Topology I General Survey
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Cup Products in Surface Bundles, Higher Johnson Invariants, and Mmm Classes
CUP PRODUCTS IN SURFACE BUNDLES, HIGHER JOHNSON INVARIANTS, AND MMM CLASSES NICK SALTER Abstract. In this paper we prove a family of results connecting the problem of computing cup products in surface bundles to various other objects that appear in the theory of the cohomology of the mapping class group Modg and the Torelli group Ig. We show that N. Kawazumi's twisted MMM class m0;k can be used to compute k-fold cup products in surface bundles, and that m0;k provides an extension of the higher Johnson invariant τk−2 k−2 k to H (Modg;∗; ^ H1). These results are used to show that the behavior of the restriction 4i 1 4i+2 of the even MMM classes e2i to H (Ig ) is completely determined by Im(τ4i) ≤ ^ H1, and to give a partial answer to a question of D. Johnson. We also use these ideas to show that all surface bundles with monodromy in the Johnson kernel Kg;∗ have cohomology rings isomorphic to that of a trivial bundle, implying the vanishing of all τi when restricted to Kg;∗. 1. Introduction The theme of this paper is the central role that the structure of the cup product in surface bundles plays in the understanding of the cohomology of the mapping class group and its subgroups. We use this perspective to gain a new understanding of the relationships between several well-known cohomology classes, and we also use these ideas to study the topology of surface bundles. 1 Denote by Modg (resp. Modg;∗; Modg) the mapping class group of a closed oriented surface of genus g (resp. -
The Adams-Novikov Spectral Sequence for the Spheres
BULLETIN OF THE AMERICAN MATHEMATICAL SOCIETY Volume 77, Number 1, January 1971 THE ADAMS-NOVIKOV SPECTRAL SEQUENCE FOR THE SPHERES BY RAPHAEL ZAHLER1 Communicated by P. E. Thomas, June 17, 1970 The Adams spectral sequence has been an important tool in re search on the stable homotopy of the spheres. In this note we outline new information about a variant of the Adams sequence which was introduced by Novikov [7]. We develop simplified techniques of computation which allow us to discover vanishing lines and periodic ity near the edge of the E2-term, interesting elements in E^'*, and a counterexample to one of Novikov's conjectures. In this way we obtain independently the values of many low-dimensional stems up to group extension. The new methods stem from a deeper under standing of the Brown-Peterson cohomology theory, due largely to Quillen [8]; see also [4]. Details will appear elsewhere; or see [ll]. When p is odd, the p-primary part of the Novikov sequence be haves nicely in comparison with the ordinary Adams sequence. Com puting the £2-term seems to be as easy, and the Novikov sequence has many fewer nonzero differentials (in stems ^45, at least, if p = 3), and periodicity near the edge. The case p = 2 is sharply different. Computing E2 is more difficult. There are also hordes of nonzero dif ferentials dz, but they form a regular pattern, and no nonzero differ entials outside the pattern have been found. Thus the diagram of £4 ( =£oo in dimensions ^17) suggests a vanishing line for Ew much lower than that of £2 of the classical Adams spectral sequence [3]. -
Homotopy Properties of Thom Complexes (English Translation with the Author’S Comments) S.P.Novikov1
Homotopy Properties of Thom Complexes (English translation with the author’s comments) S.P.Novikov1 Contents Introduction 2 1. Thom Spaces 3 1.1. G-framed submanifolds. Classes of L-equivalent submanifolds 3 1.2. Thom spaces. The classifying properties of Thom spaces 4 1.3. The cohomologies of Thom spaces modulo p for p > 2 6 1.4. Cohomologies of Thom spaces modulo 2 8 1.5. Diagonal Homomorphisms 11 2. Inner Homology Rings 13 2.1. Modules with One Generator 13 2.2. Modules over the Steenrod Algebra. The Case of a Prime p > 2 16 2.3. Modules over the Steenrod Algebra. The Case of p = 2 17 1The author’s comments: As it is well-known, calculation of the multiplicative structure of the orientable cobordism ring modulo 