Increased Neutrophil Elastase and Proteinase 3 and Augmented Netosis Are Closely Associated with B-Cell Autoimmunity in Patients with Type 1 Diabetes

Total Page:16

File Type:pdf, Size:1020Kb

Increased Neutrophil Elastase and Proteinase 3 and Augmented Netosis Are Closely Associated with B-Cell Autoimmunity in Patients with Type 1 Diabetes Diabetes Volume 63, December 2014 4239 Yudong Wang,1,2 Yang Xiao,3 Ling Zhong,1,2 Dewei Ye,1,2,4 Jialiang Zhang,1,2 Yiting Tu,3 Stefan R. Bornstein,5 Zhiguang Zhou,3 Karen S.L. Lam,1,2 and Aimin Xu1,2,4 Increased Neutrophil Elastase and Proteinase 3 and Augmented NETosis Are Closely Associated With b-Cell Autoimmunity in Patients With Type 1 Diabetes Diabetes 2014;63:4239–4248 | DOI: 10.2337/db14-0480 IMMUNOLOGY AND TRANSPLANTATION Type 1 diabetes (T1D) is an autoimmune disease resulting serine proteases activities in the pathogenesis of b-cell au- from the self-destruction of insulin-producing b-cells. Re- toimmunity and also suggest that circulating NE and PR3 duced neutrophil counts have been observed in patients may serve as sensitive biomarkers for the diagnosis of T1D. with T1D. However, the pathological roles of neutrophils in the development of T1D remain unknown. Here we show that circulating protein levels and enzymatic activities of The global incidence of type 1 diabetes (T1D), an autoim- neutrophil elastase (NE) and proteinase 3 (PR3), both of mune disease caused by an interactive combination of which are neutrophil serine proteases stored in neutrophil genetic and environmental factors, has more than doubled primary granules, were markedly elevated in patients with in the past two decades (1,2). Although the triggering fac- T1D, especially those with disease duration of less than tors that are involved in the initiation of T1D remain un- 1 year. Furthermore, circulating NE and PR3 levels in- clear, it is widely accepted that organ-specific autoimmune creased progressively with the increase of the positive destruction of the insulin-producing b-cells in the pancre- numbers and titers of the autoantibodies against b-cell atic islets of Langerhans is mediated primarily by autoreac- antigens. An obvious elevation of NE and PR3 was detected tive T cells, which is accompanied by the production of even in those autoantibody-negative patients. Increased different autoantibodies to b-cell antigens, including glutamic NE and PR3 in T1D patients are closely associated with acid decarboxylase autoantibody (GADA), insulinoma- elevated formation of neutrophil extracellular traps. associated protein 2 autoantibody (IA2A), and zinc transporter-8 By contrast, the circulating levels of a1-antitrypsin, an autoantibody (ZnT8A) (3–5). These autoantibodies have endogenous inhibitor of neutrophil serine proteases, are been proven to be instrumental for the prediction and di- decreased in T1D patients. These findings support an early agnosis of T1D but are deemed not to be pathogenic (6,7). role of neutrophil activation and augmented neutrophil A number of other immune cells, including dendritic cells, 1State Key Laboratory of Pharmaceutical Biotechnology, The University of Hong Received 24 March 2014 and accepted 28 July 2014. Kong, Hong Kong, China This article contains Supplementary Data online at http://diabetes 2 Department of Medicine, The University of Hong Kong, Hong Kong, China .diabetesjournals.org/lookup/suppl/doi:10.2337/db14-0480/-/DC1. 3Diabetes Center, Institute of Metabolism and Endocrinology, Second Xiangya Y.W., Y.X., and L.Z. contributed equally to this work. Hospital, Key Laboratory of Diabetes Immunology, Ministry of Education, Central South University, National Clinical Research Center for Metabolic Diseases, © 2014 by the American Diabetes Association. Readers may use this article as Changsha, Hunan, China long as the work is properly cited, the use is educational and not for profit, and 4Department of Pharmacology & Pharmacy, The University of Hong Kong, Hong the work is not altered. Kong, China See accompanying article, p. 4018. 5Department of Medicine, University of Dresden, Dresden, Germany Corresponding author: Aimin Xu, [email protected]; Karen S.L. Lam, [email protected]; or Zhiguang Zhou, [email protected]. 