Proteinase-Activated Receptors and the Pathophysiology of Pulmonary Fibrosis Rachel C

Total Page:16

File Type:pdf, Size:1020Kb

Proteinase-Activated Receptors and the Pathophysiology of Pulmonary Fibrosis Rachel C DRUG DEVELOPMENT RESEARCH 60:29–35 (2003) DDR Research Overview Proteinase-Activated Receptors and the Pathophysiology of Pulmonary Fibrosis Rachel C. Chambersn Centre for Respiratory Research, University College London, London, England Strategy, Management and Health Policy Preclinical Development Clinical Development Venture Capital Preclinical Toxicology, Formulation Phases I-III Postmarketing Enabling Research Drug Delivery, Regulatory, Quality, Phase IV Technology Pharmacokinetics Manufacturing ABSTRACT Interest in the role of proteinase-activated receptors (PARs) in the pathogenesis of fibrotic lung disease was fuelled by two central observations: first, the recognition that the coagulation cascade is activated in a number of these disorders; and second, the long-standing observation that thrombin, a principal regulator of coagulation, is a potent mitogen for fibroblasts, the key cell type responsible for the production of interstitial collagens in the fibrotic lung. This article will briefly review this evidence and focus on recent studies suggesting an important role for PAR1-mediated cellular responses in the pathophysiology of lung fibrosis. Drug Dev. Res. 60:29–35, 2003. c 2003 Wiley-Liss, Inc. Key words: PARs; pulmonary fibrosis; bleomycin ACTIVATION OF THE COAGULATION CASCADE IN recruited inflammatory cells into the injured lung FIBROTIC LUNG DISEASE injury, are thought to play a major role [reviewed in Pulmonary fibrosis is not a single disease but Chambers and Laurent, 1997]. In addition to classic represents the end stage of a heterogeneous group of fibrogenic mediators, it is increasingly recognized that disorders, of known and unknown cause, in which the coagulation cascade may also play an important role excessive deposition of collagen and other extracellular in fuelling the fibrotic response. Indeed, activation of matrix proteins within the pulmonary interstitium leads the coagulation cascade, which is manifest as either to progressive loss of lung function. There are currently increased thrombin levels, tissue factor–factor VIIa no adequate therapies, and it has been estimated that complexes or tissue factor expression and the resultant there are more than 3,000 deaths a year in the United extravascular deposition of fibrin, is a characteristic Kingdom from the most common form, cryptogenic feature of a number of respiratory diseases associated fibrosing alveolitis (CFA; also known as idiopathic with excessive deposition of connective tissue proteins. pulmonary fibrosis, IPF) alone [Hubbard et al., 1996]. These diseases include CFA/IPF [Imokawa et al., The pathogenesis of lung fibrosis remains incompletely 1997], pulmonary fibrosis associated with systemic understood, but current hypotheses propose that sclerosis [Ohba et al., 1994; Hernandez Rodriguez epithelial and/or endothelial injury leads to an ex- et al., 1995], chronic lung disease of prematurity [Dik aggerated fibroproliferative response during which fibroblasts transdifferentiate, proliferate, and increase Contract grant sponsors: the Wellcome Trust and the Medical Research Council, United Kingdom. extracellular matrix protein production. n In terms of the mediators involved in driving the Correspondence to: Rachel C. Chambers, Centre for Respiratory Research, University College London, 5 University fibrotic response, several potent fibrogenic cytokines Street, London WC1E 6JJ UK, England. and growth factors, including transforming growth E-mail: [email protected] factor-b (TGF-b) and platelet-derived growth factor Published online in Wiley InterScience (www.interscience. (PDGF), released from resident lung cells and wiley.com) DOI: 10.1002/ddr.10317 c 2003 Wiley-Liss, Inc. 30 CHAMBERS et al., 2003], and cryptogenic organising pneumonia role for this receptor in the pathogenesis of lung [Peyrol et al., 1990]. Extensive interstitial and intraal- fibrosis. veolar deposition of fibrin is also a characteristic feature in acute lung injury/adult respiratory distress ACTIVATION OF THE COAGULATION CASCADE IN syndrome (ARDS), in which rapid fibroproliferation EXPERIMENTALLY INDUCED LUNG FIBROSIS and matrix synthesis can lead to the development of The notion that inappropriate activation of the extensive fibrotic lesions. In the latter condition, coagulation cascade contributes to lung fibrosis is excessive procoagulant activity is mainly attributable supported by studies of animal models of lung injury to tissue factor–factor VII/VIIa complexes associated and fibrosis. The most widely used is that induced after with alveolar macrophages, in the face of reduced intratracheal instillation of the antineoplastic agent, levels of endogenous anticoagulants, including