/192/4/1787 References This article cites 44 articles, 15 of which you can access for free at: http://www.jimmunol.org/content/192/4/1787.full#ref-list-1 http://www.jimmunol.org/ Why The JI? Submit online. • Rapid Reviews! 30 days* from submission to initial decision • No Triage! Every submission reviewed by practicing scientists by guest on September 27, 2021 • Fast Publication! 4 weeks from acceptance to publication *average Subscription Information about subscribing to The Journal of Immunology is online at: http://jimmunol.org/subscription Permissions Submit copyright permission requests at: http://www.aai.org/About/Publications/JI/copyright.html Email Alerts Receive free email-alerts when new articles cite this article. Sign up at: http://jimmunol.org/alerts The Journal of Immunology is published twice each month by The American Association of Immunologists, Inc., 1451 Rockville Pike, Suite 650, Rockville, MD 20852 Copyright © 2014 by The American Association of Immunologists, Inc. All rights reserved. Print ISSN: 0022-1767 Online ISSN: 1550-6606. The Journal of Immunology Mechanism of Neutrophil Dysfunction: Neutrophil Serine Proteases Cleave and Inactivate the C5a Receptor Carmen W. van den Berg,* Denise V. Tambourgi,† Howard W. Clark,‡ S. Julie Hoong,* O. Brad Spiller,* and Eamon P. McGreal* Neutrophil dysfunction, resulting in inefficient bacterial clearance, is a feature of several serious medical conditions, including cystic fibrosis (CF) and sepsis. Poorly controlled neutrophil serine protease (NSP) activity and complement activation have been impli- cated in this phenomenon. The capacity for excess NSP secretion and complement activation to influence the expression and function of the important neutrophil-activating receptor C5aR was investigated. Purified NSPs cathepsin G (CG), neutrophil elastase (NE), and proteinase 3 cleaved C5aR to a 26- to 27-kDa membrane-bound fragment, thereby inactivating its C5a-induced signaling ability. In a supernatant transfer assay, NSPs released from neutrophils in response to C5a induced the cleavage of the C5aR on unstimu- lated cells. Stimulation of myeolomonocytic U937 cells and purified neutrophils with C5a resulted in downregulation of the C5aR on Downloaded from these cells, which, in the case of U937 cells, was largely caused by NSP-mediated cleavage of C5aR, but in the case of neutrophils, intracellular degradation was likely the main mediator in addition to a small role for NSPs. CG and NE in bronchoalveolar lavage fluid from CF patients both contributed to C5aR cleavage. We propose two converging models for C5a- and NSP-mediated neu- trophil dysfunction whereby C5aR cleavage is induced by NSPs, secreted in response to: 1) excess C5a generation or other stimuli; or 2) necrosis. The consequent impairment of C5aR activity contributes to suboptimal local neutrophil priming and bacterial clear- ance. NSP inhibitors with specificity for both CG and NE may aid the treatment of pathologies associated with neutrophil dys- http://www.jimmunol.org/ function including sepsis and CF. The Journal of Immunology, 2014, 192: 1787–1795. ell-regulated neutrophil activity is critical for the ef- IL-6, CXCR1, and soluble IL-6R (4, 5)] and innate immune rec- ficient clearance of infectious microbes; however, ognition molecules including the complement receptor (CR) for W uncontrolled neutrophil activity also contributes to C3b (CR1), its ligand C3bi (6, 7), and C-type lectins including neutrophil dysfunction, characterized by impaired clearance of surfactant proteins A and D (8, 9). NSP-mediated loss of CXCR1 pathogens, leading to chronic infection or death. Secreted actively (4) and CR1 (6) on neutrophils results in reduced phagocytosis (as a consequence of cell activation) or passively (as a consequence of Pseudomonas aeruginosa, which may partly explain the high by guest on September 27, 2021 of necrotic cell death), neutrophil serine proteases (NSPs; e.g., prevalence of chronic infection with P. aeruginosa and other neutrophil elastase [NE], cathepsin G [CG], and proteinase 3 [PR3]) bacteria in individuals with neutrophil-dominated airway disease, are major contributors to neutrophil dysfunction. NE is considered including CF. a major contributor to a range of pulmonary