Complex Cobordism and Stable Homotopy Groups of Spheres

Total Page:16

File Type:pdf, Size:1020Kb

Complex Cobordism and Stable Homotopy Groups of Spheres COMPLEX COBORDISM AND STABLE HOMOTOPY GROUPS OF SPHERES SECOND EDITION DOUGLAS C. RAVENEL AMS CHELSEA PUBLISHING !MERICAN-ATHEMATICAL3OCIETYs0ROVIDENCE 2HODE)SLAND http://dx.doi.org/10.1090/chel/347.H COMPLEX COBORDISM AND STABLE HOMOTOPY GROUPS OF SPHERES SECOND EDITION DOUGLAS C. RAVENEL AMS CHELSEA PUBLISHING American Mathematical Society • Providence, Rhode Island 2000 Mathematics Subject Classification. Primary 55-02; Secondary 55N22, 55Q40, 55Q45, 55Q50, 55Q51, 55T15, 55T25. For additional information and updates on this book, visit www.ams.org/bookpages/chel-347 Library of Congress Cataloging-in-Publication Data Ravenel, Douglas C. Complex cobordism and stable homotopy groups of spheres / Douglas C. Ravenel.—2nd ed. p. cm. Includes bibliographical references and index. ISBN 0-8218-2967-X (alk. paper) 1. Homotopy groups. 2. Sphere. 3. Spectral sequences (Mathematics) 4. Cobordism theory. I. Title. QA612.78 .R39 2003 514.24—dc22 2003062646 Copying and reprinting. Individual readers of this publication, and nonprofit libraries acting for them, are permitted to make fair use of the material, such as to copy a chapter for use in teaching or research. Permission is granted to quote brief passages from this publication in reviews, provided the customary acknowledgment of the source is given. Republication, systematic copying, or multiple reproduction of any material in this publication is permitted only under license from the American Mathematical Society. Requests for such permission should be addressed to the Acquisitions Department, American Mathematical Society, 201 Charles Street, Providence, Rhode Island 02904-2294, USA. Requests can also be made by e-mail to [email protected]. c 2004 by the American Mathematical Society. All rights reserved. The American Mathematical Society retains all rights except those granted to the United States Government. Printed in the United States of America. ∞ The paper used in this book is acid-free and falls within the guidelines established to ensure permanence and durability. Visit the AMS home page at http://www.ams.org/ 10 9 8 7 6 5 4 3 2 18 17 16 15 14 13 To my wife, Michelle Contents List of Figures xi List of Tables xiii Preface to the Second Edition xv Preface to the First Edition xvii Commonly Used Notations xix Chapter 1. An Introduction to the Homotopy Groups of Spheres 1 1. Classical Theorems Old and New 2 Homotopy groups. The Hurewicz and Freudenthal theorems. Stable stems. The Hopf map. Serre’s finiteness theorem. Nishida’s nilpotence theorem. Cohen, Moore and Neisendorfer’s exponent theorem. Bott per- iodicity. The J-homomorphism. n 2. Methods of Computing π∗(S )5 Eilenberg–Mac Lane spaces and Serre’s method. The Adams spectral sequence. Hopf invariant one theorems. The Adams–Novikov spectral sequence. Tables in low dimensions for p =3. 3. The Adams–Novikov E2-term, Formal Group Laws, and the Greek Letter Construction 12 Formal group laws and Quillen’s theorem. The Adams–Novikov E2- term as group cohomology. Alphas, betas and gammas. The Morava– Landweber theorem and higher Greek letters. Generalized Greek letter elements. 4. More Formal Group Law Theory, Morava’s Point of View, and the Chromatic Spectral Sequence 19 The Brown–Peterson spectrum. Classification of formal group laws. Morava’s group action, its orbits and stabilizers. The chromatic resolution and the chromatic spectral sequence. Bockstein spectral sequences. Use of cyclic subgroups to detect Arf invariant elements. Morava’s vanishing theorem. Greek letter elements in the chromatic spectral sequence. 