antith- bleomycin, to mice or rats. Instillation of this agent into rombin III, protein C, and protein S [recently reviewed the lung mimics some of the features of human fibrotic in Idell, 2003]. In patients with IPF, reduced protein C lung disease in that it leads to acute lung injury, plasma activity is further associated with abnormal collagen exudation, recruitment of inflammatory cells (predo- turnover in the intraalveolar space [Yasui et al., 2000]. minantly neutrophils, lymphocytes and macrophages), and eventually activation and proliferation of fibro- blasts and fibrosis. Intraalveolar and parenchymal fibrin ACTIVATORS OF PARs IN LUNG FIBROSIS formation is initiated by tissue factor [Olman et al., All four currently known PAR receptors are 1995] and active coagulation proteinases associated expressed in the lung, and collectively the proteinases with alveolar macrophages and epithelial cells, as well of the coagulation cascade can target all of them [see as fibroblasts within fibroproliferative foci [Howell et Riewald and Ruf, this Special Issue of Drug Develop- al., 2001]. Immunohistochemical studies performed in ment Research 59(4):400]. Thrombin is considered to our laboratory further revealed that PAR1 and active be one of the major physiologic activators of PAR1 [Vu thrombin colocalise to alveolar macrophages in inflam- et al., 1991]. Factor Xa, which is immediately upstream matory and fibroproliferative foci, as well as to of thrombin in the coagulation cascade, can activate interstitial spindle-shaped fibroblasts (Fig. 1). A direct PAR1 and PAR2, depending on the cell type, whereas causal role for the coagulation cascade in the tissue factor–factor VIIa complexes activate PAR2 pathogenesis of lung fibrosis in this model was [Bono et al., 2000; Riewald et al., 2001]. Transient provided by research performed in our laboratory ternary tissue factor–factor VIIa-Xa complexes activate and other laboratories that demonstrated that heparin, PAR1 and PAR2 with greater efficiency than the activated protein C, or a direct inhibitor of thrombin individual proteinases, indicating that tissue factor– proteolytic activity attenuated the fibrotic response factor VIIa initiated coagulation in the vasculature is obtained [Piguet et al., 1996; Yasui et al., 2000; Howell inseparably linked to PAR1 and PAR2 activation and et al., 2001]. cell signalling [Riewald and Ruf, 2001]. More recently, CONTRIBUTION OF THE PROCOAGULANT VERSUS PAR1 has also been shown to be activated by protein C bound to its receptor EPCR on endothelial cells PAR-MEDIATED CELLULAR EFFECTS IN LUNG [Riewald et al., 2002] and by plasmin, a proteinase of FIBROSIS the fibrinolytic pathway [Pendurthi et al., 2000]. Other One of the most interesting challenges for major physiologic activators of PAR2 that may be researchers working in this area centers on establishing relevant to lung fibrosis include trypsin [Belham et al., the relative contribution of the procoagulant (e.g., 1996], tryptase [Akers et al., 2000], membrane-type fibrin generation) versus the PAR-mediated cellular serine proteinase-1 (MT-SP-1) [Takeuchi et al., 2000], effects of coagulation proteinases in these models and and neutrophil proteinase 3 [Uehara et al., 2002]. The in human fibrotic lung disease. Early mechanistic physiologic functions of PAR3, which acts as a cofactor studies focussing on the contribution of fibrin to both for thrombin signalling [Nakanishi-Matsui et al., 2000], acute lung injury and progression to fibrosis provided and of PAR4, a more general serine proteinase evidence that fibrin and fibrinogen degradation pro- receptor, are also coming to light. Recent evidence ducts can influence tissue inflammation and repair by obtained in vitro suggests that PAR4, which is also acting as a provisional structural matrix and a source of activated by cathepsin G [Sambrano et al., 2000], may fibrogenic mediators for infiltrating fibroblasts and play a role in lung inflammatory responses [Asoka- inflammatory cells [recently reviewed in Idell, 2003]. nanthan et al., 2002]. However, the primary focus of Studies performed in genetically modified mice this article will be on discussing the potential role of in which the fibrinolytic capacity of the lung was PAR1, because there is growing in vivo evidence for a either up- or downregulated by knocking-out or PARs AND PULMONARY FIBROSIS 31 Fig. 1. Thrombin and proteinase-activated receptor 1 (PAR1) are localised to the same cell types in bleomycin-induced lung fibrosis. a and b: Normal rat lung stained for active thrombin at low ( Â 400) and high power ( Â 1,000). There is only very weak staining associated with alveolar macrophages. c ( Â 400) and d ( Â 1,000): Corresponding section for thrombin from rats with bleomycin-induced lung fibrosis. Thrombin is localised to macrophages in inflammatory and fibroproliferative foci, as well as to spindle-shaped fibroblasts.