pathologies, includ- The importance of the complement system in clearing bacterial ing cystic fibrosis (CF) (1–3), and is an important therapeutic infection is well recognized. C3b opsonizes bacteria for phago- target (3). Under well-controlled conditions in otherwise healthy cytosis via CRs CR1 and CR3. C5a is a powerful chemoattractant individuals, NSPs contribute to the effective control of infection. for neutrophils, but also enhances C3b-induced phagocytosis However, excessive and poorly regulated NSP activity contributes and intracellular killing of bacteria (10, 11). C5a mediates its ef- to disease in a number of ways (3). In addition to their direct fects by interaction with the C5a receptor (C5aR/CD88), a seven- elastolytic activity toward lung tissue, NSPs also have the capacity transmembrane G-protein–coupled receptor (GPCR), which is highly to substantially modulate local inflammatory responses through expressed on cells of myeloid origin (12). Both C5-deficient proteolysis of cytokines and chemokines and their receptors [e.g., and C5aR-knockout mice exhibit impaired lung clearance of P. aeruginosa (13–15). Interestingly, knockout of C5aR reveals a critical role for this receptor, because clearance and control of *Institute of Molecular and Experimental Medicine, School of Medicine, Cardiff University, Cardiff CF14 4XN, United Kingdom; †Immunochemistry Laboratory, bacterial infection and mortality from P. aeruginosa infection is Butantan Institute, Sa˜o Paulo 05503-900, Brazil; and ‡Department of Child Health, significantly elevated in these mice, despite increased neutrophil Faculty of Medicine, University of Southampton, Southampton SO17 1BJ, United Kingdom influx. Blocking C5aR also inhibits phagocytosis and intracellular Escherichia coli Received for publication July 18, 2013. Accepted for publication December 2, 2013. killing of by human neutrophils (10). The im- portance of the C5a/C5aR system to antimicrobial defense is S.J.H. received a Wales Heart Research Institute, Cardiff University, professional training year scholarship. underlined by the elaborate strategies evolved by bacteria to avoid Address correspondence and reprint requests to Dr. Carmen W. van den Berg, Insti- the complement system, including blockade of C5a generation tute of Molecular and Experimental Medicine, School of Medicine, Cardiff Univer- and C5aR function (16). However, excess complement activation sity, Cardiff CF14 4XN, U.K. E-mail address: [email protected] and C5a generation is also associated with numerous patholo- Abbreviations used in this article: BALF, bronchoalveolar lavage fluid; CF, cystic gies, including ’09 and Unnewher ‘13 (11, 12). Paradoxically, fibrosis; CG, cathepsin G; CR, complement receptor; CytoD, cytochalasin D; GPCR, G-protein–coupled receptor; KHB, Krebs/HEPES/BSA; NE, neutrophil elastase; excess C5a has been observed to impair neutrophil function NSP, neutrophil serine protease; PMN, polymorphonuclear neutrophil; PR3, protein- and is associated with impaired complement-dependent phago- ase 3. cytosis and reduced C5aR expression both in vivo in animal Copyright Ó 2014 by The American Association of Immunologists, Inc. 0022-1767/14/$16.00 models and ex vivo in cells from human sepsis patients (17–21) www.jimmunol.org/cgi/doi/10.4049/jimmunol.1301920 1788 NEUTROPHIL DYSFUNCTION CAUSED BY NSP CLEAVAGE OF C5aR in whom relative expression of C5aR is suggested to be of prog- and blotted onto Hybond Nitrocellulose (GE Healthcare UK, Little Chalfont, nostic significance (11). U.K.). C5aR was detected as described (22) using mAb S5/1 or polyclonal The mechanisms of C5a-induced neutrophil dysfunction and anti-C5aR. Precision Plus All Blue standards (Bio-Rad, Hemel Hempstead, U.K.) were used to calculate the molecular weights of the bands. regulation of C5aR expression have not yet been elucidated. NSPs have been shown to proteolytically reduce the expression of several Flow cytometry cell-surface molecules involved in immunity, including CXCR1 Cell-surface C5aR expression was detected by flow cytometry as described (IL-8RA), CR1, CD16, CD43, and TNFRII, but their impact on (22) using mAb S5/1, and fluorescence was measured on an Accuri flow C5aR expression has not been investigated. Proteolytic cleavage cytometer (BD Biosciences). Results are expressed as average of mean of 6 and inactivation of C5aR has been demonstrated by a variety of arbitrary fluorescent intensity SD of experiments carried out in triplicate. endogenous and exogenous proteases, including an endogenous Calcium flux measurements metalloprotease, activated by the action of Loxosceles spider venom Cells (at 107c/ml) were loaded with 2 mM fura 2-AM for 30 min at room sphingomyelinase D, a serine protease from Porphyromonas gin- temperature. Cells were washed and resuspended in KHB buffer and incu- givalis, and a metalloprotease from venom
