Stable Homotopy and the Adams Spectral Sequence

Total Page:16

File Type:pdf, Size:1020Kb

Stable Homotopy and the Adams Spectral Sequence FACULTY OF SCIENCE UNIVERSITY OF COPENHAGEN Master Project in Mathematics Paolo Masulli Stable homotopy and the Adams Spectral Sequence Advisor: Jesper Grodal Handed-in: January 24, 2011 / Revised: March 20, 2011 CONTENTS i Abstract In the first part of the project, we define stable homotopy and construct the category of CW-spectra, which is the appropriate setting for studying it. CW-spectra are particular spectra with properties that resemble CW-complexes. We define the homotopy groups of CW- spectra, which are connected to stable homotopy groups of spaces, and we define homology and cohomology for CW-spectra. Then we construct the Adams spectral sequence, in the setting of the category of CW-spectra. This spectral sequence can be used to get information about the stable homotopy groups of spaces. The last part of the project is devoted to calculations. We show two examples of the use of the Adams sequence, the first one applied to the stable homotopy groups of spheres and the second one to the homotopy of the spectrum ko of the connective real K-theory. Contents Introduction 1 1 Stable homotopy 2 1.1 Generalities . .2 1.2 Stable homotopy groups . .2 2 Spectra 3 2.1 Definition and homotopy groups . .3 2.2 CW-Spectra . .4 2.3 Exact sequences for a cofibration of CW-spectra . 11 2.4 Cohomology for CW-spectra . 13 3 The Adams Spectral Sequence 17 3.1 Exact resolutions . 17 3.2 Constructing the spectral sequence . 18 3.3 The main theorem . 20 4 Calculations 25 4.1 Stable homotopy groups of spheres . 25 4.2 The homotopy of the spectrum ko ............... 28 References 34 CONTENTS 1 Introduction The stable homotopy groups of spaces are quite complicated to compute and this spectral sequence provides a tool that helps in this task. To get a clean construction of the spectral sequence, instead of working with space, we consider spectra, which are sequences of spaces (Xi) with structure maps ΣXi ! Xi+1 and soon we restrict our attention to CW-spectra. So we construct a suitable category for these objects, in which many of the results that hold for CW-complexes are true. The construction of the spectral sequence is done following the approach of [Hat04]. Performing calculations of stable homotopy groups using of the Adams spectral sequence is not a mechanical process. One has to compute free resolutions over the Steenrod Algebra and the differentials of the spectral sequence to obtain the E1 page. Moreover, the E1 term gives only sub- quotients of the p-components of the stable homotopy groups for certain filtrations of them. So one has still to solve the extension problem to get the group itself. In Section 4, we show two examples of this process: the first one regards the stable homotopy groups of spheres, the second one the homotopy of the spectrum ko of the connective real K-theory. We work out the cited free resolutions explicitly, by actually computing the generators of each free module. We assume that the reader is familiar with the material contained in [Hat02]. The proofs of some of the results here presented could not fit into this project: in such cases we sketch them and refer the reader to one of the references for a more detailed treatment. Acknowledgements I am grateful to all the people I have interacted with, during the last two years at the Department of Mathematical Sciences at the University of Copenhagen. A special thanks goes to Samik Basu, for suggesting me an alternative way to perform the computations of exact resolutions over A(1) and for his willingness to explain that to me. I am especially grateful to my advisor, Professor Jesper Grodal. He pro- posed me a challenging topic for this project and furthermore he suggested to look at the computations for the spectrum ko, which turned out to be very interesting. I am in debt with him for his support and help every time I needed advices or clarifications. 