2-torsion was announced in the works of J.Milnor (see [18]) and of the present author (see [19]) in 1960. In the same works the ideas of cobordisms were extended. In particular, very important unitary (”complex’) cobordism ring was invented and calculated; many results were obtained also by the present author studying special unitary and symplectic cobordisms. Some western topologists (in particular, F.Adams) claimed on the basis of private communication that J.Milnor in fact knew the above mentioned results on the orientable and unitary cobordism rings earlier but nothing was written. F.Hirzebruch announced some Milnors results in the volume of Edinburgh Congress lectures published in 1960. Anyway, no written information about that was available till 1960; nothing was known in the Soviet Union, so the results published in 1960 were obtained completely independently. -
[Math.AT] 4 Sep 2003 and H Uhri Ebro DE Eerhtann Ewr HPRN-C Network Programme
ON RATIONAL HOMOTOPY OF FOUR-MANIFOLDS S. TERZIC´ Abstract. We give explicit formulas for the ranks of the third and fourth homotopy groups of all oriented closed simply con- nected four-manifolds in terms of their second Betti numbers. We also show that the rational homotopy type of these manifolds is classified by their rank and signature. 1. Introduction In this paper we consider the problem of computation of the rational homotopy groups and the problem of rational homotopy classification of simply connected closed four-manifolds. Our main results could be collected as follows. Theorem 1. Let M be a closed oriented simply connected four-manifold and b2 its second Betti number. Then: (1) If b2 =0 then rk π4(M)=rk π7(M)=1 and πp(M) is finite for p =46 , 7 , (2) If b2 =1 then rk π2(M)=rk π5(M)=1 and πp(M) is finite for p =26 , 5 , (3) If b2 =2 then rk π2(M)=rk π3(M)=2 and πp(M) is finite for p =26 , 3 , (4) If b2 > 2 then dim π∗(M) ⊗ Q = ∞ and b (b + 1) b (b2 − 4) rk π (M)= b , rk π (M)= 2 2 − 1, rk π (M)= 2 2 . 2 2 3 2 4 3 arXiv:math/0309076v1 [math.AT] 4 Sep 2003 When the second Betti number is 3, we can prove a little more. Proposition 2. If b2 =3 then rk π5(M)=10. Regarding rational homotopy type classification of simply connected closed four-manifolds, we obtain the following. Date: November 21, 2018; MSC 53C25, 57R57, 58A14, 57R17. -
07. Homeomorphisms and Embeddings
07. Homeomorphisms and embeddings Homeomorphisms are the isomorphisms in the category of topological spaces and continuous functions. Definition. 1) A function f :(X; τ) ! (Y; σ) is called a homeomorphism between (X; τ) and (Y; σ) if f is bijective, continuous and the inverse function f −1 :(Y; σ) ! (X; τ) is continuous. 2) (X; τ) is called homeomorphic to (Y; σ) if there is a homeomorphism f : X ! Y . Remarks. 1) Being homeomorphic is apparently an equivalence relation on the class of all topological spaces. 2) It is a fundamental task in General Topology to decide whether two spaces are homeomorphic or not. 3) Homeomorphic spaces (X; τ) and (Y; σ) cannot be distinguished with respect to their topological structure because a homeomorphism f : X ! Y not only is a bijection between the elements of X and Y but also yields a bijection between the topologies via O 7! f(O). Hence a property whose definition relies only on set theoretic notions and the concept of an open set holds if and only if it holds in each homeomorphic space. Such properties are called topological properties. For example, ”first countable" is a topological property, whereas the notion of a bounded subset in R is not a topological property. R ! − t Example. The function f : ( 1; 1) with f(t) = 1+jtj is a −1 x homeomorphism, the inverse function is f (x) = 1−|xj . 1 − ! b−a a+b The function g :( 1; 1) (a; b) with g(x) = 2 x + 2 is a homeo- morphism. Therefore all open intervals in R are homeomorphic to each other and homeomorphic to R . -
Notes on the Atiyah-Singer Index Theorem Liviu I. Nicolaescu