5. Unstable Homotopy Groups and the EHP Spectral Sequence 24 The EHP sequences. The EHP spectral sequence. The stable zone. The inductive method. The stable EHP spectral sequence. The Adams vector field theorem. James periodicity. The J-spectrum. The spectral v vi CONTENTS ∞ sequence for J∗(RP )andJ∗(BΣp). Relation to the Segal conjecture. The Mahowald root invariant. Chapter 2. Setting up the Adams Spectral Sequence 41 1. The Classical Adams Spectral Sequence 41 Mod (p) Eilenberg–Mac Lane spectra. Mod (p) Adams resolutions. Differentials. Homotopy inverse limits. Convergence. The extension prob- lem. Examples: integral and mod (pi) Eilenberg–Mac Lane spectra. 2. The Adams Spectral Sequence Based on a Generalized Homology Theory 49 E∗-Adams resolutions. E-completions. The E∗-Adams spectral se- quence. Assumptions on the spectrum E. E∗(E) is a Hopf algebroid. The canonical Adams resolution. Convergence. The Adams filtration. 3. The Smash Product Pairing and the Generalized Connecting Homomorphism 53 The smash product induces a pairing in the Adams spectral sequence. A map that is trivial in homology raises Adams filtration. The connecting homomorphism in Ext and the geometric boundary map. Chapter 3. The Classical Adams Spectral Sequence 59 1. The Steenrod Algebra and Some Easy Calculations 59 Milnor’s structure theorem for A∗. The cobar complex. Multiplica- tion by p in the E∞-term. The Adams spectral sequence for π∗(MU). Computations for MO, bu and bo. 2. The May Spectral Sequence 67 May’s filtration of A∗. Nonassociativity of May’s E1-term and a way to avoid it. Computations at p = 2 in low dimensions. Computations with the subalgebra A(2) at p =2. 3. The Lambda Algebra 74 ΛasanAdamsE1-term. The algebraic EHP spectral sequence. Serial numbers. The Curtis algorithm. Computations below dimension 14. James periodicity. The Adams vanishing line. d1 is multiplication by 3 λ−1. Illustration for S . 4. Some General Properties of Ext 85 Exts for s ≤ 3. Behavior of elements in Ext2. Adams’ vanishing line of slope 1/2forp = 2. Periodicity above a line of slope 1/5forp =2. Elements not annihilated by any periodicity operators and their relation to im J. An elementary proof that most of these elements are nontrivial. 5. Survey and Further Reading 94 Exotic cobordism theories. Decreasing filtrations of A∗ and the result- ing spectral sequences. Application to MSp. Mahowald’s generalizations CONTENTS vii of Λ. vn-periodicity in the Adams spectral sequence. Selected references to related work. Chapter 4. BP-Theory and the Adams–Novikov Spectral Sequence 103 1. Quillen’s Theorem and the Structure of BP∗(BP) 103 Complex cobordism. Complex orientation of a ring spectrum. The formal group law for a complex oriented homology theory. Quillen’s the- orem equating the Lazard and complex cobordism rings. Landweber and Novikov’s theorem on the structure of MU∗(MU). The Brown–Peterson spectrum BP. Quillen’s idempotent operation and p-typical formal group laws. The structure of BP∗(BP). 2. A Survey of BP-Theory 111 Bordism groups of spaces. The Sullivan–Baas construction. The Johnson–Wilson spectrum BPn.TheMoravaK-theories K(n). The Landweber filtration and exact functor theorems. The Conner–Floyd iso- morphism. K-theory as a functor of complex cobordism. Johnson and Yosimura’s work on invariant regular ideals. Infinite loop spaces associ- ated with MU and BP; the Ravenel–Wilson Hopf ring. The unstable Adams–Novikov spectral sequence of Bendersky, Curtis and Miller. 3. Some Calculations in BP∗(BP) 117 The Morava-Landweber invariant prime ideal theorem. Some invari- ant regular ideals. A generalization of Witt’s lemma. A formula for the universal p-typical formal group law. Formulas for the coproduct and con- jugation in BP∗(BP). A filtration of BP∗(BP)/In. 4. Beginning Calculations with the Adams–Novikov Spectral Sequence 130 The Adams–Novikov spectral sequence and sparseness. The alge- braic Novikov spectral sequence of Novikov and Miller. Low dimensional Ext of the algebra of Steenrod reduced powers. Bockstein spectral se- quences leading to the Adams–Novikov