Inside ESF, Spring 2002

Total Page:16

File Type:pdf, Size:1020Kb

Inside ESF, Spring 2002 IN THIS ISSUE 3CAMPUS UPDATE Inside ESF is published four times Forestry Changes Faculty Name each year for alumni and friends of Makkonen Named TAPPI Fellow the SUNY College of Environmental Science and Forestry. SUNY-ESF Hosts Onondaga Nation Students Community Foundation Grant Helps ESF Help City School Children SUNY-ESF Jump Into Onondaga Lake 1 Forestry Drive Green Fields Bloom with ESF Syracuse, NY 13210-2778 Alum’s $100,000 Gift Names New Laboratory for June Wang www.esf.edu 2002 Feinstone Awards Honor New York Teachers President: Cornelius B. Murphy, Jr. 6SPANNING THE GLOBE Vice President for Administration: Students learn the rigors — and wonders — of international environmental Connie S. Webb research in the field around the world. Editor: Jeri Lynn Smith 10 HOW MUCH WATER ON MARS? Director of News and Publications [email protected] Undergraduate engineering majors at ESF explored the question of how much water existed on Mars — with some surprising results. Graphic Designer: Wendy P.Osborne News and Publications 12 SEA GRANT EXPANDS WITH NEW ESF OFFICE Long-time partnership between Sea Grant and the college will be enhanced Photo Credits: with new arrangement. Page 3, Ben Dall; page 4, Claire B. Dunn and John Dowling Photography; page 5, Kleinberg Photography; page 6, Kate Howles and Katherine Cameron; 13 CAMPUS PROFILE:SHE CARRIES A TORCH page 7, Wellington Guzman and Dr. Barbara Hager; Kristin Sciortino took the short road to Olympic glory. page 8, Dr. Scott Turner; page 9, Dr. Allan P.Drew; page 10, NASA/JPL/Malin Space Science Systems; page 11, NASA/JPL/Malin Space Science Systems; ON THE COVER page 12, Bill Huff Jr. and Diane Kuehn; page 14, Kodak. Our cover photograph, taken by Dr. Allan P.Drew, shows ESF students travel- ing up the Indian River near Portsmouth, Dominica. Says Drew, who has Additional Assistance: taken students to Dominica for more than 10 years, “The boat trip allows us to Kathleen A. Ciereck see the gallery forest of Pterocarpus trees which form pure stands along the Cynthia A. Gamage streambanks.” This freshwater swamp forest is one of many ecosystems stu- dents visit during the field class. Office of News & Publications 122 Bray Hall 315-470-6644 www.esf.edu/newspubs The State University of New York College of and using renewable natural resources; improving Environmental Science and Forestry offers a di- outdoor environments ranging from wilderness, verse range of accredited programs and degree op- to managed forests, to urban landscapes; and tions in chemistry, construction management and maintaining and enhancing biological diversity, wood products engineering, environmental and environmental quality, and resource options. As forest biology, environmental resources and forest such, ESF has maintained its unique status within engineering, environmental studies, forest re- SUNY’s 64-campus system as one of only five sources management, forest technology, landscape specialized colleges and one of only eight doc- architecture, and paper science and engineering. toral-granting institutions. The College’s mission is to be a world leader ESF takes affirmative action to provide equal in instruction, research, and public service related opportunity for all people and to build a campus to: understanding the structure and function of community that reflects a wealth of diversity. the world’s ecosystems; developing, managing, Printed on recycled paper. CAMPUS UPDATE Forestry Changes Fellows comprise less than one percent The grant to the ESF College Founda- Faculty Name of TAPPI’s membership. The designation tion, Inc., provides the resources for ESF is given to individuals who have made ex- educators to develop modules on conserva- Members of ESF’s Faculty of Forestry traordinary technical or service contribu- tion education, including topics such as the voted to change the unit’s name to the Fac- tions to the industry and/or the association. ecology of Onondaga Lake; sustainability, ulty of Forest and Natural Resources Man- habitat fragmentation and urban sprawl; agement. The change was announced by SUNY-ESF Hosts Onondaga preservation of biodiversity; and urban ESF Provost William P.Tully in January. wildlife. In the modules, students will have Faculty Chair William R. Bentley said Nation Students the opportunity for hands-on activities and the impetus for the name change grew out Twenty-five students from the Onondaga science research. of the college’s strategic planning initiative, Nation School participated in a career day at Saunders said the link to local natural as unit members explored both the history ESF on March 25. history will make the lessons exciting for and future focus of the program. The youngsters participated in activities children because the subject matter is rele- “We are part of an increasingly sophisti- designed by ESF students and staff mem- vant to them. cated college,” said Bentley. “Forest and bers in