Notes on the Atiyah-Singer Index Theorem Liviu I. Nicolaescu Notes for a topics in topology course, University of Notre Dame, Spring 2004, Spring 2013. Last revision: November 15, 2013 i The Atiyah-Singer Index Theorem This is arguably one of the deepest and most beautiful results in modern geometry, and in my view is a must know for any geometer/topologist. It has to do with elliptic partial differential opera- tors on a compact manifold, namely those operators P with the property that dim ker P; dim coker P < 1. In general these integers are very difficult to compute without some very precise information about P . Remarkably, their difference, called the index of P , is a “soft” quantity in the sense that its determination can be carried out relying only on topological tools. You should compare this with the following elementary situation. m n Suppose we are given a linear operator A : C ! C . From this information alone we cannot compute the dimension of its kernel or of its cokernel. We can however compute their difference which, according to the rank-nullity theorem for n×m matrices must be dim ker A−dim coker A = m − n. Michael Atiyah and Isadore Singer have shown in the 1960s that the index of an elliptic operator is determined by certain cohomology classes on the background manifold. These cohomology classes are in turn topological invariants of the vector bundles on which the differential operator acts and the homotopy class of the principal symbol of the operator. Moreover, they proved that in order to understand the index problem for an arbitrary elliptic operator it suffices to understand the index problem for a very special class of first order elliptic operators, namely the Dirac type elliptic operators. -
MATH 8306: ALGEBRAIC TOPOLOGY PROBLEM SET 2, DUE WEDNESDAY, NOVEMBER 17, 2004 Section 2.2 (From Hatcher's Textbook): 1, 2 (Omi
MATH 8306: ALGEBRAIC TOPOLOGY PROBLEM SET 2, DUE WEDNESDAY, NOVEMBER 17, 2004 SASHA VORONOV Section 2.2 (from Hatcher’s textbook): 1, 2 (omit the question about odd dimen- sional projective spaces) Problem 1. Apply the method of acyclic models to show that the barycentric subdivision operator is homotopic to identity. Reminder: we used that method to prove that singular homology satisfies the homotopy axiom. It consisted in constructing a natural chain homotopy inductively for all spaces at once by using the acyclicity of the singular simplex, i.e., the vanishing of its higher homology. You may read more about this method in Selick’s text, pp. 35–37. Problem 2. Compute the simplicial homology of the Klein bottle. Problem 3. Prove the boundary formula for cellular 1-chains: CW 1 d (eα) = [1α] − [−1α], 1 where eα is a 1-cell of a CW complex and [1α] and [−1α] are its endpoints, identified with 0-cells of the CW complex via the attaching maps. Problem 4. Using cell decompositions of Sn and Dn, compute their cellular ho- mology groups. Problem 5. Calculate the integral homology groups of the sphere Mg with g handles (i.e., a compact orientable surface of genus g) using a cell decomposition of it. Problem 6. Give a simple proof that uses homology theory for the following fact: Rm is not homeomorphic to Rn for m 6= n. f g Problem 7. Let 0 → π −→ ρ −→ σ → 0 be an exact sequence of abelian groups and C a chain complex of flat (i.e., torsion free) abelian groups. -
E Modules for Abelian Hopf Algebras 1974: [Papers]/ IMPRINT Mexico, D.F
llr ~ 1?J STATUS TYPE OCLC# Submitted 02/26/2019 Copy 28784366 IIIIIII IIIII IIIII IIIII IIIII IIIII IIIII IIIII IIIII IIII IIII SOURCE REQUEST DATE NEED BEFORE 193985894 ILLiad 02/26/2019 03/28/2019 BORROWER RECEIVE DATE DUE DATE RRR LENDERS 'ZAP, CUY, CGU BIBLIOGRAPHIC INFORMATION LOCAL ID AUTHOR ARTICLE AUTHOR Ravenel, Douglas TITLE Conference on Homotopy Theory: Evanston, Ill., ARTICLE TITLE Dieudonne modules for abelian Hopf algebras 1974: [papers]/ IMPRINT Mexico, D.F. : Sociedad Matematica Mexicana, FORMAT Book 1975. EDITION ISBN VOLUME NUMBER DATE 1975 SERIES NOTE Notas de matematica y simposia ; nr. 1. PAGES 177-183 INTERLIBRARY LOAN INFORMATION ALERT AFFILIATION ARL; RRLC; CRL; NYLINK; IDS; EAST COPYRIGHT US:CCG VERIFIED <TN:1067325><0DYSSEY:216.54.119.128/RRR> MAX COST OCLC IFM - 100.00 USD SHIPPED DATE LEND CHARGES FAX NUMBER LEND RESTRICTIONS EMAIL BORROWER NOTES We loan for free. Members of East, RRLC, and IDS. ODYSSEY 216.54.119.128/RRR ARIEL FTP ARIEL EMAIL BILL TO ILL UNIVERSITY OF ROCHESTER LIBRARY 755 LIBRARY RD, BOX 270055 ROCHESTER, NY, US 14627-0055 SHIPPING INFORMATION SHIPVIA LM RETURN VIA SHIP TO ILL RETURN TO UNIVERSITY OF ROCHESTER LIBRARY 755 LIBRARY RD, BOX 270055 ROCHESTER, NY, US 14627-0055 ? ,I _.