E2-term. Calculations at odd primes. Toda’s theorem on the first nontrivial odd primary Novikov dif- ferential. Chart for p = 5. Calculations and charts for p =2.Comparison with the Adams spectral sequence. Chapter 5. The Chromatic Spectral Sequence 147 1. The Algebraic Construction 148 Greek letter elements and generalizations. The chromatic resolu- tion, spectral sequence, and cobar complex. The Morava stabilizer alge- bra Σ(n). The change-of-rings theorem. The Morava vanishing theorem. Signs of Greek letter elements. Computations with βt. Decomposability of γ1. Chromatic differentials at p = 2. Divisibility of α1βp. 1 2. Ext (BP∗/In) and Hopf Invariant One 158 0 0 0 1 Ext (BP∗). Ext (M1 ). Ext (BP∗). Hopf invariant one elements. 1 The Miller-Wilson calculation of Ext (BP∗/In). viii CONTENTS 3. Ext(M 1)andtheJ-Homomorphism 165 Ext(M 1). Relation to im J. Patterns of differentials at p =2.Comp- utations with the mod (2) Moore spectrum. 4. Ext2 and the Thom Reduction 172 Results of Miller, Ravenel and Wilson (p>2) and Shimomura (p =2) 2 on Ext (BP∗). Behavior of the Thom reduction map. Arf invariant differ- entials at p>2. Mahowald’s counterexample to the doomsday conjecture. 5. Periodic Families in Ext2 178 Smith’s construction of βt. Obstructions at p =3.ResultsofDavis, Mahowald, Oka, Smith and Zahler on permanent cycles in Ext2. Decom- posables in Ext2. 6. Elements in Ext3 and Beyond 183 Products of alphas and betas in Ext3. Products of betas in Ext4.A possible obstruction to the existence of V (4). Chapter 6. Morava Stabilizer Algebras 187 1. The Change-of-Rings Isomorphism 188 Theorems of Ravenel and Miller. Theorems of Morava. General nonsense about Hopf algebroids. Formal group laws of Artin local rings. Morava’s proof. Miller and Ravenel’s proof. 2. The Structure of Σ(n) 192 Relation to the group ring for Sn. Recovering the grading via an eigenspace decomposition. A matrix representation of Sn. A splitting of Sn when p n. Poincar´e duality and periodic cohomology of Sn. 3. The Cohomology of Σ(n) 198 A May filtration of Σ(n) and the May spectral sequence. The open subgroup theorem. Cohomology of some associated Lie algebras. H1 and H2. H∗(S(n)) for n =1, 2, 3.
Recommended publications
  • Equivariant Cohomology Chern Numbers Determine Equivariant
    EQUIVARIANT COHOMOLOGY CHERN NUMBERS DETERMINE EQUIVARIANT UNITARY BORDISM FOR TORUS GROUPS ZHI LÜ AND WEI WANG ABSTRACT. This paper shows that the integral equivariant cohomology Chern num- bers completely determine the equivariant geometric unitary bordism classes of closed unitary G-manifolds, which gives an affirmative answer to the conjecture posed by Guillemin–Ginzburg–Karshon in [20, Remark H.5, §3, Appendix H], where G is a torus. As a further application, we also obtain a satisfactory solution of [20, Question (A), §1.1, Appendix H] on unitary Hamiltonian G-manifolds. Our key ingredients in the proof are the universal toric genus defined by Buchstaber–Panov–Ray and the Kronecker pairing of bordism and cobordism. Our approach heavily exploits Quillen’s geometric inter- pretation of homotopic unitary cobordism theory. Moreover, this method can also be k applied to the study of (Z2) -equivariant unoriented bordism and can still derive the classical result of tom Dieck. 1. INTRODUCTION AND MAIN RESULTS 1.1. Background. In his seminal work [37] , R. Thom introduced the unoriented bor- dism theory, which corresponds to the infinite orthogonal group O. Since then, vari- ous other bordism theories, which correspond to subgroups G of the orthogonal group O as structure groups of stable tangent bundles or stable normal bundles of compact smooth manifolds, have been studied and established (e.g., see [41, 31, 32] and for more details, see [26, 35]). When G is chosen as SO (resp. U, SU etc.), the corresponding bor- dism theory is often called the oriented (resp. unitary, special unitary etc.) bordism theory.