2 1 Stable homotopy 1.1 Generalities In this section, we will always consider basepointed topological spaces with a CW-structure, i.e. pairs (X; x0) where the space X is a CW-complex and the basepoint x0 2 X is a fixed 0-cell. Definition 1.1. Given two basepointed spaces (X; x0) and (Y; y0), their smash product is defined as X ^ Y = (X × Y )=(X _ Y ) = (X × Y )=(X × fy0g [ fx0g × Y ): This is again a basepointed space, with basepoint the subspace we quotient out. For a basepointed space X, we consider (instead of the suspension) the reduced suspension, which is ΣX := (SX)=(fx0g × I); where SX is the suspension of X. The reduced suspension is again a base- pointed space and it follows immediately for the definition that it can be ex- pressed in terms of smash product with the sphere S1, namely ΣX = X ^S1. Let us also note that, if X is a CW-complex, the reduced suspension is homotopy equivalent to the unreduced one. In fact ΣX is obtained from SX by collapsing the contractible subspace fx0g × I. 1.2 Stable homotopy groups The term stable in Algebraic Topology is used to indicate phenomena that occur in any dimension, without depending essentially on it, given that the dimension is sufficiently large. [Ada74, Part III, Ch. 1] Let us recall a classical result: Theorem 1.2. (Freudenthal Theorem) Let X be a (n − 1)-connected CW- complex. Then the suspension map πi(X) ! πi+1(ΣX) is an isomorphism for i < 2n − 1 and a surjection for i = 2n − 1. If X is n-connected, then ΣX is (n+1)-connected and so the Freudenthal theorem implies that, if X is a CW-complex of any connection and i 2 N, the morphisms in the sequence: k πi(X) ! πi+1(ΣX) !···! πi+k(Σ X) ! ::: will become isomorphisms from a certain point. The group to which the sequence stabilized is called the ith stable homotopy group of X, denoted s πi (X). This is the same as saying that: πs(X) = lim π (ΣkX); i −! i+k 3 where lim denotes the direct limit. −! 0 s 0 th In particular, taking X = S , πi (S ) is called the i stable homotopy s groups of spheres and is denoted by πi . By the Freudenthal Theorem, we have: s s 0 ∼ n πi = πi (S ) = πn+i(S ); for any n > i + 1. The composition of maps Si+j+k ! Sj+k ! Sk induces a product struc- s L s ture on π∗ = i πi . We have the following: s s s Proposition 1.3. The composition product πi × πj ! πi+j given by com- s position makes π∗ into a graded ring in which we have the relation αβ = ij s s (−1) βα, for α 2 πi , β 2 πj . Proof. See [Hat02, Proposition 4.56]. 2 Spectra 2.1 Definition and homotopy groups Definition 2.1. A spectrum E is a family (En)n2N of basepointed spaces Xn together with structure maps "n :ΣEn ! En+1 that are basepoint- preserving. n Example 2.2. Let X be a pointed space. If we set En = Σ (X) for all n+1 n 2 N and "n the identity of Σ we get a spectrum, called the suspension spectrum of X. In particular, taking X = S0, we get the sphere spectrum, denoted S0. The nth space of this spectrum is homeomorphic to Sn. A second example shows the connection of spectra with cohomology: by the Brown Representation Theorem [Hat02, Thm 4E.1], for every reduced cohomology theory K~ on the category of CW-complexes with basepoint, n we have that the functor K~ is natural equivalent to [−;En] for a family of basepointed CW-complexes (En), where [X; En] denotes the set of the homotopy classes of basepoint-preserving maps X ! En. By the suspension isomorphism for K, we have that: σ : K~ n(X) ! K~ n+1(ΣX) is a natural isomorphism. Hence we get the sequence of natural isomorphisms: ∼ n ∼ n+1 ∼ ∼ [X; En] = K~ (X) = K~ (ΣX) = [ΣX; En+1] = [X; ΩEn+1]; where the last equivalence comes from the adjunction between reduced sus- pension and basepointed loops. By the (contravariant) Yoneda Lemma, the ∼ natural equivalence [X; En] = [X; ΩEn+1] must be induced by a weak equiv- 0 alence "n : En ! ΩEn+1 which is the adjoint of a map "n :ΣEn ! En+1 and so (En) forms a spectrum. If we take the reduced cohomology with coefficients in an abelian group G, we get En = K(G; n) and the spectrum is called the Eilenberg-MacLane spectrum for the group G and denoted HG. 2.2 CW-Spectra 4 This can be slightly generalized by shifting dimension of an integer m and taking Xm = K(G; n + m) with the same maps ΣK(G; n + m) ! K(G; n + m + 1). We will denote this shifted Eilenberg-MacLane with K(G; n). It is possible to define homotopy groups for spectra in a quite natural way: Definition 2.3. Let E be a spectrum. We define the ith homotopy group of E, denoted πi(E), as the direct limit of the sequence: Σ πi+n+1("n) ···! πi+n(En) −! πi+n+1(ΣEn) −−−−−−−! Σ πi+n+1(En+1) −! πi+n+2(ΣEn+1) ! :::: In symbols: π (E) = lim π (E ). i −! i+n n Example 2.4. The homotopy groups of the suspension spectrum of a space are precisely the stable homotopy groups of that space, since the structure maps "i are all identities.