Recommended publications
  • The Dual Role of Myeloperoxidase in Immune Response
    International Journal of Molecular Sciences Review The Dual Role of Myeloperoxidase in Immune Response Jürgen Arnhold Institute of Medical Physics and Biophysics, Medical Faculty, Leipzig University, 04 107 Leipzig, Germany; [email protected] Received: 5 October 2020; Accepted: 28 October 2020; Published: 29 October 2020 Abstract: The heme protein myeloperoxidase (MPO) is a major constituent of neutrophils. As a key mediator of the innate immune system, neutrophils are rapidly recruited to inflammatory sites, where they recognize, phagocytose, and inactivate foreign microorganisms. In the newly formed phagosomes, MPO is involved in the creation and maintenance of an alkaline milieu, which is optimal in combatting microbes. Myeloperoxidase is also a key component in neutrophil extracellular traps. These helpful properties are contrasted by the release of MPO and other neutrophil constituents from necrotic cells or as a result of frustrated phagocytosis. Although MPO is inactivated by the plasma protein ceruloplasmin, it can interact with negatively charged components of serum and the extracellular matrix. In cardiovascular diseases and many other disease scenarios, active MPO and MPO-modified targets are present in atherosclerotic lesions and other disease-specific locations. This implies an involvement of neutrophils, MPO, and other neutrophil products in pathogenesis mechanisms. This review critically reflects on the beneficial and harmful functions of MPO against the background of immune response. Keywords: myeloperoxidase; neutrophils; immune response; phagosomes; cardiovascular diseases; chronic inflammation 1. Immune Response and Tissue Destruction In humans and higher animals, protection against different threats that affect the homeostasis of host’s tissues is ensured by a coordinated action of the immune system in close association with activation of components of the acute phase, complement, coagulation, and contact systems [1,2].
    [Show full text]
  • The CXCR4 Antagonist AMD3100 Impairs Survival of Human AML Cells and Induces Their Differentiation
    Leukemia (2008) 22, 2151–2158 & 2008 Macmillan Publishers Limited All rights reserved 0887-6924/08 $32.00 www.nature.com/leu ORIGINAL ARTICLE The CXCR4 antagonist AMD3100 impairs survival of human AML cells and induces their differentiation S Tavor1, M Eisenbach1, J Jacob-Hirsch2, T Golan1, I Petit1, K BenZion1, S Kay1, S Baron1, N Amariglio2, V Deutsch1, E Naparstek1 and G Rechavi2 1Institute of Hematology and Bone Marrow Transplantation, Sourasky Medical Center, Tel Aviv, Israel and 2Cancer Research Center, Sheba Medical Center, Tel-Hashomer, and Sackler School of Medicine, Tel Aviv University, Tel Aviv, Israel The chemokine stromal cell-derived factor-1 (SDF-1) and its NOD/SCID mice, homing and subsequent engraftment of human receptor, CXCR4, participate in the retention of acute myelo- normal or AML stem cells are dependent on the expression of cell blastic leukemia (AML) cells within the bone marrow micro- 9–12 environment and their release into the circulation. AML cells surface CXCR4 and SDF-1 produced within the murine. In also constitutively express SDF-1-dependent elastase, which addition to controlling cell motility, SDF-1 regulates cell regulates their migration and proliferation. To study the proliferation, induces cell cycle progression and acts as a survival molecular events and genes regulated by the SDF-1/CXCR4 factor for normal human stem cells and AML cells.13–16 axis and elastase in AML cells, we examined gene expression CXCR4 blockage in AML cells, using the polypeptide profiles of the AML cell line, U937, under treatment with a RCP168, enhanced chemotherapy-induced apoptosis in vitro.17 neutralizing anti-CXCR4 antibody or elastase inhibitor, as compared with non-treated cells, using DNA microarray Most importantly, high CXCR4 expression level in leukemic technology.