    [Show full text]
  • On Relations Between Adams Spectral Sequences, with an Application to the Stable Homotopy of a Moore Space
    Journal of Pure and Applied Algebra 20 (1981) 287-312 0 North-Holland Publishing Company ON RELATIONS BETWEEN ADAMS SPECTRAL SEQUENCES, WITH AN APPLICATION TO THE STABLE HOMOTOPY OF A MOORE SPACE Haynes R. MILLER* Harvard University, Cambridge, MA 02130, UsA Communicated by J.F. Adams Received 24 May 1978 0. Introduction A ring-spectrum B determines an Adams spectral sequence Ez(X; B) = n,(X) abutting to the stable homotopy of X. It has long been recognized that a map A +B of ring-spectra gives rise to information about the differentials in this spectral sequence. The main purpose of this paper is to prove a systematic theorem in this direction, and give some applications. To fix ideas, let p be a prime number, and take B to be the modp Eilenberg- MacLane spectrum H and A to be the Brown-Peterson spectrum BP at p. For p odd, and X torsion-free (or for example X a Moore-space V= So Up e’), the classical Adams E2-term E2(X;H) may be trigraded; and as such it is E2 of a spectral sequence (which we call the May spectral sequence) converging to the Adams- Novikov Ez-term E2(X; BP). One may say that the classical Adams spectral sequence has been broken in half, with all the “BP-primary” differentials evaluated first. There is in fact a precise relationship between the May spectral sequence and the H-Adams spectral sequence. In a certain sense, the May differentials are the Adams differentials modulo higher BP-filtration. One may say the same for p=2, but in a more attenuated sense.
    [Show full text]
  • On the Motivic Spectra Representing Algebraic Cobordism and Algebraic K-Theory
    Documenta Math. 359 On the Motivic Spectra Representing Algebraic Cobordism and Algebraic K-Theory David Gepner and Victor Snaith Received: September 9, 2008 Communicated by Lars Hesselholt Abstract. We show that the motivic spectrum representing alge- braic K-theory is a localization of the suspension spectrum of P∞, and similarly that the motivic spectrum representing periodic alge- braic cobordism is a localization of the suspension spectrum of BGL. In particular, working over C and passing to spaces of C-valued points, we obtain new proofs of the topological versions of these theorems, originally due to the second author. We conclude with a couple of applications: first, we give a short proof of the motivic Conner-Floyd theorem, and second, we show that algebraic K-theory and periodic algebraic cobordism are E∞ motivic spectra. 2000 Mathematics Subject Classification: 55N15; 55N22 1. Introduction 1.1. Background and motivation. Let (X, µ) be an E∞ monoid in the ∞ category of pointed spaces and let β ∈ πn(Σ X) be an element in the stable ∞ homotopy of X. Then Σ X is an E∞ ring spectrum, and we may invert the “multiplication by β” map − − ∞ Σ nβ∧1 Σ nΣ µ µ(β):Σ∞X ≃ Σ∞S0 ∧ Σ∞X −→ Σ−nΣ∞X ∧ Σ∞X −→ Σ−nΣ∞X. to obtain an E∞ ring spectrum −n β∗ Σ β∗ Σ∞X[1/β] := colim{Σ∞X −→ Σ−nΣ∞X −→ Σ−2nΣ∞X −→···} with the property that µ(β):Σ∞X[1/β] → Σ−nΣ∞X[1/β] is an equivalence. ∞ ∞ In fact, as is well-known, Σ X[1/β] is universal among E∞ Σ X-algebras A in which β becomes a unit.