4240 Neutrophil Serine Proteases, NETosis, and T1D Diabetes Volume 63, December 2014 macrophages, B cells, and neutrophils, are also implicated October 2000 to October 2013. Patients with T1D were in the development of insulitis in T1D (8,9). diagnosed according to the criteria of the American Neutrophils, which are the most abundant (40–75%) Diabetes Association (21). All patients were treated with type of white blood cells, have recently been implicated in insulin. The median disease duration of T1D was 4.2 the onset and progression of T1D (10,11). The primary (interquartile range 1.7–7.1) years. functions of neutrophils are to eliminate extracellular patho- A total of 77 age- and sex-matched healthy control gens by multiple strategies, including phagocytosis, degran- subjects were recruited from children in the community ulation to release lytic enzymes, and neutrophil extracellular participating in a health screening at the Children Health traps (NETs) that are formed through a unique cell death Center of the Second Xiangya Hospital, Central South process clearly differentiated from apoptosis and necrosis, University, using the following inclusion criteria: fasting termed “NETosis” (12–14). However, improper activation of plasma glucose of less than 5.6 mmol/L and 2-h plasma neutrophils may lead to tissue damage during autoimmune glucose of less than 7.8 mmol/L, and no family history of or exaggerated inflammatory responses (15). Notably, circu- diabetes or other autoimmune or chronic diseases. lating neutrophil counts are reduced in patients with T1D A total of 25 adults with type 2 diabetes diagnosed within and in their nondiabetic first-degree relatives but not in 1 year and 25 age- and sex-matched healthy control subjects patients with type 2 diabetes (11). In nonobese diabetic were recruited at the Diabetes Center, Second Xiangya (NOD) mice (a spontaneous model of T1D), neutrophil in- Hospital of Central South University, and the inclusion filtration and NET formation in the islets were observed as criteria were described in our previous study (22). early as 2 weeks after birth, and blockage of neutrophil The Second Xiangya Hospital of Central South Univer- activities with an anti-Ly6G antibody reduced the subse- sity Institutional Review Board approved the study, and quent development of insulitis and diabetes (9). written informed consents were obtained from the patients Neutrophil serine proteases, including neutrophil elas- and healthy control subjects. tase (NE), proteinase 3 (PR3), and cathepsin G (CG), are the major components of neutrophil azurophilic granules Clinical and Biochemical Assessments that participate in the elimination of engulfed micro- After overnight fasting, a venous blood specimen was organisms (16). Neutrophil activation and degranulation collected in the morning (;0800) for analysis of various can result in the release of neutrophil serine proteases biochemical parameters. Plasma glucose was measured into the extracellular medium and circulation, where they enzymatically on a Hitachi 7170 analyzer (Boehringer not only help to eliminate the invaded pathogens but also Mannheim GmbH, Mannheim, Germany). HbA1c was mea- serve as the humoral regulators of the immune responses sured by automated liquid chromatography (VARIANT II during acute and chronic inflammation, modulating cellular Hemoglobin Testing System; Bio-Rad, Hercules, CA). Serum signaling network by processing chemokines, and activat- levels of C-peptide and C-reactive protein were quantified ing specific cell-surface receptors (17–19). Abnormal activ- using a chemiluminescence immunoassay on a Bayer 180SE ities of neutrophil serine proteases have been implicated in Automated Chemiluminescence System (Bayer AG, Leverkusen, the pathogenesis of several inflammatory and autoimmune Germany) and an immunoturbidimetric assay (Orion diseases, including chronic obstructive pulmonary disease, Diagnostica, Espoo, Finland), respectively. The titers of cystic fibrosis, Wegener granulomatosis, Papillon-Lefèvre GADA, IA2A, and ZnT8A were determined by in-house syndrome, and small-vessel vasculitis (20). However, their radioligand assays, as previously described (22,23). association with T1D has not been explored so far. Circulating protein levels of NE, PR3, and A1AT were In this study, we measured circulating levels of two main measured using ELISA kits established in our laboratory types of neutrophil serine proteases (NE and PR3) and their (Antibody and Immunoassay Services, The University of enzymatic activities in T1D patients with different disease Hong Kong). The limits of detection for the NE, PR3, and duration together with age- and sex-matched healthy control A1AT ELISA kits were 0.156 ng/mL. No cross-reactivity subjects. Furthermore, we explored whether altered NET among these proteins or with other proteins was detected. formation and a1-antitrypsin (A1AT), a major endogenous The intra- and interassay variations were, respectively, inhibitor of neutrophil serine proteases, are associated with 4.5% and 5.1% for the NE ELISA kit, 3.9% and 4.3% for the reduced neutrophil counts and markedly increased activities PR3 ELISA kit, and 4.9% and 5.3% for the A1AT ELISA kit. of neutrophil serine proteases in patients with T1D. We also The combined enzymatic activities of PR3 and NE in measured the dynamic changes of circulating NE/PR3 activ- serum were determined with a chromogen-based assay ities during the development of autoimmune diabetes in using N-methoxysuccinyl-Ala-Ala-Pro-Val p-nitroanilide NOD mice. (Sigma-Aldrich, St. Louis, MO) as the substrate, which has 21 21 a catalytic constant Kcat/Km of 33,915 M s for NE 2 2 RESEARCH