    [Show full text]
  • R&D Assay for Alzheimer's Disease
    R&DR&D assayassay forfor Alzheimer’sAlzheimer’s diseasedisease Target screening⳼ Ⲽ㬔 antibody array, ᢜ⭉㬔 ⸽ἐⴐ Amyloid β-peptide Alzheimer’s disease⯸ ኸᷠ᧔ ᆹ⸽ inhibitor, antibody, ELISA kit Surwhrph#Surilohu#Dqwlerg|#Duud| 6OUSFBUFE 1."5SFBUFE )41 $3&# &3, &3, )41 $3&# &3, &3, 壤伡庰䋸TBNQMF ɅH 侴䋸嵄䍴䋸BOBMZUFT䋸䬱娴哜塵 1$ 1$ 1$ 1$ 5IFNPTUSFGFSFODFEBSSBZT 1$ 1$ QQ α 34, .4, 503 Q α 34, .4, 503 %SVHTDSFFOJOH0òUBSHFUFòFDUT0ATHWAY涭廐 6OUSFBUFE 堄币䋸4BNQMF侴䋸8FTUFSOPS&-*4"䍘䧽 1."5SFBUFE P 8FTUFSOCMPU廽喜儤应侴䋸0, Z 4VCTUSBUF -JHIU )31DPOKVHBUFE1BO "OUJQIPTQIPUZSPTJOF .FBO1JYFM%FOTJUZ Y $BQUVSF"OUJCPEZ 5BSHFU"OBMZUF "SSBZ.FNCSBOF $3&# &3, &3, )41 .4, Q α 34, 503 Human XL Cytokine Array kit (ARY022, 102 analytes) Adiponectin,Aggrecan,Angiogenin,Angiopoietin-1,Angiopoietin-2,BAFF,BDNF,Complement,Component C5/C5a,CD14,CD30,CD40L, Chitinase 3-like 1,Complement Factor D,C-Reactive Protein,Cripto-1,Cystatin C,Dkk-1,DPPIV,EGF,EMMPRIN,ENA-78,Endoglin, Fas L,FGF basic,FGF- 7,FGF-19,Flt-3 L,G-CSF,GDF-15,GM-CSF,GRO-α,Grow th Hormone,HGF,ICAM-1,IFN-γ,IGFBP-2,IGFBP-3, IL-1α,IL-1β, IL-1ra,IL-2,IL-3,IL-4,IL- 5,IL-6,IL-8, IL-10,IL-11,IL-12, IL-13,IL-15,IL-16,IL-17A,IL-18 BPa,IL-19,IL-22, IL-23,IL-24,IL-27, IL-31,IL-32α/β/γ,IL-33,IL-34,IP-10,I-TAC,Kallikrein 3,Leptin,LIF,Lipocalin-2,MCP-1,MCP-3,M-CSF,MIF,MIG,MIP-1α/MIP-1β,MIP-3α,MIP-3β,MMP-9, Myeloperoxidase,Osteopontin, p70, PDGF-AA, PDGF-AB/BB,Pentraxin-3, PF4, RAGE, RANTES,RBP4,Relaxin-2, Resistin,SDF-1α,Serpin E1, SHBG, ST2, TARC,TFF3,TfR,TGF- ,Thrombospondin-1,TNF-α, uPAR, VEGF, Vitamin D BP Human Protease (34 analytes) /
    [Show full text]
  • The Impact of Neutrophil Proteinase 3 on IGFBP-3 Proteolysis in Obesity
    icine- O ed pe M n l A a c n c r e e s t s n I Internal Medicine: Open Access Robins et al., Intern Med 2014, S6:003 DOI: 10.4172/2165-8048.S6-003 ISSN: 2165-8048 Review Article Open Access The Impact of Neutrophil Proteinase 3 on IGFBP-3 Proteolysis in Obesity Jo Lynne Robins1*, Qing Cai2 and Youngman Oh2 1Assistant Professor, Virginia Commonwealth University, School of Nursing, Department of Family and Community Health, 1100 E. Leigh Street, Richmond, VA 23298, USA 2Virginia Commonwealth University, Department of Pathology, 1101 E Marshall St.Richmond, VA 23298-0297, USA *Corresponding author: Jo Lynne Robins, Assistant Professor, Virginia Commonwealth University, School of Nursing, Department of Family and Community Health, 1100 E. Leigh Street, Richmond, VA 23298, USATel: 804 828-0776 ; E-mail: [email protected] Rec date: Jan 17, 2014, Acc date: Feb 25, 2014, Pub date: Mar 05, 2014 Copyright: © 2014 Robins JL, et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. Abstract Obesity is a complex disorder and is a major risk factor associated with the incidence of insulin resistance (IR), diabetes, cardiovascular disease (CVD) and other metabolic disorders. The endocrine paradigm suggests that visceral fat in obesity, consisting primarily of adipocytes, secretes various pro-inflammatory adipokines such as tumor necrosis factor (TNF), leptin, visfatin, resistin, and IL-6 creating a state of local inflammation further resulting in chronic systemic inflammation and accelerating the events leading to systemic IR, diabetes and metabolic syndrome.
    [Show full text]
  • Proteome Profiler Human Protease Array Kit