    [Show full text]
  • Toric Polynomial Generators of Complex Cobordism
    TORIC POLYNOMIAL GENERATORS OF COMPLEX COBORDISM ANDREW WILFONG Abstract. Although it is well-known that the complex cobordism ring is a polynomial U ∼ ring Ω∗ = Z [α1; α2;:::], an explicit description for convenient generators α1; α2;::: has proven to be quite elusive. The focus of the following is to construct complex cobordism polynomial generators in many dimensions using smooth projective toric varieties. These generators are very convenient objects since they are smooth connected algebraic varieties with an underlying combinatorial structure that aids in various computations. By applying certain torus-equivariant blow-ups to a special class of smooth projective toric varieties, such generators can be constructed in every complex dimension that is odd or one less than a prime power. A large amount of evidence suggests that smooth projective toric varieties can serve as polynomial generators in the remaining dimensions as well. 1. Introduction U In 1960, Milnor and Novikov independently showed that the complex cobordism ring Ω∗ is isomorphic to the polynomial ring Z [α1; α2;:::], where αn has complex dimension n [14, 16]. The standard method for choosing generators αn involves taking products and disjoint unions i j of complex projective spaces and Milnor hypersurfaces Hi;j ⊂ CP × CP . This method provides a smooth algebraic not necessarily connected variety in each even real dimension U whose cobordism class can be chosen as a polynomial generator of Ω∗ . Replacing the disjoint unions with connected sums give other choices for polynomial generators. However, the operation of connected sum does not preserve algebraicity, so this operation results in a smooth connected not necessarily algebraic manifold as a complex cobordism generator in each dimension.
    [Show full text]
  • Periodic Phenomena in the Classical Adams Spectral
    TRANSACTIONS of the AMERICAN MATHEMATICAL SOCIETY Volume 300. Number 1. March 1987 PERIODIC PHENOMENAIN THE CLASSICAL ADAMSSPECTRAL SEQUENCE MARK MAH0WALD AND PAUL SHICK Abstract. We investigate certain periodic phenomena in the classical Adams sepctral sequence which are related to the polynomial generators v„ in ot„(BP). We define the notion of a class a in Ext^ (Z/2, Z/2) being t>„-periodic or t>„-torsion and prove that classes that are u„-torsion are also uA.-torsion for all k such that 0 < k < «. This allows us to define a chromatic filtration of ExtA (Z/2, Z/2) paralleling the chromatic filtration of the Novikov spectral sequence £rterm given in [13]. 1. Introduction and statement of results. This work is motivated by a desire to understand something of the periodic phenomena noticed by Miller, Ravenel and Wilson in their work on the Novikov spectral sequence from the point of view of the classical Adams spectral sequence. The iij-term of the classical Adams spectral sequence (hereafter abbreviated clASS) is isomorphic to Ext A(Z/2, Z/2), where A is the mod 2 Steenrod algebra. This has been calculated completely in the range t — s < 70 [17]. The stem-by-stem calculation is quite tedious, though, so one looks for more global sorts of phenomena. The first result in this direction was the discovery of a periodic family in 7r*(S°) and their representatives in Ext A(Z/2, Z/2), discussed by Adams in [2] and by Barratt in [4]. This stable family, which is present for all primes p, is often denoted by {a,} and is thought of as v1-periodic, where y, is the polynomial generator of degree 2( p - 1) in 77+(BP)= Z^Jdj, v2,..