Recommended publications
  • The Dual Role of Myeloperoxidase in Immune Response
    International Journal of Molecular Sciences Review The Dual Role of Myeloperoxidase in Immune Response Jürgen Arnhold Institute of Medical Physics and Biophysics, Medical Faculty, Leipzig University, 04 107 Leipzig, Germany; [email protected] Received: 5 October 2020; Accepted: 28 October 2020; Published: 29 October 2020 Abstract: The heme protein myeloperoxidase (MPO) is a major constituent of neutrophils. As a key mediator of the innate immune system, neutrophils are rapidly recruited to inflammatory sites, where they recognize, phagocytose, and inactivate foreign microorganisms. In the newly formed phagosomes, MPO is involved in the creation and maintenance of an alkaline milieu, which is optimal in combatting microbes. Myeloperoxidase is also a key component in neutrophil extracellular traps. These helpful properties are contrasted by the release of MPO and other neutrophil constituents from necrotic cells or as a result of frustrated phagocytosis. Although MPO is inactivated by the plasma protein ceruloplasmin, it can interact with negatively charged components of serum and the extracellular matrix. In cardiovascular diseases and many other disease scenarios, active MPO and MPO-modified targets are present in atherosclerotic lesions and other disease-specific locations. This implies an involvement of neutrophils, MPO, and other neutrophil products in pathogenesis mechanisms. This review critically reflects on the beneficial and harmful functions of MPO against the background of immune response. Keywords: myeloperoxidase; neutrophils; immune response; phagosomes; cardiovascular diseases; chronic inflammation 1. Immune Response and Tissue Destruction In humans and higher animals, protection against different threats that affect the homeostasis of host’s tissues is ensured by a coordinated action of the immune system in close association with activation of components of the acute phase, complement, coagulation, and contact systems [1,2].
    [Show full text]
  • In Sickness and in Health: the Immunological Roles of the Lymphatic System
    International Journal of Molecular Sciences Review In Sickness and in Health: The Immunological Roles of the Lymphatic System Louise A. Johnson MRC Human Immunology Unit, MRC Weatherall Institute of Molecular Medicine, University of Oxford, John Radcliffe Hospital, Headington, Oxford OX3 9DS, UK; [email protected] Abstract: The lymphatic system plays crucial roles in immunity far beyond those of simply providing conduits for leukocytes and antigens in lymph fluid. Endothelial cells within this vasculature are dis- tinct and highly specialized to perform roles based upon their location. Afferent lymphatic capillaries have unique intercellular junctions for efficient uptake of fluid and macromolecules, while expressing chemotactic and adhesion molecules that permit selective trafficking of specific immune cell subsets. Moreover, in response to events within peripheral tissue such as inflammation or infection, soluble factors from lymphatic endothelial cells exert “remote control” to modulate leukocyte migration across high endothelial venules from the blood to lymph nodes draining the tissue. These immune hubs are highly organized and perfectly arrayed to survey antigens from peripheral tissue while optimizing encounters between antigen-presenting cells and cognate lymphocytes. Furthermore, subsets of lymphatic endothelial cells exhibit differences in gene expression relating to specific func- tions and locality within the lymph node, facilitating both innate and acquired immune responses through antigen presentation, lymph node remodeling and regulation of leukocyte entry and exit. This review details the immune cell subsets in afferent and efferent lymph, and explores the mech- anisms by which endothelial cells of the lymphatic system regulate such trafficking, for immune surveillance and tolerance during steady-state conditions, and in response to infection, acute and Citation: Johnson, L.A.