Recommended publications
  • Mechanisms Governing Anaphylaxis: Inflammatory Cells, Mediators
    International Journal of Molecular Sciences Review Mechanisms Governing Anaphylaxis: Inflammatory Cells, Mediators, Endothelial Gap Junctions and Beyond Samantha Minh Thy Nguyen 1, Chase Preston Rupprecht 2, Aaisha Haque 3, Debendra Pattanaik 4, Joseph Yusin 5 and Guha Krishnaswamy 1,3,* 1 Department of Medicine, Wake Forest School of Medicine, Winston-Salem, NC 27106, USA; [email protected] 2 The Rowan School of Osteopathic Medicine, Stratford, NJ 08084, USA; [email protected] 3 The Bill Hefner VA Medical Center, Salisbury, NC 27106, USA; [email protected] 4 Division of Allergy and Immunology, UT Memphis College of Medicine, Memphis, TN 38103, USA; [email protected] 5 The Division of Allergy and Immunology, Greater Los Angeles VA Medical Center, Los Angeles, CA 90011, USA; [email protected] * Correspondence: [email protected] Abstract: Anaphylaxis is a severe, acute, life-threatening multisystem allergic reaction resulting from the release of a plethora of mediators from mast cells culminating in serious respiratory, cardiovascular and mucocutaneous manifestations that can be fatal. Medications, foods, latex, exercise, hormones (progesterone), and clonal mast cell disorders may be responsible. More recently, novel syndromes such as delayed reactions to red meat and hereditary alpha tryptasemia have been described. Anaphylaxis manifests as sudden onset urticaria, pruritus, flushing, erythema, Citation: Nguyen, S.M.T.; Rupprecht, angioedema (lips, tongue, airways, periphery), myocardial dysfunction (hypovolemia, distributive
    [Show full text]
  • In Sickness and in Health: the Immunological Roles of the Lymphatic System
    International Journal of Molecular Sciences Review In Sickness and in Health: The Immunological Roles of the Lymphatic System Louise A. Johnson MRC Human Immunology Unit, MRC Weatherall Institute of Molecular Medicine, University of Oxford, John Radcliffe Hospital, Headington, Oxford OX3 9DS, UK; [email protected] Abstract: The lymphatic system plays crucial roles in immunity far beyond those of simply providing conduits for leukocytes and antigens in lymph fluid. Endothelial cells within this vasculature are dis- tinct and highly specialized to perform roles based upon their location. Afferent lymphatic capillaries have unique intercellular junctions for efficient uptake of fluid and macromolecules, while expressing chemotactic and adhesion molecules that permit selective trafficking of specific immune cell subsets. Moreover, in response to events within peripheral tissue such as inflammation or infection, soluble factors from lymphatic endothelial cells exert “remote control” to modulate leukocyte migration across high endothelial venules from the blood to lymph nodes draining the tissue. These immune hubs are highly organized and perfectly arrayed to survey antigens from peripheral tissue while optimizing encounters between antigen-presenting cells and cognate lymphocytes. Furthermore, subsets of lymphatic endothelial cells exhibit differences in gene expression relating to specific func- tions and locality within the lymph node, facilitating both innate and acquired immune responses through antigen presentation, lymph node remodeling and regulation of leukocyte entry and exit. This review details the immune cell subsets in afferent and efferent lymph, and explores the mech- anisms by which endothelial cells of the lymphatic system regulate such trafficking, for immune surveillance and tolerance during steady-state conditions, and in response to infection, acute and Citation: Johnson, L.A.