    [Show full text]
  • Complex Oriented Cohomology Theories and the Language of Stacks
    COMPLEX ORIENTED COHOMOLOGY THEORIES AND THE LANGUAGE OF STACKS COURSE NOTES FOR 18.917, TAUGHT BY MIKE HOPKINS Contents Introduction 1 1. Complex Oriented Cohomology Theories 2 2. Formal Group Laws 4 3. Proof of the Symmetric Cocycle Lemma 7 4. Complex Cobordism and MU 11 5. The Adams spectral sequence 14 6. The Hopf Algebroid (MU∗; MU∗MU) and formal groups 18 7. More on isomorphisms, strict isomorphisms, and π∗E ^ E: 22 8. STACKS 25 9. Stacks and Associated Stacks 29 10. More on Stacks and associated stacks 32 11. Sheaves on stacks 36 12. A calculation and the link to topology 37 13. Formal groups in prime characteristic 40 14. The automorphism group of the Lubin-Tate formal group laws 46 15. Formal Groups 48 16. Witt Vectors 50 17. Classifying Lifts | The Lubin-Tate Space 53 18. Cohomology of stacks, with applications 59 19. p-typical Formal Group Laws. 63 20. Stacks: what's up with that? 67 21. The Landweber exact functor theorem 71 References 74 Introduction This text contains the notes from a course taught at MIT in the spring of 1999, whose topics revolved around the use of stacks in studying complex oriented cohomology theories. The notes were compiled by the graduate students attending the class, and it should perhaps be acknowledged (with regret) that we recorded only the mathematics and not the frequent jokes and amusing sideshows which accompanied it. Please be wary of the fact that what you have in your hands is the `alpha- version' of the text, which is only slightly more than our direct transcription of the stream-of- consciousness lectures.
    [Show full text]
  • Arxiv:Math/0305250V1
    HEISENBERG GROUPS AND ALGEBRAIC TOPOLOGY JACK MORAVA ∞ Abstract. We study the Madsen-Tillmann spectrum CP−1 as a quotient of ∞ the Mahowald pro-object CP−∞, which is closely related to the Tate coho- mology of circle actions. That theory has an associated symplectic structure, whose symmetries define the Virasoro operations on the cohomology of moduli space constructed by Kontsevich and Witten. 1. Introduction A sphere Sn maps essentially to a sphere Sk only if n k, and since we usually think of spaces as constructed by attaching cells, it follows≥ that algebraic topology is in some natural sense upper-triangular, and thus not very self-dual: as in the category of modules over the mod p group ring of a p-group, its objects are built by iterated extensions from a small list of simple ones. Representation theorists find semi-simple categories more congenial, and for related reasons, physicists are happiest in Hilbert space. This paper is concerned with some remarkable properties of the cohomology of the moduli space of Riemann surfaces discovered by physicists studying two-dimensional topological gravity (an enormous elaboration of conformal field theory), which appear at first sight quite unfamiliar. Our argument is that these new phenomena are forced by the physicists’ interest in self-dual constructions, which leads to objects which are (from the point of view of classical algebraic topology) very large [1 2]. § Fortunately, equivariant homotopy theory provides us with tools to manage these constructions. The first section below is a geometric introduction to the Tate cohomology of the circle group; the conclusion is that it possesses an intrinsic symplectic module structure, which pairs positive and negative dimensions in a arXiv:math/0305250v1 [math.AT] 17 May 2003 way very useful for applications.