    Proteome ProfilerTM Array Human Protease Array Kit Catalog Number ARY021 For the parallel determination of the relative levels of selected human proteases. This package insert must be read in its entirety before using this product. For research use only. Not for use in diagnostic procedures. TABLE OF CONTENTS SECTION PAGE INTRODUCTION .....................................................................................................................................................................1 PRINCIPLE OF THE ASSAY ...................................................................................................................................................1 TECHNICAL HINTS .................................................................................................................................................................1 MATERIALS PROVIDED & STORAGE CONDITIONS ...................................................................................................2 OTHER SUPPLIES REQUIRED .............................................................................................................................................3 SUPPLIES REQUIRED FOR CELL LYSATE SAMPLES ...................................................................................................3 SUPPLIES REQUIRED FOR TISSUE LYSATE SAMPLES ...............................................................................................3 SAMPLE COLLECTION & STORAGE .................................................................................................................................4
    [Show full text]
  • Like Transmembrane Γ Evolved From
    Mast Cell α and β Tryptases Changed Rapidly during Primate Speciation and Evolved from γ-Like Transmembrane Peptidases in Ancestral Vertebrates This information is current as of September 25, 2021. Neil N. Trivedi, Qiao Tong, Kavita Raman, Vikash J. Bhagwandin and George H. Caughey J Immunol 2007; 179:6072-6079; ; doi: 10.4049/jimmunol.179.9.6072 http://www.jimmunol.org/content/179/9/6072 Downloaded from References This article cites 34 articles, 15 of which you can access for free at: http://www.jimmunol.org/content/179/9/6072.full#ref-list-1 http://www.jimmunol.org/ Why The JI? Submit online. • Rapid Reviews! 30 days* from submission to initial decision • No Triage! Every submission reviewed by practicing scientists • Fast Publication! 4 weeks from acceptance to publication by guest on September 25, 2021 *average Subscription Information about subscribing to The Journal of Immunology is online at: http://jimmunol.org/subscription Permissions Submit copyright permission requests at: http://www.aai.org/About/Publications/JI/copyright.html Email Alerts Receive free email-alerts when new articles cite this article. Sign up at: http://jimmunol.org/alerts The Journal of Immunology is published twice each month by The American Association of Immunologists, Inc., 1451 Rockville Pike, Suite 650, Rockville, MD 20852 Copyright © 2007 by The American Association of Immunologists All rights reserved. Print ISSN: 0022-1767 Online ISSN: 1550-6606. The Journal of Immunology Mast Cell ␣ and ␤ Tryptases Changed Rapidly during Primate Speciation and Evolved from ␥-Like Transmembrane Peptidases in Ancestral Vertebrates1 Neil N. Trivedi, Qiao Tong, Kavita Raman, Vikash J. Bhagwandin, and George H.