- l lf;j( T ,J / I/) r;·l'J L, I \" (.' ."i' •.. .. NOTAS DE MATEMATICAS Y SIMPOSIA NUMERO 1 COMITE EDITORIAL CONFERENCE ON HOMOTOPY THEORY IGNACIO CANALS N. SAMUEL GITLER H. FRANCISCO GONZALU ACUNA LUIS G. GOROSTIZA Evanston, Illinois, 1974 Con este volwnen, la Sociedad Matematica Mexicana inicia su nueva aerie NOTAS DE MATEMATICAS Y SIMPOSIA Editado por Donald M. -
On Milnor Classes of Constructible Functions
Universidade Federal da Paraíba Universidade Federal de Campina Grande Programa Associado de Pós-Graduação em Matemática Doutorado em Matemática On Milnor classes of constructible functions por Mauri Pereira da Silva João Pessoa - PB Setembro/2019 On Milnor classes of constructible functions por Mauri Pereira da Silva y sob orientação do Prof. Dr. Roberto Callejas Bedregal Tese apresentada ao Corpo Docente do Programa Associado de Pós-Graduação em Matemática - UFPB/UFCG, como requisito parcial para obtenção do título de Doutor em Matemática. João Pessoa - PB Setembro/2019 yEste trabalho contou com apoio nanceiro da CAPES ii Catalogação na publicação Seção de Catalogação e Classificação S586o Silva, Mauri Pereira da. On Milnor classes of constructible functions / Mauri Pereira da Silva. - João Pessoa, 2019. 77 f. Orientação: Roberto Callejas-Bedregal. Tese (Doutorado) - UFPB/CCEN. 1. Número de Milnor. 2. Classe de Milnor. 3. Classe de Segre. 4. Classes características. 5. Variedades singulares. I. Callejas-Bedregal, Roberto. II. Título. UFPB/BC Resumo O principal objetivo deste trabalho é apresentar uma generalização do importante inva- riante da Teoria das Singularidades, chamado número de Milnor. Tal generalização é o que chamamos de número de Milnor logarítmico. Bem como explanar sobre denições um pouco mais gerais no contexto de funções construtíveis, apresentando observações, exemplos e propriedades. Dentre os conceitos que trabalhamos estão também a classe de Fulton-Johnson, a classe de Schwartz-MacPherson, a classe de Milnor e a classe de Segre. Palavras-chave: Número de Milnor; Classe de Milnor; Classe de Segre; Classes ca- racterísticas; variedades singulares. iv Abstract The main goal of this thesis is to present a generalization of the important invariant of the singularity theory, called the Milnor number. -
General Topology
General Topology Tom Leinster 2014{15 Contents A Topological spaces2 A1 Review of metric spaces.......................2 A2 The definition of topological space.................8 A3 Metrics versus topologies....................... 13 A4 Continuous maps........................... 17 A5 When are two spaces homeomorphic?................ 22 A6 Topological properties........................ 26 A7 Bases................................. 28 A8 Closure and interior......................... 31 A9 Subspaces (new spaces from old, 1)................. 35 A10 Products (new spaces from old, 2)................. 39 A11 Quotients (new spaces from old, 3)................. 43 A12 Review of ChapterA......................... 48 B Compactness 51 B1 The definition of compactness.................... 51 B2 Closed bounded intervals are compact............... 55 B3 Compactness and subspaces..................... 56 B4 Compactness and products..................... 58 B5 The compact subsets of Rn ..................... 59 B6 Compactness and quotients (and images)............. 61 B7 Compact metric spaces........................ 64 C Connectedness 68 C1 The definition of connectedness................... 68 C2 Connected subsets of the real line.................. 72 C3 Path-connectedness.......................... 76 C4 Connected-components and path-components........... 80 1 Chapter A Topological spaces A1 Review of metric spaces For the lecture of Thursday, 18 September 2014 Almost everything in this section should have been covered in Honours Analysis, with the possible exception of some of the examples. For that reason, this lecture is longer than usual. Definition A1.1 Let X be a set. A metric on X is a function d: X × X ! [0; 1) with the following three properties: • d(x; y) = 0 () x = y, for x; y 2 X; • d(x; y) + d(y; z) ≥ d(x; z) for all x; y; z 2 X (triangle inequality); • d(x; y) = d(y; x) for all x; y 2 X (symmetry). -