    [Show full text]
  • The CXCR4 Antagonist AMD3100 Impairs Survival of Human AML Cells and Induces Their Differentiation
    Leukemia (2008) 22, 2151–2158 & 2008 Macmillan Publishers Limited All rights reserved 0887-6924/08 $32.00 www.nature.com/leu ORIGINAL ARTICLE The CXCR4 antagonist AMD3100 impairs survival of human AML cells and induces their differentiation S Tavor1, M Eisenbach1, J Jacob-Hirsch2, T Golan1, I Petit1, K BenZion1, S Kay1, S Baron1, N Amariglio2, V Deutsch1, E Naparstek1 and G Rechavi2 1Institute of Hematology and Bone Marrow Transplantation, Sourasky Medical Center, Tel Aviv, Israel and 2Cancer Research Center, Sheba Medical Center, Tel-Hashomer, and Sackler School of Medicine, Tel Aviv University, Tel Aviv, Israel The chemokine stromal cell-derived factor-1 (SDF-1) and its NOD/SCID mice, homing and subsequent engraftment of human receptor, CXCR4, participate in the retention of acute myelo- normal or AML stem cells are dependent on the expression of cell blastic leukemia (AML) cells within the bone marrow micro- 9–12 environment and their release into the circulation. AML cells surface CXCR4 and SDF-1 produced within the murine. In also constitutively express SDF-1-dependent elastase, which addition to controlling cell motility, SDF-1 regulates cell regulates their migration and proliferation. To study the proliferation, induces cell cycle progression and acts as a survival molecular events and genes regulated by the SDF-1/CXCR4 factor for normal human stem cells and AML cells.13–16 axis and elastase in AML cells, we examined gene expression CXCR4 blockage in AML cells, using the polypeptide profiles of the AML cell line, U937, under treatment with a RCP168, enhanced chemotherapy-induced apoptosis in vitro.17 neutralizing anti-CXCR4 antibody or elastase inhibitor, as compared with non-treated cells, using DNA microarray Most importantly, high CXCR4 expression level in leukemic technology.
    [Show full text]
  • How Relevant Are Bone Marrow-Derived Mast Cells (Bmmcs) As Models for Tissue Mast Cells? a Comparative Transcriptome Analysis of Bmmcs and Peritoneal Mast Cells
    cells Article How Relevant Are Bone Marrow-Derived Mast Cells (BMMCs) as Models for Tissue Mast Cells? A Comparative Transcriptome Analysis of BMMCs and Peritoneal Mast Cells 1, 2, 1 1 2,3 Srinivas Akula y , Aida Paivandy y, Zhirong Fu , Michael Thorpe , Gunnar Pejler and Lars Hellman 1,* 1 Department of Cell and Molecular Biology, Uppsala University, The Biomedical Center, Box 596, SE-751 24 Uppsala, Sweden; [email protected] (S.A.); [email protected] (Z.F.); [email protected] (M.T.) 2 Department of Medical Biochemistry and Microbiology, Uppsala University, The Biomedical Center, Box 589, SE-751 23 Uppsala, Sweden; [email protected] (A.P.); [email protected] (G.P.) 3 Department of Anatomy, Physiology and Biochemistry, Swedish University of Agricultural Sciences, Box 7011, SE-75007 Uppsala, Sweden * Correspondence: [email protected]; Tel.: +46-(0)18-471-4532; Fax: +46-(0)18-471-4862 These authors contributed equally to this work. y Received: 29 July 2020; Accepted: 16 September 2020; Published: 17 September 2020 Abstract: Bone marrow-derived mast cells (BMMCs) are often used as a model system for studies of the role of MCs in health and disease. These cells are relatively easy to obtain from total bone marrow cells by culturing under the influence of IL-3 or stem cell factor (SCF). After 3 to 4 weeks in culture, a nearly homogenous cell population of toluidine blue-positive cells are often obtained. However, the question is how relevant equivalents these cells are to normal tissue MCs. By comparing the total transcriptome of purified peritoneal MCs with BMMCs, here we obtained a comparative view of these cells.