Recommended publications
  • The Suspension X ∧S and the Fake Suspension ΣX of a Spectrum X
    Contents 41 Suspensions and shift 1 42 The telescope construction 10 43 Fibrations and cofibrations 15 44 Cofibrant generation 22 41 Suspensions and shift The suspension X ^S1 and the fake suspension SX of a spectrum X were defined in Section 35 — the constructions differ by a non-trivial twist of bond- ing maps. The loop spectrum for X is the function complex object 1 hom∗(S ;X): There is a natural bijection 1 ∼ 1 hom(X ^ S ;Y) = hom(X;hom∗(S ;Y)) so that the suspension and loop functors are ad- joint. The fake loop spectrum WY for a spectrum Y con- sists of the pointed spaces WY n, n ≥ 0, with adjoint bonding maps n 2 n+1 Ws∗ : WY ! W Y : 1 There is a natural bijection hom(SX;Y) =∼ hom(X;WY); so the fake suspension functor is left adjoint to fake loops. n n+1 The adjoint bonding maps s∗ : Y ! WY define a natural map g : Y ! WY[1]: for spectra Y. The map w : Y ! W¥Y of the last section is the filtered colimit of the maps g Wg[1] W2g[2] Y −! WY[1] −−−! W2Y[2] −−−! ::: Recall the statement of the Freudenthal suspen- sion theorem (Theorem 34.2): Theorem 41.1. Suppose that a pointed space X is n-connected, where n ≥ 0. Then the homotopy fibre F of the canonical map h : X ! W(X ^ S1) is 2n-connected. 2 In particular, the suspension homomorphism 1 ∼ 1 piX ! pi(W(X ^ S )) = pi+1(X ^ S ) is an isomorphism for i ≤ 2n and is an epimor- phism for i = 2n+1, provided that X is connected.
    [Show full text]
  • Lecture 2: Spaces of Maps, Loop Spaces and Reduced Suspension
    LECTURE 2: SPACES OF MAPS, LOOP SPACES AND REDUCED SUSPENSION In this section we will give the important constructions of loop spaces and reduced suspensions associated to pointed spaces. For this purpose there will be a short digression on spaces of maps between (pointed) spaces and the relevant topologies. To be a bit more specific, one aim is to see that given a pointed space (X; x0), then there is an entire pointed space of loops in X. In order to obtain such a loop space Ω(X; x0) 2 Top∗; we have to specify an underlying set, choose a base point, and construct a topology on it. The underlying set of Ω(X; x0) is just given by the set of maps 1 Top∗((S ; ∗); (X; x0)): A base point is also easily found by considering the constant loop κx0 at x0 defined by: 1 κx0 :(S ; ∗) ! (X; x0): t 7! x0 The topology which we will consider on this set is a special case of the so-called compact-open topology. We begin by introducing this topology in a more general context. 1. Function spaces Let K be a compact Hausdorff space, and let X be an arbitrary space. The set Top(K; X) of continuous maps K ! X carries a natural topology, called the compact-open topology. It has a subbasis formed by the sets of the form B(T;U) = ff : K ! X j f(T ) ⊆ Ug where T ⊆ K is compact and U ⊆ X is open. Thus, for a map f : K ! X, one can form a typical basis open neighborhood by choosing compact subsets T1;:::;Tn ⊆ K and small open sets Ui ⊆ X with f(Ti) ⊆ Ui to get a neighborhood Of of f, Of = B(T1;U1) \ ::: \ B(Tn;Un): One can even choose the Ti to cover K, so as to `control' the behavior of functions g 2 Of on all of K.