landscape architecture, fisheries biol- “Syracuse will be a decade ahead of a lot Natural Resources Management captures ogy, and plant ecology.The program focused of school districts in the United State that our breadth, our focus on things profes- on exposing the children to the wide range are still practicing stodgy science,” he said. sional, and our strong knowledge of forests.” of careers in scientific fields. The students toured the greenhouses and Jump Into Onondaga Lake Makkonen Named the Roosevelt Wild Life Station museum. SUNY-ESF educators have created an The Onondaga Nation students, ranging TAPPI Fellow exciting new interactive exhibit, “Jump Into in age from 9 to 12, were chaperoned Onondaga Lake,” for Central New York’s Dr. Hannu P.Makkonen, director of the throughout the day by minority ESF stu- Museum of Science and Technology Empire State Paper Research Institute dents involved in mentoring programs spon- (MOST). The exhibit debuted Saturday, (ESPRI), was named a Fellow of the Tech- sored by the National Science Foundation February 2. nical Association of the Pulp and Paper In- and the U.S. Department of Agriculture. dustry (TAPPI) at the organization’s annual Museum visitors will learn about the business meeting and awards ceremony lake’s diverse history as well as the impact March 5, 2002. Community Foundation civilization and industrialization had on the Makkonen came to ESF as senior re- Grant Helps ESF Help City lake over time through a rich combination search associate in 1993. He was appointed School Children of photographs, original artifacts and text. director of ESPRI in 1996. An interactive computer allows visitors to A $32,000 grant from the Central New access current water quality conditions Before joining ESF, Makkonen worked York Community Foundation will allow being transmitted directly to the kiosk from at the Finnish Pulp and Paper Research ESF educators to implement new science a sampling buoy in Onondaga Lake. Institute. In 1976, he moved to Kajaani curriculum materials for sixth-, seventh- Oy as research director. He was a found- Other aspects of the exhibit present the and eighth-grade students in the Syracuse ing member and president of Kajaani Inc. lake’s biological diversity, explain how shal- city schools. Automation, Sensodec Oy, and Tapio low sediments react when lake water is dis- “The idea is to make science education Technologies Oy. rupted, and display a 500-year timeline exciting to children, not to treat it as rote examining the dynamic influences of in- Makkonen has been memorization of facts,” said D. Andrew dustrial and social use on lake quality. a member of TAPPI Saunders, a faculty member in Environ- for 17 years. Makkonen The exhibit was created by Paul B. Hai, mental and Forest Biology and associate di- received his bachelor senior education specialist with ESF’s rector of education for SUNY-ESF’s and master of science Roosevelt Wild Life Station, under the Roosevelt Wild Life Station. degrees from Helsinki direction of D. Andrew Saunders, a mem- Dr. William F. Porter, who directs the University and earned ber of the Faculty of Environmental and station, said the effort will produce learning his doctorate at the Forest Biology, and exhibit designer Robert modules on the environment that can be in- University of Wash- McNamara ’73. corporated into the district’s science cur- ington in 1974. The exhibit will be displayed through riculum.The units will debut in September. the end of the year. Hannu P.Makkonen Inside ESF Spring 2002 3 CAMPUS UPDATE Green Fields Bloom with ESF Tommy Makem’s popular ballad. “Green Fields Will Bloom” served as a reference to ESF students and staff marched in the ESF’s rehabilitation of “brownfields” in- annual Syracuse St. Patrick’s Parade March dustrial sites and efforts to create a sustain- 16, distributing 1,000 free seed packets to able future. spectators along the route. The seed packets, which included several The seed packets reflected the name of types of flowers and vegetables, were donated ESF’s parade entry, “Green Fields Will by Chase-Pitkin, Taft Road, Liverpool. Bloom.” This is the second year in a row that The students used ESF’s newly painted ESF students have participated in the Syra- emerald-green bus for a base as they con- cuse St. Patrick’s Parade, which marked its structed a flower garden bursting with bril- 20th anniversary this year. The three-hour liantly colored blossoms. The entry’s name parade is a major civic event that has been was adapted from the broader parade dubbed “the largest parade per capita in the theme, “Four Green Fields Will Bloom United States.” ESF students and staff distributed seed packets to spec- Once Again,” taken from folk-singer tators along the Syracuse St. Patrick’s Parade route. Alum’s $100,000 Gift Names New Laboratory for June Wang A $100,000 gift to the ESF College space for the Faculty of Construction Foundation, Inc., by a 1984 ESF graduate Management and Wood Products Engi- kicked off the Appeal for the Hugh P.