    [Show full text]
  • IL-33 Is Processed Into Mature Bioactive Forms by Neutrophil Elastase and Cathepsin G
    IL-33 is processed into mature bioactive forms by neutrophil elastase and cathepsin G Emma Lefrançais, Stephane Roga, Violette Gautier, Anne Gonzalez-de-Peredo, Bernard Monsarrat, Jean-Philippe Girard1,2, and Corinne Cayrol1,2 Centre National de la Recherche Scientifique, Institut de Pharmacologie et de Biologie Structurale, F-31077 Toulouse, France; Université de Toulouse, Université Paul Sabatier, Institut de Pharmacologie et de Biologie Structurale, F-31077 Toulouse, France Edited* by Charles A. Dinarello, University of Colorado Denver, Aurora, CO, and approved December 19, 2011 (received for review October 3, 2011) Interleukin-33 (IL-33) (NF-HEV) is a chromatin-associated nuclear activity (4). However, we (23) and others (24–26) demonstrated cytokine from the IL-1 family, which has been linked to important that full-length IL-33 is biologically active and that processing of diseases, including asthma, rheumatoid arthritis, ulcerative colitis, IL-33 by caspases results in its inactivation, rather than its activa- and cardiovascular diseases. IL-33 signals through the ST2 receptor tion. Further analyses revealed that IL-33 is constitutively and drives cytokine production in type 2 innate lymphoid cells (ILCs) expressed to high levels in the nuclei of endothelial and epithelial (natural helper cells, nuocytes), T-helper (Th)2 lymphocytes, mast cells in vivo (27) and that it can be released in the extracellular cells, basophils, eosinophils, invariant natural killer T (iNKT), and space after cellular damage (23, 24). IL-33 was, thus, proposed (23, natural killer (NK) cells. We and others recently reported that, unlike 24, 27) to function as an endogenous danger signal or alarmin, IL-1β and IL-18, full-length IL-33 is biologically active independently similar to IL-1α and high-mobility group box 1 protein (HMGB1) of caspase-1 cleavage and that processing by caspases results in IL-33 (28–32), to alert cells of the innate immune system of tissue inactivation.
    [Show full text]
  • The Role of Serine Proteases and Antiproteases in the Cystic Fibrosis Lung
    The Role of Serine Proteases and Antiproteases in the Cystic Fibrosis Lung Twigg, M. S., Brockbank, S., Lowry, P., FitzGerald, S. P., Taggart, C., & Weldon, S. (2015). The Role of Serine Proteases and Antiproteases in the Cystic Fibrosis Lung. Mediators of Inflammation, 2015, [293053]. https://doi.org/10.1155/2015/293053 Published in: Mediators of Inflammation Document Version: Publisher's PDF, also known as Version of record Queen's University Belfast - Research Portal: Link to publication record in Queen's University Belfast Research Portal Publisher rights Copyright © 2015 The authors. This is an open access article published under a Creative Commons Attribution License (https://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution and reproduction in any medium, provided the author and source are cited. General rights Copyright for the publications made accessible via the Queen's University Belfast Research Portal is retained by the author(s) and / or other copyright owners and it is a condition of accessing these publications that users recognise and abide by the legal requirements associated with these rights. Take down policy The Research Portal is Queen's institutional repository that provides access to Queen's research output. Every effort has been made to ensure that content in the Research Portal does not infringe any person's rights, or applicable UK laws. If you discover content in the Research Portal that you believe breaches copyright or violates any law, please contact [email protected]. Download date:07. Oct. 2021 Hindawi Publishing Corporation Mediators of Inflammation Volume 2015, Article ID 293053, 10 pages http://dx.doi.org/10.1155/2015/293053 Review Article The Role of Serine Proteases and Antiproteases in the Cystic Fibrosis Lung Matthew S.