    [Show full text]
  • The Double Suspension of the Mazur Homology 3-Sphere
    THE DOUBLE SUSPENSION OF THE MAZUR HOMOLOGY SPHERE FADI MEZHER 1 Introduction The main objects of this text are homology spheres, which are defined below. Definition 1.1. A manifold M of dimension n is called a homology n-sphere if it has the same homology groups as Sn; that is, ( Z if k ∈ {0, n} Hk(M) = 0 otherwise A result of J.W. Cannon in [Can79] establishes the following theorem Theorem 1.2 (Double Suspension Theorem). The double suspension of any homology n-sphere is homeomorphic to Sn+2. This, however, is beyond the scope of this text. We will, instead, construct a homology sphere, the Mazur homology 3-sphere, and show the double suspension theorem for this particular manifold. However, before beginning with the proper content, let us study the following famous example of a nontrivial homology sphere. Example 1.3. Let I be the group of (orientation preserving) symmetries of the icosahedron, which we recall is a regular polyhedron with twenty faces, twelve vertices, and thirty edges. This group, called the icosahedral group, is finite, with sixty elements, and is naturally a subgroup of SO(3). It is a well-known fact that we have a 2-fold covering ξ : SU(2) → SO(3), where ∼ 3 ∼ 3 SU(2) = S , and SO(3) = RP . We then consider the following pullback diagram S0 S0 Ie := ι∗(SU(2)) SU(2) ι∗ξ ξ I SO(3) Then, Ie is also a group, where the multiplication is given by the lift of the map µ ◦ (ι∗ξ × ι∗ξ), where µ is the multiplication in I.
    [Show full text]
  • L22 Adams Spectral Sequence
    Lecture 22: Adams Spectral Sequence for HZ=p 4/10/15-4/17/15 1 A brief recall on Ext We review the definition of Ext from homological algebra. Ext is the derived functor of Hom. Let R be an (ordinary) ring. There is a model structure on the category of chain complexes of modules over R where the weak equivalences are maps of chain complexes which are isomorphisms on homology. Given a short exact sequence 0 ! M1 ! M2 ! M3 ! 0 of R-modules, applying Hom(P; −) produces a left exact sequence 0 ! Hom(P; M1) ! Hom(P; M2) ! Hom(P; M3): A module P is projective if this sequence is always exact. Equivalently, P is projective if and only if if it is a retract of a free module. Let M∗ be a chain complex of R-modules. A projective resolution is a chain complex P∗ of projec- tive modules and a map P∗ ! M∗ which is an isomorphism on homology. This is a cofibrant replacement, i.e. a factorization of 0 ! M∗ as a cofibration fol- lowed by a trivial fibration is 0 ! P∗ ! M∗. There is a functor Hom that takes two chain complexes M and N and produces a chain complex Hom(M∗;N∗) de- Q fined as follows. The degree n module, are the ∗ Hom(M∗;N∗+n). To give the differential, we should fix conventions about degrees. Say that our differentials have degree −1. Then there are two maps Y Y Hom(M∗;N∗+n) ! Hom(M∗;N∗+n−1): ∗ ∗ Q Q The first takes fn to dN fn.
    [Show full text]
  • On Relations Between Adams Spectral Sequences, with an Application to the Stable Homotopy of a Moore Space
    Journal of Pure and Applied Algebra 20 (1981) 287-312 0 North-Holland Publishing Company ON RELATIONS BETWEEN ADAMS SPECTRAL SEQUENCES, WITH AN APPLICATION TO THE STABLE HOMOTOPY OF A MOORE SPACE Haynes R. MILLER* Harvard University, Cambridge, MA 02130, UsA Communicated by J.F. Adams Received 24 May 1978 0. Introduction A ring-spectrum B determines an Adams spectral sequence Ez(X; B) = n,(X) abutting to the stable homotopy of X. It has long been recognized that a map A +B of ring-spectra gives rise to information about the differentials in this spectral sequence. The main purpose of this paper is to prove a systematic theorem in this direction, and give some applications. To fix ideas, let p be a prime number, and take B to be the modp Eilenberg- MacLane spectrum H and A to be the Brown-Peterson spectrum BP at p. For p odd, and X torsion-free (or for example X a Moore-space V= So Up e’), the classical Adams E2-term E2(X;H) may be trigraded; and as such it is E2 of a spectral sequence (which we call the May spectral sequence) converging to the Adams- Novikov Ez-term E2(X; BP). One may say that the classical Adams spectral sequence has been broken in half, with all the “BP-primary” differentials evaluated first. There is in fact a precise relationship between the May spectral sequence and the H-Adams spectral sequence. In a certain sense, the May differentials are the Adams differentials modulo higher BP-filtration. One may say the same for p=2, but in a more attenuated sense.