Recommended publications
  • Groundwater Seepage Landscapes from Distant and Local Sources in Experiments and on Mars
    Earth Surf. Dynam., 3, 389–408, 2015 www.earth-surf-dynam.net/3/389/2015/ doi:10.5194/esurf-3-389-2015 © Author(s) 2015. CC Attribution 3.0 License. Groundwater seepage landscapes from distant and local sources in experiments and on Mars W. A. Marra1, S. J. McLelland2, D. R. Parsons2, B. J. Murphy2, E. Hauber3, and M. G. Kleinhans1 1Faculty of Geosciences, Universiteit Utrecht, Heidelberglaan 2, 3584 CS, Utrecht, the Netherlands 2Department of Geography, Environment and Earth Sciences, University of Hull, Cottingham Road, Hull, HU6 7RX, UK 3Deutsches Zentrum für Luft- und Raumfahrt (DLR), Institut für Planetenforschung, Rutherfordstraße 2, 12489 Berlin, Germany Correspondence to: W. A. Marra ([email protected]) Received: 4 February 2015 – Published in Earth Surf. Dynam. Discuss.: 19 February 2015 Revised: 18 June 2015 – Accepted: 3 July 2015 – Published: 4 August 2015 Abstract. Valleys with theater-shaped heads can form due to the seepage of groundwater and as a result of knickpoint (waterfall) erosion generated by overland flow. This ambiguity in the mechanism of formation ham- pers the interpretation of such valleys on Mars, particularly since there is limited knowledge of material prop- erties. Moreover, the hydrological implications of a groundwater or surface water origin are important for our understanding of the evolution of surface features on Mars, and a quantification of valley morphologies at the landscape scale may provide diagnostic insights on the formative hydrological conditions. However, flow pat- terns and the resulting landscapes produced by different sources of groundwater are poorly understood. We aim to improve the understanding of the formation of entire valley landscapes through seepage processes from dif- ferent groundwater sources that will provide a framework of landscape metrics for the interpretation of such systems.
    [Show full text]
  • Orbital Evidence for More Widespread Carbonate- 10.1002/2015JE004972 Bearing Rocks on Mars Key Point: James J
    PUBLICATIONS Journal of Geophysical Research: Planets RESEARCH ARTICLE Orbital evidence for more widespread carbonate- 10.1002/2015JE004972 bearing rocks on Mars Key Point: James J. Wray1, Scott L. Murchie2, Janice L. Bishop3, Bethany L. Ehlmann4, Ralph E. Milliken5, • Carbonates coexist with phyllosili- 1 2 6 cates in exhumed Noachian rocks in Mary Beth Wilhelm , Kimberly D. Seelos , and Matthew Chojnacki several regions of Mars 1School of Earth and Atmospheric Sciences, Georgia Institute of Technology, Atlanta, Georgia, USA, 2The Johns Hopkins University/Applied Physics Laboratory, Laurel, Maryland, USA, 3SETI Institute, Mountain View, California, USA, 4Division of Geological and Planetary Sciences, California Institute of Technology, Pasadena, California, USA, 5Department of Geological Sciences, Brown Correspondence to: University, Providence, Rhode Island, USA, 6Lunar and Planetary Laboratory, University of Arizona, Tucson, Arizona, USA J. J. Wray, [email protected] Abstract Carbonates are key minerals for understanding ancient Martian environments because they Citation: are indicators of potentially habitable, neutral-to-alkaline water and may be an important reservoir for Wray, J. J., S. L. Murchie, J. L. Bishop, paleoatmospheric CO2. Previous remote sensing studies have identified mostly Mg-rich carbonates, both in B. L. Ehlmann, R. E. Milliken, M. B. Wilhelm, Martian dust and in a Late Noachian rock unit circumferential to the Isidis basin. Here we report evidence for older K. D. Seelos, and M. Chojnacki (2016), Orbital evidence for more widespread Fe- and/or Ca-rich carbonates exposed from the subsurface by impact craters and troughs. These carbonates carbonate-bearing rocks on Mars, are found in and around the Huygens basin northwest of Hellas, in western Noachis Terra between the Argyre – J.