    [Show full text]
  • Hepatoma Cells and Human Monocytes DAVID H
    Proc. Nati. Acad. Sci. USA Vol. 87, pp. 3753-3757, May 1990 Cell Biology Identification of a serpin-enzyme complex receptor on human hepatoma cells and human monocytes DAVID H. PERLMUTTER*t*, GEORGE I. GLOVER§, MEHERYAR RIVETNA§, CHARLES S. SCHASTEEN§, AND ROBERT J. FALLON* Departments of *Pediatncs and tCell Biology and Physiology, Washington University School of Medicine, Saint Louis, MO 63110; and §Department of Biological Sciences, Monsanto Corporation, Chesterfield, MO Communicated by Emil R. Unanue, February 12, 1990 ABSTRACT Formation of the covalently stabilized com- inhibitor, heparin cofactor II (HC II), a2-antiplasmin, protein plex of a1-antitrypsin (a,-AT) with neutrophil elastase, the C inhibitor, plasminogen activator inhibitors I and II, and archetype of serine proteinase inhibitor serpin-enzyme com- protease nexins I and II (reviewed in ref. 4). Although there plexes, is associated with structural rearrangement of the is only 25-30o primary sequence homology among the a,-AT molecule and hydrolysis of a reactive-site peptide bond. members of this family, there is a much greater degree of An =4-kDa carboxyl-terminal cleavage fragment is generated. functional similarity and a similar mechanism ofaction. Each a1-AT-elastase complexes are biologically active, possessing serpin binds its target enzyme at a substrate-like region chemotactic activity and mediating increases in expression of within the carboxyl-terminal portion of the molecule. The the a,-AT gene in human monocytes and macrophages. This enzyme is inactivated as a covalently stabilized enzyme- suggested that structural rearrangement of the a,-AT mole- inhibitor complex is formed. During complex formation there cule, during formation of a complex with elastase, exposes a is also structural rearrangement of the inhibitor and hydrol- domain that is recognized by a specific cell surface receptor or ysis of the reactive-site peptide bond.
    [Show full text]
  • Mast Cell Secretory Granules: Armed for Battle
    REVIEWS Mast cell secretory granules: armed for battle Sara Wernersson and Gunnar Pejler Abstract | Mast cells are important effector cells of the immune system and recent studies show that they have immunomodulatory roles in diverse processes in both health and disease. Mast cells are distinguished by their high content of electron-dense secretory granules, which are filled with large amounts of preformed and pre-activated immunomodulatory compounds. When appropriately activated, mast cells undergo degranulation, a process by which these preformed granule compounds are rapidly released into the surroundings. In many cases, the effects that mast cells have on an immune response are closely associated with the biological actions of the granule compounds that they release, as exemplified by the recent studies showing that mast cell granule proteases account for many of the protective and detrimental effects of mast cells in various inflammatory settings. In this Review, we discuss the current knowledge of mast cell secretory granules. Tr y p ta s e s Mast cells are haematopoietic cells that arise from pluri- The secretory granules of mast cells are filled with a 1–3 Serine proteases that have potent precursors of the bone marrow . After egression large panel of preformed compounds (TABLE 1). When trypsin-like cleavage from the bone marrow, mast cell progenitors circu- mast cells are activated to degranulate, these com- specificities — that is, they late in the blood before they enter various tissues and pounds are released into the extracellular environment cleave peptide bonds on the develop into mature mast cells under the influence of and can have a marked effect on any physiological or carboxy-terminal side of arginine or lysine residues.