    [Show full text]
  • The CXCR4 Antagonist AMD3100 Impairs Survival of Human AML Cells and Induces Their Differentiation
    Leukemia (2008) 22, 2151–2158 & 2008 Macmillan Publishers Limited All rights reserved 0887-6924/08 $32.00 www.nature.com/leu ORIGINAL ARTICLE The CXCR4 antagonist AMD3100 impairs survival of human AML cells and induces their differentiation S Tavor1, M Eisenbach1, J Jacob-Hirsch2, T Golan1, I Petit1, K BenZion1, S Kay1, S Baron1, N Amariglio2, V Deutsch1, E Naparstek1 and G Rechavi2 1Institute of Hematology and Bone Marrow Transplantation, Sourasky Medical Center, Tel Aviv, Israel and 2Cancer Research Center, Sheba Medical Center, Tel-Hashomer, and Sackler School of Medicine, Tel Aviv University, Tel Aviv, Israel The chemokine stromal cell-derived factor-1 (SDF-1) and its NOD/SCID mice, homing and subsequent engraftment of human receptor, CXCR4, participate in the retention of acute myelo- normal or AML stem cells are dependent on the expression of cell blastic leukemia (AML) cells within the bone marrow micro- 9–12 environment and their release into the circulation. AML cells surface CXCR4 and SDF-1 produced within the murine. In also constitutively express SDF-1-dependent elastase, which addition to controlling cell motility, SDF-1 regulates cell regulates their migration and proliferation. To study the proliferation, induces cell cycle progression and acts as a survival molecular events and genes regulated by the SDF-1/CXCR4 factor for normal human stem cells and AML cells.13–16 axis and elastase in AML cells, we examined gene expression CXCR4 blockage in AML cells, using the polypeptide profiles of the AML cell line, U937, under treatment with a RCP168, enhanced chemotherapy-induced apoptosis in vitro.17 neutralizing anti-CXCR4 antibody or elastase inhibitor, as compared with non-treated cells, using DNA microarray Most importantly, high CXCR4 expression level in leukemic technology.
    [Show full text]
  • R&D Assay for Alzheimer's Disease
    R&DR&D assayassay forfor Alzheimer’sAlzheimer’s diseasedisease Target screening⳼ Ⲽ㬔 antibody array, ᢜ⭉㬔 ⸽ἐⴐ Amyloid β-peptide Alzheimer’s disease⯸ ኸᷠ᧔ ᆹ⸽ inhibitor, antibody, ELISA kit Surwhrph#Surilohu#Dqwlerg|#Duud| 6OUSFBUFE 1."5SFBUFE )41 $3&# &3, &3, )41 $3&# &3, &3, 壤伡庰䋸TBNQMF ɅH 侴䋸嵄䍴䋸BOBMZUFT䋸䬱娴哜塵 1$ 1$ 1$ 1$ 5IFNPTUSFGFSFODFEBSSBZT 1$ 1$ QQ α 34, .4, 503 Q α 34, .4, 503 %SVHTDSFFOJOH0òUBSHFUFòFDUT0ATHWAY涭廐 6OUSFBUFE 堄币䋸4BNQMF侴䋸8FTUFSOPS&-*4"䍘䧽 1."5SFBUFE P 8FTUFSOCMPU廽喜儤应侴䋸0, Z 4VCTUSBUF -JHIU )31DPOKVHBUFE1BO "OUJQIPTQIPUZSPTJOF .FBO1JYFM%FOTJUZ Y $BQUVSF"OUJCPEZ 5BSHFU"OBMZUF "SSBZ.FNCSBOF $3&# &3, &3, )41 .4, Q α 34, 503 Human XL Cytokine Array kit (ARY022, 102 analytes) Adiponectin,Aggrecan,Angiogenin,Angiopoietin-1,Angiopoietin-2,BAFF,BDNF,Complement,Component C5/C5a,CD14,CD30,CD40L, Chitinase 3-like 