    [Show full text]
  • Bio-Preservation Potential of Sediment in Eberswalde Crater, Mars
    Western Washington University Western CEDAR WWU Graduate School Collection WWU Graduate and Undergraduate Scholarship Fall 2020 Bio-preservation Potential of Sediment in Eberswalde crater, Mars Cory Hughes Western Washington University, [email protected] Follow this and additional works at: https://cedar.wwu.edu/wwuet Part of the Geology Commons Recommended Citation Hughes, Cory, "Bio-preservation Potential of Sediment in Eberswalde crater, Mars" (2020). WWU Graduate School Collection. 992. https://cedar.wwu.edu/wwuet/992 This Masters Thesis is brought to you for free and open access by the WWU Graduate and Undergraduate Scholarship at Western CEDAR. It has been accepted for inclusion in WWU Graduate School Collection by an authorized administrator of Western CEDAR. For more information, please contact [email protected]. Bio-preservation Potential of Sediment in Eberswalde crater, Mars By Cory M. Hughes Accepted in Partial Completion of the Requirements for the Degree Master of Science ADVISORY COMMITTEE Dr. Melissa Rice, Chair Dr. Charles Barnhart Dr. Brady Foreman Dr. Allison Pfeiffer GRADUATE SCHOOL David L. Patrick, Dean Master’s Thesis In presenting this thesis in partial fulfillment of the requirements for a master’s degree at Western Washington University, I grant to Western Washington University the non-exclusive royalty-free right to archive, reproduce, distribute, and display the thesis in any and all forms, including electronic format, via any digital library mechanisms maintained by WWU. I represent and warrant this is my original work, and does not infringe or violate any rights of others. I warrant that I have obtained written permissions from the owner of any third party copyrighted material included in these files.
    [Show full text]
  • Nirgal Vallis: Evidence for Extensive Sapping
    Lunar and Planetary Science XXXIII (2002) 1579.pdf Nirgal Vallis: Evidence for Extensive Sapping. R. Jaumann and D. Reiss, DLR, German Aerospace Center, Institute of Space Sensor Technology and Planetary Exploration, D-12489 Berlin, Rutherfordstr. 2, Germany, [email protected] Abstract: The topographic information provided Nirgal Vallis is located in the southern highlands by the Mars Orbiter Laser Altimeter has been used in at about 29°S ranging from 47°W to 38°W and span- combination with Viking and Mars Orbiter Camera ning a height difference of about 1000 m. The dip an- imagery to estimate the three-dimensional structure of gle of the surface dissected by the valley, is extremely low (0.01°). The longitudinal profile of the valley is the Nirgal Vallis drainage system in order to constrain linear (Fig. 2). The width to depth ratio ranges from 9 the formation process. The analysis of morphometric upstream to 8 downstream (Fig. 3) which is nearly and topologic network parameters indicates sapping as constant compared to run-off values on earth (ranging the major valley network forming process. from 2 to > 40). The heads of all tributaries are steep Introduction: Since the discovery of valley net- walled amphitheater-like boxes of well-developed al- works in Mariner 9 images the relative roles of surface coves [see also 11]. run-off versus groundwater processes in valley net- work formation have been debated [e.g 1,2,3]. Due to features such as U-shaped cross sections, alcove-like terminations of tributaries and the structural control of the networks, most of the highland valleys are attrib- uted to an origin by groundwater sapping.