    [Show full text]
  • Correlation of Serpin–Protease Expression by Comparative Analysis of Real-Time PCR Profiling Data
    View metadata, citation and similar papers at core.ac.uk brought to you by CORE provided by Elsevier - Publisher Connector Genomics 88 (2006) 173–184 www.elsevier.com/locate/ygeno Correlation of serpin–protease expression by comparative analysis of real-time PCR profiling data Sunita Badola a, Heidi Spurling a, Keith Robison a, Eric R. Fedyk a, Gary A. Silverman b, ⁎ Jochen Strayle c, Rosana Kapeller a,1, Christopher A. Tsu a, a Millennium Pharmaceuticals, Inc., 40 Landsdowne Street, Cambridge, MA 02139, USA b Department of Pediatrics, University of Pittsburgh School of Medicine, Magee-Women’s Hospital, 300 Halket Street, Pittsburgh, PA 15213, USA c Bayer HealthCare AG, 42096 Wuppertal, Germany Received 2 December 2005; accepted 27 March 2006 Available online 18 May 2006 Abstract Imbalanced protease activity has long been recognized in the progression of disease states such as cancer and inflammation. Serpins, the largest family of endogenous protease inhibitors, target a wide variety of serine and cysteine proteases and play a role in a number of physiological and pathological states. The expression profiles of 20 serpins and 105 serine and cysteine proteases were determined across a panel of normal and diseased human tissues. In general, expression of serpins was highly restricted in both normal and diseased tissues, suggesting defined physiological roles for these protease inhibitors. A high correlation in expression for a particular serpin–protease pair in healthy tissues was often predictive of a biological interaction. The most striking finding was the dramatic change observed in the regulation of expression between proteases and their cognate inhibitors in diseased tissues.
    [Show full text]
  • ELASTASE INHIBITOR Characterization of the Human Elastase Inhibitor Molecule Associated with Monocytes, Macrophages, and Neutrophils
    ELASTASE INHIBITOR Characterization of the Human Elastase Inhibitor Molecule Associated with Monocytes, Macrophages, and Neutrophils By EILEEN REMOLD-O'DONNELL,*$S JON C . NIXON,* AND RICHARD M. ROSEII From *The Centerfor Blood Research ; the 1Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School; the SDivision of Immunology, the Children's Hospital; and the IIDepartment ofMedicine, New England Deaconess Hospital, Boston, Massachusetts 02115 Preservation of the integrity of local organ function requires a delicate balance ofthe activities ofphagocytic cell proteinases and the action of proteinase inhibitors. Loss of this balance may be a major causative factor in the pathogenesis of asthma, chronic bronchitis, emphysema, sarcoidosis, respiratory distress syndromes, arthritis, and certain skin diseases . Ultimately, to monitor and manipulate the proteinase- proteinase inhibitor balance of human phagocytes within a pharmacological context will require that the relevant molecules be identified and their interactions defined at the molecular level. Ofthe phagocytic cell proteinases, the quantitatively most important is the serine active site proteinase commonly called "neutrophil elastase." Neutrophil elastase is 218-amino acid glycosylated protein ofknown sequence (1) that is particularly abundant in human neutrophils (0.5% of total protein) and is also found in monocytes and macrophages (2-4). Neutrophil elastase is contained in granules and functions op- timally at neutral pH; its multiple documented activities all involve extracellular action (5, 6). Elastase cleaves extracellular matrix proteins such as elastin, pro- teoglycans, fibronectin, type III and type IV collagen (7-10), and certain soluble proteins (11). It is required by neutrophils for their migration through cell barriers in vitro (12, 13). The continuous action of elastase inhibitors in vivo is evident from the neutrophil turnover rate.