    [Show full text]
  • Trypsin-Like Proteases and Their Role in Muco-Obstructive Lung Diseases
    International Journal of Molecular Sciences Review Trypsin-Like Proteases and Their Role in Muco-Obstructive Lung Diseases Emma L. Carroll 1,†, Mariarca Bailo 2,†, James A. Reihill 1 , Anne Crilly 2 , John C. Lockhart 2, Gary J. Litherland 2, Fionnuala T. Lundy 3 , Lorcan P. McGarvey 3, Mark A. Hollywood 4 and S. Lorraine Martin 1,* 1 School of Pharmacy, Queen’s University, Belfast BT9 7BL, UK; [email protected] (E.L.C.); [email protected] (J.A.R.) 2 Institute for Biomedical and Environmental Health Research, School of Health and Life Sciences, University of the West of Scotland, Paisley PA1 2BE, UK; [email protected] (M.B.); [email protected] (A.C.); [email protected] (J.C.L.); [email protected] (G.J.L.) 3 Wellcome-Wolfson Institute for Experimental Medicine, School of Medicine, Dentistry and Biomedical Sciences, Queen’s University, Belfast BT9 7BL, UK; [email protected] (F.T.L.); [email protected] (L.P.M.) 4 Smooth Muscle Research Centre, Dundalk Institute of Technology, A91 HRK2 Dundalk, Ireland; [email protected] * Correspondence: [email protected] † These authors contributed equally to this work. Abstract: Trypsin-like proteases (TLPs) belong to a family of serine enzymes with primary substrate specificities for the basic residues, lysine and arginine, in the P1 position. Whilst initially perceived as soluble enzymes that are extracellularly secreted, a number of novel TLPs that are anchored in the cell membrane have since been discovered. Muco-obstructive lung diseases (MucOLDs) are Citation: Carroll, E.L.; Bailo, M.; characterised by the accumulation of hyper-concentrated mucus in the small airways, leading to Reihill, J.A.; Crilly, A.; Lockhart, J.C.; Litherland, G.J.; Lundy, F.T.; persistent inflammation, infection and dysregulated protease activity.
    [Show full text]
  • Characterization and Expression Profiling of Serine Protease
    Lin et al. BMC Genomics (2017) 18:162 DOI 10.1186/s12864-017-3583-z RESEARCH ARTICLE Open Access Characterization and expression profiling of serine protease inhibitors in the diamondback moth, Plutella xylostella (Lepidoptera: Plutellidae) Hailan Lin1,2,3,4, Xijian Lin1,2,3,4, Jiwei Zhu1,2,3,4, Xiao-Qiang Yu1,2,5, Xiaofeng Xia1,2,3,4, Fengluan Yao6, Guang Yang1,2,3,4 and Minsheng You1,2,3,4* Abstract Background: Serine protease inhibitors (SPIs) have been found in all living organisms and play significant roles in digestion, development and innate immunity. In this study, we present a genome-wide identification and expression profiling of SPI genes in the diamondback moth, Plutella xylostella (L.), a major pest of cruciferous crops with global distribution and broad resistance to different types of insecticides. Results: A total of 61 potential SPI genes were identified in the P. xylostella genome, and these SPIs were classified into serpins, canonical inhibitors, and alpha-2-macroglobulins based on their modes of action. Sequence alignments showed that amino acid residues in the hinge region of known inhibitory serpins from other insect species were conserved in most P. xylostella serpins, suggesting that these P. xylostella serpins may be functionally active. Phylogenetic analysis confirmed that P. xylostella inhibitory serpins were clustered with known inhibitory serpins from six other insect species. More interestingly, nine serpins were highly similar to the orthologues in Manduca sexta which have been demonstrated to participate in regulating the prophenoloxidase activation cascade, an important innate immune response in insects. Of the 61 P.xylostella SPI genes, 33 were canonical SPIs containing seven types of inhibitor domains, including Kunitz, Kazal, TIL, amfpi, Antistasin, WAP and Pacifastin.