1,Complement Factor D,C-Reactive Protein,Cripto-1,Cystatin C,Dkk-1,DPPIV,EGF,EMMPRIN,ENA-78,Endoglin, Fas L,FGF basic,FGF- 7,FGF-19,Flt-3 L,G-CSF,GDF-15,GM-CSF,GRO-α,Grow th Hormone,HGF,ICAM-1,IFN-γ,IGFBP-2,IGFBP-3, IL-1α,IL-1β, IL-1ra,IL-2,IL-3,IL-4,IL- 5,IL-6,IL-8, IL-10,IL-11,IL-12, IL-13,IL-15,IL-16,IL-17A,IL-18 BPa,IL-19,IL-22, IL-23,IL-24,IL-27, IL-31,IL-32α/β/γ,IL-33,IL-34,IP-10,I-TAC,Kallikrein 3,Leptin,LIF,Lipocalin-2,MCP-1,MCP-3,M-CSF,MIF,MIG,MIP-1α/MIP-1β,MIP-3α,MIP-3β,MMP-9, Myeloperoxidase,Osteopontin, p70, PDGF-AA, PDGF-AB/BB,Pentraxin-3, PF4, RAGE, RANTES,RBP4,Relaxin-2, Resistin,SDF-1α,Serpin E1, SHBG, ST2, TARC,TFF3,TfR,TGF- ,Thrombospondin-1,TNF-α, uPAR, VEGF, Vitamin D BP Human Protease (34 analytes) /
    [Show full text]
  • IL-33 Is Processed Into Mature Bioactive Forms by Neutrophil Elastase and Cathepsin G
    IL-33 is processed into mature bioactive forms by neutrophil elastase and cathepsin G Emma Lefrançais, Stephane Roga, Violette Gautier, Anne Gonzalez-de-Peredo, Bernard Monsarrat, Jean-Philippe Girard1,2, and Corinne Cayrol1,2 Centre National de la Recherche Scientifique, Institut de Pharmacologie et de Biologie Structurale, F-31077 Toulouse, France; Université de Toulouse, Université Paul Sabatier, Institut de Pharmacologie et de Biologie Structurale, F-31077 Toulouse, France Edited* by Charles A. Dinarello, University of Colorado Denver, Aurora, CO, and approved December 19, 2011 (received for review October 3, 2011) Interleukin-33 (IL-33) (NF-HEV) is a chromatin-associated nuclear activity (4). However, we (23) and others (24–26) demonstrated cytokine from the IL-1 family, which has been linked to important that full-length IL-33 is biologically active and that processing of diseases, including asthma, rheumatoid arthritis, ulcerative colitis, IL-33 by caspases results in its inactivation, rather than its activa- and cardiovascular diseases. IL-33 signals through the ST2 receptor tion. Further analyses revealed that IL-33 is constitutively and drives cytokine production in type 2 innate lymphoid cells (ILCs) expressed to high levels in the nuclei of endothelial and epithelial (natural helper cells, nuocytes), T-helper (Th)2 lymphocytes, mast cells in vivo (27) and that it can be released in the extracellular cells, basophils, eosinophils, invariant natural killer T (iNKT), and space after cellular damage (23, 24). IL-33 was, thus, proposed (23, natural killer (NK) cells. We and others recently reported that, unlike 24, 27) to function as an endogenous danger signal or alarmin, IL-1β and IL-18, full-length IL-33 is biologically active independently similar to IL-1α and high-mobility group box 1 protein (HMGB1) of caspase-1 cleavage and that processing by caspases results in IL-33 (28–32), to alert cells of the innate immune system of tissue inactivation.