    [Show full text]
  • Cathepsin G and Its Role in Inflammation and Autoimmune Diseases
    Arch Rheumatol 2018;33(4):498-504 doi: 10.5606/ArchRheumatol.2018.6595 REVIEW Cathepsin G and Its Role in Inflammation and Autoimmune Diseases Siming GAO, Honglin ZHU, Xiaoxia ZUO, Hui LUO Department of Rheumatology, Xiangya Hospital, Hunan, China ABSTRACT Cathepsin G belongs to the neutrophil serine proteases family, known for its function in killing pathogens. Studies over the past several years indicate that cathepsin G has important effects on inflammation and immune reaction, and may be a key factor in the pathogenesis of some autoimmune diseases. In this article, we discuss the roles of cathepsin G in inflammation, immune reaction, and autoimmune diseases. To our knowledge, this is the first study providing important information about cathepsin G in the pathogenesis of autoimmune diseases and suggesting that cathepsin G may be a new biomarker or treatment target. Keywords: Autoimmune disease; cathepsin G; immune reaction; inflammation. Cathepsin G (CTSG) is a member of the serine two active forms of CTSG.9 Released CTSG can proteases family, which was first found in the evade its inhibitors, which exist in the extracellular azurophilic granules of neutrophil leukocytes space, by binding to cell membranes, forming and named in 1976.1,2 Then, CTSG was sequestered microenvironments, binding to its detected in other myeloid cells, such as B cells, substrates tightly, and inactivating its inhibitors.10 primary human monocytes, myeloid dendritic Cathepsin G has many functions. It can clear cells, plasmacytoid dendritic cells, and murine pathogens, regulate inflammation by modifying the 3 microglia. Recently, studies proved that CTSG chemokines, cytokines, cell surface receptors,11-14 also existed in neutrophil traps and human urine and C components,1 control the blood pressure, 4,5 exosomes.
    [Show full text]
  • It Was Hypothesized That Hybrid Synthetic/Adenoviral Nanoparticles
    Electronic Supplementary Material (ESI) for Nanoscale. This journal is © The Royal Society of Chemistry 2020 SUPPORTING INFORMATION Lana Papafilippou,a Andrew Claxton,b Paul Dark,b,c Kostas Kostarelos*a,d and Marilena Hadjidemetriou*a aNanomedicine Lab, Faculty of Biology, Medicine & Health, AV Hill Building, The University of Manchester, Manchester, M13 9PT, UK bCentre for Acute Care Trauma, Manchester Academic Health Science Centre, Health Innovation Manchester, Division of Critical Care, Salford Royal NHS Foundation Trust, Greater Manchester, UK cDivision of Infection, Immunity and Respiratory Medicine, Faculty of Biology, Medicine & Health, AV Hill Building, The University of Manchester, Manchester, M13 9PT, UK. d Catalan Institute of Nanoscience and Nanotechnology (ICN2), Campus UAB, Bellaterra, 08193 Barcelona, Spain. _______________________________________ * Correspondence should be addressed to: [email protected],uk; [email protected] 1 Supporting Figure 1 Figure S1: Physicochemical characterization of corona-coated Amphotericin B-intercalated liposomes (AmBisome®). Mean hydrodynamic diameter (nm) and ζ-potential (mV) distributions are depicted for corona-coated liposomal formulation AmBisome® recovered post-incubation with human plasma from 12 healthy volunteers, 7 SIRS patients and 12 sepsis patients. 2 Supporting Figure 2 Figure S2: Proteomic analysis of corona profiles. (A) Heatmap of normalized abundance values of all corona proteins identified in healthy controls, SIRS patients and sepsis patients, as identified by LC-MS/MS (Progenesis QI). Protein columns are sorted according to the abundance values (from highest to lowest) of the first sample. The list of proteins shown in the heatmap, their respective accession numbers and their mean normalized abundance values are shown in Table S5; (B) Volcano plot represents the potential protein biomarkers differentially abundant between healthy donors and sepsis patients (n=135) identified in corona samples.
    [Show full text]