    [Show full text]
  • MASP-3 Is the Exclusive Pro-Factor D Activator in Resting Blood: the Lectin and the Alternative Complement Pathways Are Fundamentally Linked
    www.nature.com/scientificreports OPEN MASP-3 is the exclusive pro- factor D activator in resting blood: the lectin and the alternative Received: 03 May 2016 Accepted: 29 July 2016 complement pathways are Published: 18 August 2016 fundamentally linked József Dobó1,*, Dávid Szakács2,*, Gábor Oroszlán1, Elod Kortvely3, Bence Kiss2, Eszter Boros2, Róbert Szász4, Péter Závodszky1, Péter Gál1 & Gábor Pál2 MASP-3 was discovered 15 years ago as the third mannan-binding lectin (MBL)-associated serine protease of the complement lectin pathway. Lacking any verified substrate its role remained ambiguous. MASP-3 was shown to compete with a key lectin pathway enzyme MASP-2 for MBL binding, and was therefore considered to be a negative complement regulator. Later, knock-out mice experiments suggested that MASP-1 and/or MASP-3 play important roles in complement pro-factor D (pro-FD) maturation. However, studies on a MASP-1/MASP-3-deficient human patient produced contradicting results. In normal resting blood unperturbed by ongoing coagulation or complement activation, factor D is present predominantly in its active form, suggesting that resting blood contains at least one pro-FD activating proteinase that is not a direct initiator of coagulation or complement activation. We have recently showed that all three MASPs can activate pro-FD in vitro. In resting blood, however, using our previously evolved MASP-1 and MASP-2 inhibitors we proved that neither MASP-1 nor MASP-2 activates pro-FD. Other plasma proteinases, particularly MASP-3, remained candidates for that function. For this study we evolved a specific MASP-3 inhibitor and unambiguously proved that activated MASP-3 is the exclusive pro-FD activator in resting blood, which demonstrates a fundamental link between the lectin and alternative pathways.
    [Show full text]
  • Remote Activation of a Latent Epitope in an Autoantigen Decoded with Simulated B-Factors
    ORIGINAL RESEARCH published: 25 October 2019 doi: 10.3389/fimmu.2019.02467 Remote Activation of a Latent Epitope in an Autoantigen Decoded With Simulated B-Factors Yuan-Ping Pang 1*, Marta Casal Moura 2, Gwen E. Thompson 2, Darlene R. Nelson 2, Amber M. Hummel 2, Dieter E. Jenne 3, Daniel Emerling 4, Wayne Volkmuth 4, William H. Robinson 5 and Ulrich Specks 2* 1 Computer-Aided Molecular Design Laboratory, Mayo Clinic, Rochester, MN, United States, 2 Thoracic Disease Research Unit, Mayo Clinic, Rochester, MN, United States, 3 Comprehensive Pneumology Center, Helmholtz Zentrum München & Max-Planck Institute for Neuroimmunology, Martinsried, Germany, 4 Atreca, Inc., Redwood City, CA, United States, 5 Department of Medicine, Stanford University, Palo Alto, CA, United States Mutants of a catalytically inactive variant of Proteinase 3 (PR3)—iPR3-Val103 possessing a Ser195Ala mutation relative to wild-type PR3-Val103—offer insights into how autoantigen PR3 interacts with antineutrophil cytoplasmic antibodies (ANCAs) in granulomatosis Edited by: with polyangiitis (GPA) and whether such interactions can be interrupted. Here we Andreas Kronbichler, report that iHm5-Val103, a triple mutant of iPR3-Val103, bound a monoclonal antibody Innsbruck Medical University, Austria (moANCA518) from a GPA patient on an epitope remote from the mutation sites, whereas Reviewed by: 103 Anja Kerstein-Staehle, the corresponding epitope of iPR3-Val was latent to moANCA518. Simulated B-factor Universität zu Lübeck, Germany analysis revealed that the binding of moANCA518 to iHm5-Val103 was due to increased Dana P. Ascherman, main-chain flexibility of the latent epitope caused by remote mutations, suggesting University of Pittsburgh, United States rigidification of epitopes with therapeutics to alter pathogenic PR3·ANCA interactions *Correspondence: Yuan-Ping Pang as new GPA treatments.