    [Show full text]
  • Constraints on Overland Fluid Transport Through Martian Valley Networks. M
    Lunar and Planetary Science XXXI 1189.pdf CONSTRAINTS ON OVERLAND FLUID TRANSPORT THROUGH MARTIAN VALLEY NETWORKS. M. C. Malin and K. S. Edgett, Malin Space Science Systems, Box 910148, San Diego, CA 92191-0148, USA. Introduction: Since their discovery in Mariner 9 networks. images [1,2], Òrunoff channelsÓ [3], or more properly, Flow Integration: Arguably the best example Òmartian valley networksÓ [4,5] have been almost uni- found on Mars of an arborescent network are the War- versally cited as the best evidence that Mars once rego Valles. Earlier Viking data, and now MGS im- maintained an environment capable of supporting the ages, raise serious questions concerning the interpreta- flow of liquid water across its surface. Unlike Òoutflow tion of these valleys as surficial drainage. First, the channels,Ó that appear to indicate brief, catastrophic valleys are not Òthrough-going,Ó but rather consist of releases of fluid from very localized sources, valley transecting, elongate, occasionally isolated depres- networks often display arborescent patterns, sinuosity sions. Second, mass movements appear to have played and occasionally meandering patterns that imply proc- a role in both extending and widening the valleys. esses of overland flow: drainage basin development Third, the valley walls are extremely subdued, reflect- and sustained surficial transport of fluid. As part of the ing either mantling or an origin by collapse. These on-going Mars Global Surveyor (MGS) Mars Orbiter attributes suggest that collapse may have played the Camera (MOC) imaging activities, many observations dominant role in formation of valley networks of valley networks have been planned and executed; the Discussion: Groundwater follows topographic gra- results of some of these observations have been previ- dients nearly as effectively as surface water.
    [Show full text]
  • Bedform Migration on Mars: Current Results and Future Plans
    Aeolian Research xxx (2013) xxx–xxx Contents lists available at SciVerse ScienceDirect Aeolian Research journal homepage: www.elsevier.com/locate/aeolia Review Article Bedform migration on Mars: Current results and future plans ⇑ Nathan Bridges a, , Paul Geissler b, Simone Silvestro c, Maria Banks d a Johns Hopkins University, Applied Physics Laboratory, 200-W230, 11100 Johns Hopkins Road, Laurel, MD 20723, USA b US Geological Survey, Astrogeology Science Center, 2255 N. Gemini Drive, Flagstaff, AZ 86001-1698, USA c SETI Institute, 189 Bernardo Ave., Suite 100, Mountain View, CA 94043, USA d Center for Earth and Planetary Studies, Smithsonian National Air and Space Museum, Washington, DC 20013-7012, USA article info abstract Article history: With the advent of high resolution imaging, bedform motion can now be tracked on the Martian surface. Received 30 July 2012 HiRISE data, with a pixel scale as fine as 25 cm, shows displacements of sand patches, dunes, and ripples Revised 19 February 2013 up to several meters per Earth year, demonstrating that significant landscape modification occurs in the Accepted 19 February 2013 current environment. This seems to consistently occur in the north polar erg, with variable activity at Available online xxxx other latitudes. Volumetric dune and ripple changes indicate sand fluxes up to several cubic meters per meter per year, similar to that found in some dune fields on Earth. All ‘‘transverse aeolian ridges’’ Keywords: are immobile. There is no relationship between bedform activity and coarse-scale global circulation mod- Mars els, indicating that finer scale topography and wind gusts, combined with the predicted low impact Dunes Ripples threshold on Mars, are the primary drivers.
    [Show full text]
  • Earth/Mars Comparison of Geological Features
    Earth/Mars Comparison of Geological Features Objective(s): • Students will use satellite images to observe and compare various geological features between the planets Earth and Mars. • Students will work in groups to simulate and reproduce one of the geological features that they observed in the satellite images. • Students will use observational data from the experiment to conclude that some of the geological features on Mars could have been formed by flowing water. National Science Education Standards: • Content Standard D Grades 5 – 8: Earth’s History • Content Standard F Grades 5 – 8: Science and Technology in Society • Content Standard G Grades 5 – 8: Science as a Human Endeavor and Nature of Science Background: In this lesson, students explore the landforms of both Earth and Mars by carefully examining satellite images. The role of the student is to compare these landforms and share their observations with the class. Noting the similarities and the differences, the teacher then has the students focus on particular landforms on Mars – the channels and valley features. After discussing possible explanations for these features, the teacher introduces the stream tray investigation and the students conduct the experiment. Afterward, the students compare their data to several more images taken of Mars and conclude that these landforms could be the result of water having once flowed across A the planet’s surface. 2.5 km (1.6 mi) NAS “Did water once flow across the surface of Mars?” is a question Figure 1. This image taken from that scientists are still struggling to answer. A great deal of the Mars Global Surveyor using the evidence leads many to believe that water did indeed exist on Mars Orbiter Camera reveals a 9.8 Mars.