    [Show full text]
  • Tate Blueshift and Vanishing for Real Oriented Cohomology 3
    TATE BLUESHIFT AND VANISHING FOR REAL ORIENTED COHOMOLOGY GUCHUAN LI, VITALY LORMAN, AND J.D. QUIGLEY Abstract. We study the Tate construction for certain Real oriented cohomology theories. First, we show that after suitable completion, the Tate construction with respect to a trivial Z/2-action on height n Real Johnson-Wilson theory splits into a wedge of height n − 1 Real Johnson-Wilson theories. Our result simultaneously recovers a blueshift result of Ando-Morava-Sadofsky for (classical) Johnson-Wilson theory and extends a blueshift result of Greenlees-May for real topological K-theory to all chromatic heights. Second, we prove that the Tate construction with respect to a trivial finite group action on Real Morava K-theory vanishes, generalizing a Tate vanishing result of Greenlees and Sadofsky for (classical) Morava K-theory. In the process of proving our results, we develop the theory of completions of module spectra over Real complex cobordism, C2-equivariant chromatic Bousfield localizations, and parametrized Tate constructions. Contents 1. Introduction 1 2. Real representations and Real oriented cohomology theories 7 3. Completion and Bousfield localization 11 4. Tate constructions 15 5. Blueshift for Real oriented cohomology theories 23 6. Tate vanishing 30 References 36 1. Introduction arXiv:1910.06191v3 [math.AT] 9 Aug 2021 1.1. Motivation and main results. Real oriented homotopy theory has played an im- portant role in algebraic topology over the past few decades. Its central objects, Real ori- ented cohomology theories, are genuine C2-equivariant cohomology theories equipped with a choice of Thom class for Real vector bundles. Examples include the K-theory of Real vector bundles KR [3], Real cobordism MR [36], height n Real Johnson-Wilson theory E(n) and Real Morava K-theory K(n) [29], and certain forms of topological modular forms with level structure [22].
    [Show full text]
  • THE ORIENTED COBORDISM RING Contents Introduction 1 1
    THE ORIENTED COBORDISM RING ARAMINTA GWYNNE Abstract. We give an exposition of the computation of the oriented cobor- SO dism ring Ω∗ using the Adam's spectral sequence. Our proof follows Pengel- ley [15]. The unoriented and complex cobordism rings are also computed in a similar fashion. Contents Introduction 1 1. Homology of classifying spaces 4 2. The stable Hurewicz map and rational data 5 3. Steenrod algebra structures 5 4. Main theorem: statement and remarks 6 5. Proof of the main theorem 8 6. A spectrum level interpretation 11 7. Adams spectral sequence 12 8. The easier torsion 13 8.1. The MO case 14 8.2. The MU and MSO cases 14 9. The harder torsion 15 10. Relation to other proofs 17 11. Consequences 21 Acknowledgments 22 References 22 Introduction In his now famous paper [19], Thom showed that cobordism rings are isomor- phic to stable homotopy groups of Thom spectra, and used this isomorphism to compute certain cobordism rings. We'll use the notation N∗ for the unoriented U SO cobordism ring, Ω∗ for the complex cobordism ring, and Ω∗ for the oriented ∼ U ∼ cobordism ring. Then Thom's theorem says that N∗ = π∗(MO), Ω∗ = π∗(MU), SO ∼ and Ω∗ = π∗(MSO). Thom's theorem is one of the main examples of a general approach to problems in geometric topology: use classifying spaces to translate the problem into the world of algebraic topology, and then use algebraic tools to compute. For the majority of this paper, we will focus on the algebraic side of the computation.
    [Show full text]
  • Equivariant Stable Homotopy Theory
    EQUIVARIANT STABLE HOMOTOPY THEORY J.P.C. GREENLEES AND J.P. MAY Contents Introduction 1 1. Equivariant homotopy 2 2. The equivariant stable homotopy category 10 3. Homologyandcohomologytheoriesandfixedpointspectra 15 4. Change of groups and duality theory 20 5. Mackey functors, K(M,n)’s, and RO(G)-gradedcohomology 25 6. Philosophy of localization and completion theorems 30 7. How to prove localization and completion theorems 34 8. Examples of localization and completion theorems 38 8.1. K-theory 38 8.2. Bordism 40 8.3. Cohomotopy 42 8.4. The cohomology of groups 45 References 46 Introduction The study of symmetries on spaces has always been a major part of algebraic and geometric topology, but the systematic homotopical study of group actions is relatively recent. The last decade has seen a great deal of activity in this area. After giving a brief sketch of the basic concepts of space level equivariant homo- topy theory, we shall give an introduction to the basic ideas and constructions of spectrum level equivariant homotopy theory. We then illustrate ideas by explain- ing the fundamental localization and completion theorems that relate equivariant to nonequivariant homology and cohomology. The first such result was the Atiyah-Segal completion theorem which, in its simplest terms, states that the completion of the complex representation ring R(G) at its augmentation ideal I is isomorphic to the K-theory of the classifying space ∧ ∼ BG: R(G)I = K(BG). A more recent homological analogue of this result describes 1 2 J.P.C. GREENLEES AND J.P. MAY the K-homology of BG.