    [Show full text]
  • A Suspension Theorem for Continuous Trace C*-Algebras
    proceedings of the american mathematical society Volume 120, Number 3, March 1994 A SUSPENSION THEOREM FOR CONTINUOUS TRACE C*-ALGEBRAS MARIUS DADARLAT (Communicated by Jonathan M. Rosenberg) Abstract. Let 3 be a stable continuous trace C*-algebra with spectrum Y . We prove that the natural suspension map S,: [Cq{X), 5§\ -* [Cq{X) ® Co(R), 3 ® Co(R)] is a bijection, provided that both X and Y are locally compact connected spaces whose one-point compactifications have the homo- topy type of a finite CW-complex and X is noncompact. This is used to compute the second homotopy group of 31 in terms of AMheory. That is, [C0(R2), 3] = K0{30) i where 3fa is a maximal ideal of 3 if Y is com- pact, and 3o = 3! if Y is noncompact. 1. Introduction For C*-algebras A, B let Hom(^4, 5) denote the space of (not necessarily unital) *-homomorphisms from A to 5 endowed with the topology of point- wise norm convergence. By definition <p, w e Hom(^, 5) are called homotopic if they lie in the same pathwise connected component of Horn (A, 5). The set of homotopy classes of the *-homomorphisms in Hom(^, 5) is denoted by [A, B]. For a locally compact space X let Cq(X) denote the C*-algebra of complex-valued continuous functions on X vanishing at infinity. The suspen- sion functor S for C*-algebras is defined as follows: it takes a C*-algebra A to A ® C0(R) and q>e Hom(^, 5) to <P0 idem € Hom(,4 ® C0(R), 5 ® C0(R)).
    [Show full text]
  • A Radius Sphere Theorem
    Invent. math. 112, 577-583 (1993) Inventiones mathematicae Springer-Verlag1993 A radius sphere theorem Karsten Grove 1'* and Peter Petersen 2'** 1 Department of Mathematics, University of Maryland, College Park, MD 20742, USA 2 Department of Mathematics, University of California, Los Angeles, CA 90024-1555, USA Oblatum 9-X-1992 Introduction The purpose of this paper is to present an optimal sphere theorem for metric spaces analogous to the celebrated Rauch-Berger-Klingenberg Sphere Theorem and the Diameter Sphere Theorem in Riemannian geometry. There has lately been considerable interest in studying spaces which are more singular than Riemannian manifolds. A natural reason for doing this is because Gromov-Hausdorff limits of Riemannian manifolds are almost never Riemannian manifolds, but usually only inner metric spaces with various nice properties. The kind of spaces we wish to study here are the so-called Alexandrov spaces. Alexan- drov spaces are finite Hausdorff dimensional inner metric spaces with a lower curvature bound in the distance comparison sense. The structure of Alexandrov spaces was studied in [BGP], [P1] and [P]. We point out that the curvature assumption implies that the Hausdorff dimension is equal to the topological dimension. Moreover, if X is an Alexandrov space and peX then the space of directions Zp at p is an Alexandrov space of one less dimension and with curvature > 1. Furthermore a neighborhood of p in X is homeomorphic to the linear cone over Zv- One of the important implications of this is that the local structure of n-dimensional Alexandrov spaces is determined by the structure of (n - 1)-dimen- sional Alexandrov spaces with curvature > 1.