    [Show full text]
  • The Impact of Neutrophil Proteinase 3 on IGFBP-3 Proteolysis in Obesity
    icine- O ed pe M n l A a c n c r e e s t s n I Internal Medicine: Open Access Robins et al., Intern Med 2014, S6:003 DOI: 10.4172/2165-8048.S6-003 ISSN: 2165-8048 Review Article Open Access The Impact of Neutrophil Proteinase 3 on IGFBP-3 Proteolysis in Obesity Jo Lynne Robins1*, Qing Cai2 and Youngman Oh2 1Assistant Professor, Virginia Commonwealth University, School of Nursing, Department of Family and Community Health, 1100 E. Leigh Street, Richmond, VA 23298, USA 2Virginia Commonwealth University, Department of Pathology, 1101 E Marshall St.Richmond, VA 23298-0297, USA *Corresponding author: Jo Lynne Robins, Assistant Professor, Virginia Commonwealth University, School of Nursing, Department of Family and Community Health, 1100 E. Leigh Street, Richmond, VA 23298, USATel: 804 828-0776 ; E-mail: [email protected] Rec date: Jan 17, 2014, Acc date: Feb 25, 2014, Pub date: Mar 05, 2014 Copyright: © 2014 Robins JL, et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. Abstract Obesity is a complex disorder and is a major risk factor associated with the incidence of insulin resistance (IR), diabetes, cardiovascular disease (CVD) and other metabolic disorders. The endocrine paradigm suggests that visceral fat in obesity, consisting primarily of adipocytes, secretes various pro-inflammatory adipokines such as tumor necrosis factor (TNF), leptin, visfatin, resistin, and IL-6 creating a state of local inflammation further resulting in chronic systemic inflammation and accelerating the events leading to systemic IR, diabetes and metabolic syndrome.
    [Show full text]
  • Proteome Profiler Human Protease Array Kit
    Proteome ProfilerTM Array Human Protease Array Kit Catalog Number ARY021 For the parallel determination of the relative levels of selected human proteases. This package insert must be read in its entirety before using this product. For research use only. Not for use in diagnostic procedures. TABLE OF CONTENTS SECTION PAGE INTRODUCTION .....................................................................................................................................................................1 PRINCIPLE OF THE ASSAY ...................................................................................................................................................1 TECHNICAL HINTS .................................................................................................................................................................1 MATERIALS PROVIDED & STORAGE CONDITIONS ...................................................................................................2 OTHER SUPPLIES REQUIRED .............................................................................................................................................3 SUPPLIES REQUIRED FOR CELL LYSATE SAMPLES ...................................................................................................3 SUPPLIES REQUIRED FOR TISSUE LYSATE SAMPLES ...............................................................................................3 SAMPLE COLLECTION & STORAGE .................................................................................................................................4
    [Show full text]
  • Like Transmembrane Γ Evolved From
    Mast Cell α and β Tryptases Changed Rapidly during Primate Speciation and Evolved from γ-Like Transmembrane Peptidases in Ancestral Vertebrates This information is current as of September 25, 2021. Neil N. Trivedi, Qiao Tong, Kavita Raman, Vikash J. Bhagwandin and George H. Caughey J Immunol 2007; 179:6072-6079; ; doi: 10.4049/jimmunol.179.9.6072 http://www.jimmunol.org/content/179/9/6072 Downloaded from References This article cites 34 articles, 15 of which you can access for free at: http://www.jimmunol.org/content/179/9/6072.full#ref-list-1 http://www.jimmunol.org/ Why The JI? Submit online. • Rapid Reviews! 30 days* from submission to initial decision • No Triage! Every submission reviewed by practicing scientists • Fast Publication! 4 weeks from acceptance to publication by guest on September 25, 2021 *average Subscription Information about subscribing to The Journal of Immunology is online at: http://jimmunol.org/subscription Permissions Submit copyright permission requests at: http://www.aai.org/About/Publications/JI/copyright.html Email Alerts Receive free email-alerts when new articles cite this article. Sign up at: http://jimmunol.org/alerts The Journal of Immunology is published twice each month by The American Association of Immunologists, Inc., 1451 Rockville Pike, Suite 650, Rockville, MD 20852 Copyright © 2007 by The American Association of Immunologists All rights reserved. Print ISSN: 0022-1767 Online ISSN: 1550-6606. The Journal of Immunology Mast Cell ␣ and ␤ Tryptases Changed Rapidly during Primate Speciation and Evolved from ␥-Like Transmembrane Peptidases in Ancestral Vertebrates1 Neil N. Trivedi, Qiao Tong, Kavita Raman, Vikash J. Bhagwandin, and George H.