    [Show full text]
  • Stable Etale Realization and Etale Cobordism
    Stable ´etale realization and ´etale cobordism Gereon Quick Abstract We show that there is a stable homotopy theory of profinite spaces and use it for two main applications. On the one hand we construct an ´etale topological realization of the stable A1-homotopy theory of smooth schemes over a base field of arbitrary characteristic in analogy to the complex realization functor for fields of characteristic zero. On the other hand we get a natural setting for ´etale cohomology theories. In particular, we define and discuss an ´etale topological cobordism theory for schemes. It is equipped with an Atiyah-Hirzebruch spectral sequence starting from ´etale cohomology. Finally, we construct maps from algebraic to ´etale cobordism and discuss algebraic cobordism with finite coefficients over an algebraically closed field after inverting a Bott element. 1 Introduction For the proof of the Milnor Conjecture Voevodsky invented algebraic cobordism, a new cohomology theory for schemes represented by the Thom spectrum in his new framework of A1-homotopy theory. Using the known topological realiza- tion functor for schemes over a field of characteristic zero he linked his theory to the classical one by showing that the complex topological realization of the algebraic cobordism theory yields a map to complex cobordism. Independently, Levine and Morel constructed in a geometric way an algebraic cobordism theory as the universal oriented cohomology theory on smooth schemes and used it to prove Rost’s Degree Formula in characteristic zero. Looking at the following diagram of cohomology theories algebraic cobordism ↔ ? l l algebraic K-Theory ↔ ´etale K-Theory arXiv:math/0608313v3 [math.AG] 29 May 2007 l l motivic cohomology ↔ ´etale cohomology gives rise to the following questions.
    [Show full text]
  • Torsion Algebraic Cycles and Complex Cobordism
    JOURNAL OF THE AMERICAN MATHEMATICAL SOCIETY Volume 10, Number 2, April 1997, Pages 467{493 S 0894-0347(97)00232-4 TORSION ALGEBRAIC CYCLES AND COMPLEX COBORDISM BURT TOTARO Introduction Atiyah and Hirzebruch gave the first counterexamples to the Hodge conjecture with integral coefficients [3]. That conjecture predicted that every integral coho- mology class of Hodge type (p; p) on a smooth projective variety should be the class of an algebraic cycle, but Atiyah and Hirzebruch found additional topological properties which must be satisfied by the integral cohomology class of an algebraic cycle. Here we provide a more systematic explanation for their results by showing that the classical cycle map, from algebraic cycles modulo algebraic equivalence to integral cohomology, factors naturally through a topologically defined ring which is richer than integral cohomology. The new ring is based on complex cobordism, a well-developed topological theory which has been used only rarely in algebraic geometry since Hirzebruch used it to prove the Riemann-Roch theorem [17]. This factorization of the classical cycle map implies the topological restrictions on algebraic cycles found by Atiyah and Hirzebruch. It goes beyond their work by giving a topological method to show that the classical cycle map can be noninjective, as well as nonsurjective. The kernel of the classical cycle map is called the Griffiths group, and the topological proof here that the Griffiths group can be nonzero is the first proof of this fact which does not use Hodge theory. (The proof here gives nonzero torsion elements in the Griffiths group, whereas Griffiths’s Hodge-theoretic proof gives nontorsion elements [13].) This topological argument also gives examples of algebraic cycles in the kernel of various related cycle maps where few or no examples were known before, thus an- swering some questions posed by Colliot-Th´el`ene and Schoen ([8], p.
    [Show full text]