    [Show full text]
  • Periodic Phenomena in the Classical Adams Spectral
    TRANSACTIONS of the AMERICAN MATHEMATICAL SOCIETY Volume 300. Number 1. March 1987 PERIODIC PHENOMENAIN THE CLASSICAL ADAMSSPECTRAL SEQUENCE MARK MAH0WALD AND PAUL SHICK Abstract. We investigate certain periodic phenomena in the classical Adams sepctral sequence which are related to the polynomial generators v„ in ot„(BP). We define the notion of a class a in Ext^ (Z/2, Z/2) being t>„-periodic or t>„-torsion and prove that classes that are u„-torsion are also uA.-torsion for all k such that 0 < k < «. This allows us to define a chromatic filtration of ExtA (Z/2, Z/2) paralleling the chromatic filtration of the Novikov spectral sequence £rterm given in [13]. 1. Introduction and statement of results. This work is motivated by a desire to understand something of the periodic phenomena noticed by Miller, Ravenel and Wilson in their work on the Novikov spectral sequence from the point of view of the classical Adams spectral sequence. The iij-term of the classical Adams spectral sequence (hereafter abbreviated clASS) is isomorphic to Ext A(Z/2, Z/2), where A is the mod 2 Steenrod algebra. This has been calculated completely in the range t — s < 70 [17]. The stem-by-stem calculation is quite tedious, though, so one looks for more global sorts of phenomena. The first result in this direction was the discovery of a periodic family in 7r*(S°) and their representatives in Ext A(Z/2, Z/2), discussed by Adams in [2] and by Barratt in [4]. This stable family, which is present for all primes p, is often denoted by {a,} and is thought of as v1-periodic, where y, is the polynomial generator of degree 2( p - 1) in 77+(BP)= Z^Jdj, v2,..
    [Show full text]
  • BOTT PERIODICITY Bott's 1957 Announcement of His Periodicity
    BOTT PERIODICITY PETER MAY Bott's 1957 announcement of his periodicity theorem transformed algebraic topol- ogy forever. To quote Atiyah in his obituary for Bott \This paper was a bombshell. The results were beautiful, far-reaching and totally unexpected." In briefest form, the theorem says 2 8 BU × Z ' Ω (BU × Z) and BO × Z ' Ω (BO × Z) When Bott started work on this, π10(U(n)) was claimed to be Z=3Z in one paper and to be cyclic of order a power of two in another, as yet unpublished. He showed the unpublished claim was correct. I'll begin with a brief sketch of his original proof, restricting to the complex case, next place it in his original context of differential geometry, and then give a sketch proof by the methods of algebraic topology, still restricting to the complex case. We have S2n−1 =∼ U(n)=U(n − 1) since U(n) acts transitively with isotropy group of a point U(n − 1). By the long exact sequence of the bundle U(n − 1) −! U(n) −! S2n−1 q and the fact that πk(S ) = 0 for k < q, πk(U(n)) = πk(U) for k=2 < n. Let 2n 2n 2n Grn(C ) be the Grassmannian manifold of complex n-planes in C and let Vn(C ) be the Stiefel manifold of n-frames in C2n. We have a principal U(n)-bundle 2n 2n p: Vn(C ) −! Grn(C ); which can also be seen via 2n ∼ 2n ∼ Vn(C ) = U(2n)=U(n) and Grn(C ) = U(2n)=U(n) × U(n): By the long exact sequence of homotopy groups, if 1 ≤ k << n, ∼ 2n πk−1(U(n)) = πk(Grn(C )): 2n In a sense I'll sketch, Bott showed that Grn(C ) is the \manifold of minimal geodesics" in ΩSU(2n).