    [Show full text]
  • Trypsin-Like Proteases and Their Role in Muco-Obstructive Lung Diseases
    International Journal of Molecular Sciences Review Trypsin-Like Proteases and Their Role in Muco-Obstructive Lung Diseases Emma L. Carroll 1,†, Mariarca Bailo 2,†, James A. Reihill 1 , Anne Crilly 2 , John C. Lockhart 2, Gary J. Litherland 2, Fionnuala T. Lundy 3 , Lorcan P. McGarvey 3, Mark A. Hollywood 4 and S. Lorraine Martin 1,* 1 School of Pharmacy, Queen’s University, Belfast BT9 7BL, UK; [email protected] (E.L.C.); [email protected] (J.A.R.) 2 Institute for Biomedical and Environmental Health Research, School of Health and Life Sciences, University of the West of Scotland, Paisley PA1 2BE, UK; [email protected] (M.B.); [email protected] (A.C.); [email protected] (J.C.L.); [email protected] (G.J.L.) 3 Wellcome-Wolfson Institute for Experimental Medicine, School of Medicine, Dentistry and Biomedical Sciences, Queen’s University, Belfast BT9 7BL, UK; [email protected] (F.T.L.); [email protected] (L.P.M.) 4 Smooth Muscle Research Centre, Dundalk Institute of Technology, A91 HRK2 Dundalk, Ireland; [email protected] * Correspondence: [email protected] † These authors contributed equally to this work. Abstract: Trypsin-like proteases (TLPs) belong to a family of serine enzymes with primary substrate specificities for the basic residues, lysine and arginine, in the P1 position. Whilst initially perceived as soluble enzymes that are extracellularly secreted, a number of novel TLPs that are anchored in the cell membrane have since been discovered. Muco-obstructive lung diseases (MucOLDs) are Citation: Carroll, E.L.; Bailo, M.; characterised by the accumulation of hyper-concentrated mucus in the small airways, leading to Reihill, J.A.; Crilly, A.; Lockhart, J.C.; Litherland, G.J.; Lundy, F.T.; persistent inflammation, infection and dysregulated protease activity.
    [Show full text]
  • Characterization and Expression Profiling of Serine Protease
    Lin et al. BMC Genomics (2017) 18:162 DOI 10.1186/s12864-017-3583-z RESEARCH ARTICLE Open Access Characterization and expression profiling of serine protease inhibitors in the diamondback moth, Plutella xylostella (Lepidoptera: Plutellidae) Hailan Lin1,2,3,4, Xijian Lin1,2,3,4, Jiwei Zhu1,2,3,4, Xiao-Qiang Yu1,2,5, Xiaofeng Xia1,2,3,4, Fengluan Yao6, Guang Yang1,2,3,4 and Minsheng You1,2,3,4* Abstract Background: Serine protease inhibitors (SPIs) have been found in all living organisms and play significant roles in digestion, development and innate immunity. In this study, we present a genome-wide identification and expression profiling of SPI genes in the diamondback moth, Plutella xylostella (L.), a major pest of cruciferous crops with global distribution and broad resistance to different types of insecticides. Results: A total of 61 potential SPI genes were identified in the P. xylostella genome, and these SPIs were classified into serpins, canonical inhibitors, and alpha-2-macroglobulins based on their modes of action. Sequence alignments showed that amino acid residues in the hinge region of known inhibitory serpins from other insect species were conserved in most P. xylostella serpins, suggesting that these P. xylostella serpins may be functionally active. Phylogenetic analysis confirmed that P. xylostella inhibitory serpins were clustered with known inhibitory serpins from six other insect species. More interestingly, nine serpins were highly similar to the orthologues in Manduca sexta which have been demonstrated to participate in regulating the prophenoloxidase activation cascade, an important innate immune response in insects. Of the 61 P.xylostella SPI genes, 33 were canonical SPIs containing seven types of inhibitor domains, including Kunitz, Kazal, TIL, amfpi, Antistasin, WAP and Pacifastin.