    [Show full text]
  • Her Desher and Nirgal Vallis Phyllosilicates: Pedogenesis Or Groundwater Sapping?
    EPSC Abstracts Vol. 9, EPSC2014-523, 2014 European Planetary Science Congress 2014 EEuropeaPn PlanetarSy Science CCongress c Author(s) 2014 Her Desher and Nirgal Vallis phyllosilicates: Pedogenesis or groundwater sapping? D. Buczkowski (1), S. Ackiss (1), K. Seelos (1), S. Murchie (1), F. Seelos (1), E. Malaret (2), and C. Hash (2). (1) Johns Hopkins University Applied Physics Laboratory, Maryland, USA, (2) Applied Coherent Technology, Virginia, USA ([email protected]) Abstract This distinct phyllosilicate-bearing layer is located only a few meters below the surface cap material and A widespread phyllosilicate-bearing layer has been is laterally contiguous with a uniform apparent identified in a distinct region in northwest Noachis thickness of ~10 meters. HiRISE observations of Terra [1,2,3]. This layer is exposed along the length these layers show the smectite-bearing materials to of two valley systems in the region, as well as crater be polygonally fractured, which is morphologically rims/walls. It has been suggested that the phyllosili- similar to other phyllosilicates identified on Mars [7]. cates were produced by pedogenic weathering fed by meteoric water or melted snow [2]. However, the geomorphology of the valley systems is consistent with formation due to groundwater sapping [4,5,6], opening the possibility that the phyllosilicates formed by interaction with groundwater, not surface water. 1. Introduction Noachis Terra is a highland cratered plain on Mars, extending from 20º to 80ºS latitude and 55ºW to 30ºE longitude. Two small valley systems incise NW Noachis Terra: Her Desher and Nirgal Valles (Fig. 1). Nirgal Vallis is a tributary of Uzboi Vallis, joining the larger system to the south of Holden Figure 1: MOLA topography draped over THEMIS crater.
    [Show full text]
  • The Mars Global Surveyor Mars Orbiter Camera: Interplanetary Cruise Through Primary Mission
    p. 1 The Mars Global Surveyor Mars Orbiter Camera: Interplanetary Cruise through Primary Mission Michael C. Malin and Kenneth S. Edgett Malin Space Science Systems P.O. Box 910148 San Diego CA 92130-0148 (note to JGR: please do not publish e-mail addresses) ABSTRACT More than three years of high resolution (1.5 to 20 m/pixel) photographic observations of the surface of Mars have dramatically changed our view of that planet. Among the most important observations and interpretations derived therefrom are that much of Mars, at least to depths of several kilometers, is layered; that substantial portions of the planet have experienced burial and subsequent exhumation; that layered and massive units, many kilometers thick, appear to reflect an ancient period of large- scale erosion and deposition within what are now the ancient heavily cratered regions of Mars; and that processes previously unsuspected, including gully-forming fluid action and burial and exhumation of large tracts of land, have operated within near- contemporary times. These and many other attributes of the planet argue for a complex geology and complicated history. INTRODUCTION Successive improvements in image quality or resolution are often accompanied by new and important insights into planetary geology that would not otherwise be attained. From the variety of landforms and processes observed from previous missions to the planet Mars, it has long been anticipated that understanding of Mars would greatly benefit from increases in image spatial resolution. p. 2 The Mars Observer Camera (MOC) was initially selected for flight aboard the Mars Observer (MO) spacecraft [Malin et al., 1991, 1992].