    [Show full text]
  • The Adams-Novikov Spectral Sequence and the Homotopy Groups of Spheres
    The Adams-Novikov Spectral Sequence and the Homotopy Groups of Spheres Paul Goerss∗ Abstract These are notes for a five lecture series intended to uncover large-scale phenomena in the homotopy groups of spheres using the Adams-Novikov Spectral Sequence. The lectures were given in Strasbourg, May 7–11, 2007. May 21, 2007 Contents 1 The Adams spectral sequence 2 2 Classical calculations 5 3 The Adams-Novikov Spectral Sequence 10 4 Complex oriented homology theories 13 5 The height filtration 21 6 The chromatic decomposition 25 7 Change of rings 29 8 The Morava stabilizer group 33 ∗The author were partially supported by the National Science Foundation (USA). 1 9 Deeper periodic phenomena 37 A note on sources: I have put some references at the end of these notes, but they are nowhere near exhaustive. They do not, for example, capture the role of Jack Morava in developing this vision for stable homotopy theory. Nor somehow, have I been able to find a good way to record the overarching influence of Mike Hopkins on this area since the 1980s. And, although, I’ve mentioned his name a number of times in this text, I also seem to have short-changed Mark Mahowald – who, more than anyone else, has a real and organic feel for the homotopy groups of spheres. I also haven’t been very systematic about where to find certain topics. If I seem a bit short on references, you can be sure I learned it from the absolutely essential reference book by Doug Ravenel [27] – “The Green Book”, which is not green in its current edition.
    [Show full text]
  • Suspension Foliations: Interesting Examples of Topology and Geometry
    SUSPENSION FOLIATIONS: INTERESTING EXAMPLES OF TOPOLOGY AND GEOMETRY KEN RICHARDSON Abstract. We give examples of foliations on suspensions and comment on their topological and geometric properties 1. Idea of foliation by suspension Here is the simplest example of foliation by suspension. Let X be a manifold of dimension 1 q, and let f : X ! X be a bijection. Then we define the suspension M = S ×f X as the quotient of [0; 1] × X by the equivalence relation (1; x) ∼ (0; f (x)). 1 M = S ×f X = [0; 1] × X ∼ Then automatically M carries two foliations: F2 consisting of sets of the form F2;t = f(t; x)∼ : x 2 Xg and F1 consisting of sets of the form F2;x0 = f(t; x): t 2 [0; 1] ; x 2 Ox0 g, where the orbit Ox0 is defined as −2 −1 2 Ox0 = :::; f (x0) ; f (x0) ; x0; f (x0) ; f (x0) ; ::: ; where the exponent refers to the number of times the function f is composed with itself. −2 Note that Ox0 = Of(x0) = Of (x0), etc., so the same is true for F1;x0 . Understanding the foliation F1 is equivalent to understanding the dynamics of the map f. If the manifold X is already foliated, you can use the construction to increase the codimension of the foliation, as long as f maps leaves to leaves. The first set of examples concerns foliations of a map from the circle to itself. Example A: Let X = S1, let α be a fixed real number, and let f : S1 ! S1 be defined iα 1 1 by f (z) = e z.
    [Show full text]
  • A Novice's Guide to the Adams-Novikov Spectral Sequence
    A NOVICE'S GUIDE TO THE AD~MS-NOVIKOV SPECTRAL SEQUENCE Douglas C. Ravenel University of Washington Seattle, Washington 98195 Ever since its introduction by J. F. Adams [8] in 1958, the spectral sequence that bears his name has been a source of fascination to homotopy theorists. By glancing at a table of its structure in low dimensions (such have been published in [7], [i0] and [27]; one can also be found in ~2) one sees not only the values of but the structural relations among the corres- ponding stable homotopy groups of spheres. It cannot be denied that the determination of the latter is one of the central problems of algebraic topology. It is equally clear that the Adams spectral sequence and its variants provide us with a very powerful systematic approach to this question. The Adams spectral sequence in its original form is a device for converting algebraic information coming from the Steenrod algebra into geometric information, namely the structure of the stable homotopy groups of spheres. In 1967 Novikov [44] introduced an analogous spectral sequence (formally known now as the Adams- Novikov spectral sequence, and informally as simply the Novikov spectral sequence) whose input is a~ebraic information coming from MU MU, the algebra of cohomology operations of complex cobordism theory (regarded as a generalized cohomology theory (see [2])). This new spectral sequence is formally similar to the classical one. In both cases, the E2-term is computable (at least in principle) by purely algebraic methods and the E -term is the bigraded object associated to some filtration of the stable homo- topy groups of spheres (the filtrations are not the same for the *Partially supported by NSF 405 two spectral sequences>.
    [Show full text]