3-Manifold Groups
3-Manifold Groups Matthias Aschenbrenner Stefan Friedl Henry Wilton University of California, Los Angeles, California, USA E-mail address: [email protected] Fakultat¨ fur¨ Mathematik, Universitat¨ Regensburg, Germany E-mail address: [email protected] Department of Pure Mathematics and Mathematical Statistics, Cam- bridge University, United Kingdom E-mail address: [email protected] Abstract. We summarize properties of 3-manifold groups, with a particular focus on the consequences of the recent results of Ian Agol, Jeremy Kahn, Vladimir Markovic and Dani Wise. Contents Introduction 1 Chapter 1. Decomposition Theorems 7 1.1. Topological and smooth 3-manifolds 7 1.2. The Prime Decomposition Theorem 8 1.3. The Loop Theorem and the Sphere Theorem 9 1.4. Preliminary observations about 3-manifold groups 10 1.5. Seifert fibered manifolds 11 1.6. The JSJ-Decomposition Theorem 14 1.7. The Geometrization Theorem 16 1.8. Geometric 3-manifolds 20 1.9. The Geometric Decomposition Theorem 21 1.10. The Geometrization Theorem for fibered 3-manifolds 24 1.11. 3-manifolds with (virtually) solvable fundamental group 26 Chapter 2. The Classification of 3-Manifolds by their Fundamental Groups 29 2.1. Closed 3-manifolds and fundamental groups 29 2.2. Peripheral structures and 3-manifolds with boundary 31 2.3. Submanifolds and subgroups 32 2.4. Properties of 3-manifolds and their fundamental groups 32 2.5. Centralizers 35 Chapter 3. 3-manifold groups after Geometrization 41 3.1. Definitions and conventions 42 3.2. Justifications 45 3.3. Additional results and implications 59 Chapter 4. The Work of Agol, Kahn{Markovic, and Wise 63 4.1. -
Floer Homology, Gauge Theory, and Low-Dimensional Topology
Floer Homology, Gauge Theory, and Low-Dimensional Topology Clay Mathematics Proceedings Volume 5 Floer Homology, Gauge Theory, and Low-Dimensional Topology Proceedings of the Clay Mathematics Institute 2004 Summer School Alfréd Rényi Institute of Mathematics Budapest, Hungary June 5–26, 2004 David A. Ellwood Peter S. Ozsváth András I. Stipsicz Zoltán Szabó Editors American Mathematical Society Clay Mathematics Institute 2000 Mathematics Subject Classification. Primary 57R17, 57R55, 57R57, 57R58, 53D05, 53D40, 57M27, 14J26. The cover illustrates a Kinoshita-Terasaka knot (a knot with trivial Alexander polyno- mial), and two Kauffman states. These states represent the two generators of the Heegaard Floer homology of the knot in its topmost filtration level. The fact that these elements are homologically non-trivial can be used to show that the Seifert genus of this knot is two, a result first proved by David Gabai. Library of Congress Cataloging-in-Publication Data Clay Mathematics Institute. Summer School (2004 : Budapest, Hungary) Floer homology, gauge theory, and low-dimensional topology : proceedings of the Clay Mathe- matics Institute 2004 Summer School, Alfr´ed R´enyi Institute of Mathematics, Budapest, Hungary, June 5–26, 2004 / David A. Ellwood ...[et al.], editors. p. cm. — (Clay mathematics proceedings, ISSN 1534-6455 ; v. 5) ISBN 0-8218-3845-8 (alk. paper) 1. Low-dimensional topology—Congresses. 2. Symplectic geometry—Congresses. 3. Homol- ogy theory—Congresses. 4. Gauge fields (Physics)—Congresses. I. Ellwood, D. (David), 1966– II. Title. III. Series. QA612.14.C55 2004 514.22—dc22 2006042815 Copying and reprinting. Material in this book may be reproduced by any means for educa- tional and scientific purposes without fee or permission with the exception of reproduction by ser- vices that collect fees for delivery of documents and provided that the customary acknowledgment of the source is given.