    [Show full text]
  • MASP-3 Is the Exclusive Pro-Factor D Activator in Resting Blood: the Lectin and the Alternative Complement Pathways Are Fundamentally Linked
    www.nature.com/scientificreports OPEN MASP-3 is the exclusive pro- factor D activator in resting blood: the lectin and the alternative Received: 03 May 2016 Accepted: 29 July 2016 complement pathways are Published: 18 August 2016 fundamentally linked József Dobó1,*, Dávid Szakács2,*, Gábor Oroszlán1, Elod Kortvely3, Bence Kiss2, Eszter Boros2, Róbert Szász4, Péter Závodszky1, Péter Gál1 & Gábor Pál2 MASP-3 was discovered 15 years ago as the third mannan-binding lectin (MBL)-associated serine protease of the complement lectin pathway. Lacking any verified substrate its role remained ambiguous. MASP-3 was shown to compete with a key lectin pathway enzyme MASP-2 for MBL binding, and was therefore considered to be a negative complement regulator. Later, knock-out mice experiments suggested that MASP-1 and/or MASP-3 play important roles in complement pro-factor D (pro-FD) maturation. However, studies on a MASP-1/MASP-3-deficient human patient produced contradicting results. In normal resting blood unperturbed by ongoing coagulation or complement activation, factor D is present predominantly in its active form, suggesting that resting blood contains at least one pro-FD activating proteinase that is not a direct initiator of coagulation or complement activation. We have recently showed that all three MASPs can activate pro-FD in vitro. In resting blood, however, using our previously evolved MASP-1 and MASP-2 inhibitors we proved that neither MASP-1 nor MASP-2 activates pro-FD. Other plasma proteinases, particularly MASP-3, remained candidates for that function. For this study we evolved a specific MASP-3 inhibitor and unambiguously proved that activated MASP-3 is the exclusive pro-FD activator in resting blood, which demonstrates a fundamental link between the lectin and alternative pathways.
    [Show full text]
  • Remote Activation of a Latent Epitope in an Autoantigen Decoded with Simulated B-Factors
    ORIGINAL RESEARCH published: 25 October 2019 doi: 10.3389/fimmu.2019.02467 Remote Activation of a Latent Epitope in an Autoantigen Decoded With Simulated B-Factors Yuan-Ping Pang 1*, Marta Casal Moura 2, Gwen E. Thompson 2, Darlene R. Nelson 2, Amber M. Hummel 2, Dieter E. Jenne 3, Daniel Emerling 4, Wayne Volkmuth 4, William H. Robinson 5 and Ulrich Specks 2* 1 Computer-Aided Molecular Design Laboratory, Mayo Clinic, Rochester, MN, United States, 2 Thoracic Disease Research Unit, Mayo Clinic, Rochester, MN, United States, 3 Comprehensive Pneumology Center, Helmholtz Zentrum München & Max-Planck Institute for Neuroimmunology, Martinsried, Germany, 4 Atreca, Inc., Redwood City, CA, United States, 5 Department of Medicine, Stanford University, Palo Alto, CA, United States Mutants of a catalytically inactive variant of Proteinase 3 (PR3)—iPR3-Val103 possessing a Ser195Ala mutation relative to wild-type PR3-Val103—offer insights into how autoantigen PR3 interacts with antineutrophil cytoplasmic antibodies (ANCAs) in granulomatosis Edited by: with polyangiitis (GPA) and whether such interactions can be interrupted. Here we Andreas Kronbichler, report that iHm5-Val103, a triple mutant of iPR3-Val103, bound a monoclonal antibody Innsbruck Medical University, Austria (moANCA518) from a GPA patient on an epitope remote from the mutation sites, whereas Reviewed by: 103 Anja Kerstein-Staehle, the corresponding epitope of iPR3-Val was latent to moANCA518. Simulated B-factor Universität zu Lübeck, Germany analysis revealed that the binding of moANCA518 to iHm5-Val103 was due to increased Dana P. Ascherman, main-chain flexibility of the latent epitope caused by remote mutations, suggesting University of Pittsburgh, United States rigidification of epitopes with therapeutics to alter pathogenic PR3·ANCA interactions *Correspondence: Yuan-Ping Pang as new GPA treatments.
    [Show full text]