    [Show full text]
  • The Emerging Role of Mast Cell Proteases in Asthma
    REVIEW ASTHMA The emerging role of mast cell proteases in asthma Gunnar Pejler1,2 Affiliations: 1Dept of Medical Biochemistry and Microbiology, Uppsala University, Uppsala, Sweden. 2Dept of Anatomy, Physiology and Biochemistry, Swedish University of Agricultural Sciences, Uppsala, Sweden. Correspondence: Gunnar Pejler, Dept of Medical Biochemistry and Microbiology, BMC, Uppsala University, Box 582, 75123 Uppsala, Sweden. E-mail: [email protected] @ERSpublications Mast cells express large amounts of proteases, including tryptase, chymase and carboxypeptidase A3. An extensive review of how these proteases impact on asthma shows that they can have both protective and detrimental functions. http://bit.ly/2Gu1Qp2 Cite this article as: Pejler G. The emerging role of mast cell proteases in asthma. Eur Respir J 2019; 54: 1900685 [https://doi.org/10.1183/13993003.00685-2019]. ABSTRACT It is now well established that mast cells (MCs) play a crucial role in asthma. This is supported by multiple lines of evidence, including both clinical studies and studies on MC-deficient mice. However, there is still only limited knowledge of the exact effector mechanism(s) by which MCs influence asthma pathology. MCs contain large amounts of secretory granules, which are filled with a variety of bioactive compounds including histamine, cytokines, lysosomal hydrolases, serglycin proteoglycans and a number of MC-restricted proteases. When MCs are activated, e.g. in response to IgE receptor cross- linking, the contents of their granules are released to the exterior and can cause a massive inflammatory reaction. The MC-restricted proteases include tryptases, chymases and carboxypeptidase A3, and these are expressed and stored at remarkably high levels.
    [Show full text]
  • Characterizing the Source of Neutrophil Elastase and Proteinase 3 Cross-Presentation in B-Cell Acute Lymphoblastic Leukemia
    The Texas Medical Center Library DigitalCommons@TMC The University of Texas MD Anderson Cancer Center UTHealth Graduate School of The University of Texas MD Anderson Cancer Biomedical Sciences Dissertations and Theses Center UTHealth Graduate School of (Open Access) Biomedical Sciences 5-2017 Characterizing the source of neutrophil elastase and proteinase 3 cross-presentation in B-cell acute lymphoblastic leukemia Selena Carmona Follow this and additional works at: https://digitalcommons.library.tmc.edu/utgsbs_dissertations Part of the Medicine and Health Sciences Commons Recommended Citation Carmona, Selena, "Characterizing the source of neutrophil elastase and proteinase 3 cross-presentation in B-cell acute lymphoblastic leukemia" (2017). The University of Texas MD Anderson Cancer Center UTHealth Graduate School of Biomedical Sciences Dissertations and Theses (Open Access). 751. https://digitalcommons.library.tmc.edu/utgsbs_dissertations/751 This Thesis (MS) is brought to you for free and open access by the The University of Texas MD Anderson Cancer Center UTHealth Graduate School of Biomedical Sciences at DigitalCommons@TMC. It has been accepted for inclusion in The University of Texas MD Anderson Cancer Center UTHealth Graduate School of Biomedical Sciences Dissertations and Theses (Open Access) by an authorized administrator of DigitalCommons@TMC. For more information, please contact [email protected]. CHARACTERIZING THE SOURCE OF NEUTROPHIL ELASTASE AND PROTEINASE-3 CROSS-PRESENTATION IN B-CELL ACUTE LYMPHOBLASTIC LEUKEMIA A THESIS Presented to the Faculty of The University of Texas MD Anderson Cancer Center UTHealth Graduate School of Biomedical Sciences In Partial Fulfillment Of the Requirements For the Degree of MASTER OF SCIENCE By Selena Nicole Carmona, B.S.
    [Show full text]