    [Show full text]
  • The Nature and Origin of Deposits in Uzboi Vallis
    The Nature and Origin of Deposits in Uzboi Vallis Background: One of the most impressive landscapes carved by liquid water on Mars occurs in Noachis Terra and Margaritifer Terra. Uzboi Vallis, Ladon Valles, and Morava Valles are a sequence of valleys that formed as water flowed into and out of depressions in the landscape, stretching from the southern highlands to the northern plains (Figure a). Understanding the role of water in this region of Mars – in particular the period in which it occurred and the length of time it persisted on the surface – provides important information about past climate conditions. Study Results: A previously unrecognized mound of material on the floor of Uzboi Vallis occurs at the mouth of Nirgal Vallis, Uzboi’s largest tributary (Figure b). The lower part of the mound may have formed by a combination of material related to impact cratering, water-driven movement of sediment, or landslides. HiRISE images of the upper part of the mound, however, reveal a layered, fan-shaped deposit that formed as water flowed out of Nirgal and deposited sediment into Uzboi (Figure c). Thus, the climate environment in this region during the middle period of Mars’ geologic history (e.g., Hesperian) extends the window of time that the surface conditions may have been hospitable for life to form or persist. Figure (a) The Uzboi-Ladon-Morava outflow system stretches from Argyre to the northern plains (see inset for global context). White box shows location of (b). MOLA over THEMIS daytime IR mosaic. (b) Fan-shaped deposit in Uzboi Vallis (black dashed line) at mouth of Nirgal Vallis.
    [Show full text]
  • The GEAS Project: Astronomy Laboratory
    Lab 4 Cratering and the Martian Surface 4.1 Introduction Human space travel enthusiasts hope that our manned missions to the Moon will serve as stepping stones for an eventual trip to Mars. Our “visit” to the Moon in our previous lunar cratering laboratory exercise has prepared us similarly to visit Mars today. We have already learned that cratering is a key process in shaping the appearance of terrestrial planetary surfaces, and that counting craters can help determine the ages of surface features. We studied techniques used to decide which geological event occurred first, or which surface is younger (relative dating techniques), and also learned how to determine absolute ages based on radioactive dating of physical samples. Lunar and Martian surfaces are similar in many ways (both types are heavily cratered in some places and covered with smooth ancient lava flows in others), but they exhibit several important differences. First, volcanic features on Mars are much more prominent than those on the Moon. Mars has the largest volcanoes in the entire solar system, and some of them have clearly become inactive only recently. (Some planetary scientists suspect that the largest Martian volcano of all, Olympus Mons, may still be active today.) Second, unlike the bone-dry Moon, Mars was once a very wet planet. Its surface contains channel and river delta-like features that were undeniably formed by flowing water in the past. These differences lead us to two important questions. When did the last volcanic eruptions occur on Mars, and when did water last flow freely there? In this lab, you’ll use crater counting techniques to help reconstruct a Martian surface chronology and investigate these questions.
    [Show full text]
  • ORIGIN of the VALLEY NETWORKS on MARS: a HYDROLOGICAL PERSPECTIVE Virginia C. Gulick* Space Science Division, MS 245-3 NASA-Ames
    ORIGIN OF THE VALLEY NETWORKS ON MARS: A HYDROLOGICAL PERSPECTIVE Virginia C. Gulick* Space Science Division, MS 245-3 NASA-Ames Research Center Moffett Field, CA 94035 (415) 604-0781 vgulick @ mail.arc.nasa, gov Manuscript accepted for publication in the special Planetary issue of Geomorphology *also at Dept. of Astronomy, New Mexico State University, Las Cruces, NM 2" Abstract The geomorphology of the Martian valley networks is examined from a hydrological perspective for their compatibility with an origin by rainfall, globally higher heat flow, and localized hydrothermal systems. Comparison of morphology and spatial distribution of valleys on geologic surfaces with terrestrial fluvial valleys suggests that most Martian valleys are probably not indicative of a rainfall origin, nor are they indicative of formation by an early global uniformly higher heat flow. In general, valleys are not uniformly distributed within geologic surface units as are terrestrial fluvial valleys. Valleys tend to form either as isolated systems or in clusters on a geologic surface unit leaving large expanses of the unit virtually untouched by erosion. With the exception of fluvial valleys on some volcanoes, most Martian valleys exhibit a sapping morphology and do not appear to have formed along with those that exhibit a runoff morphology. In contrast, terrestrial sapping valleys form from and along with runoff valleys. The isolated or clustered distribution of valleys suggests localized water sources were important in drainage development. Persistent ground-water outflow driven by localized, but vigorous hydrothermal circulation associated with magmatism, volcanism, impacts, or tectonism is, however, consistent with valley morphology and distribution. Snowfall from sublimating ice-covered lakes or seas may have provided an atmospheric water source for the formation of some valleys in regions where the surface is easily eroded and where localized geothermal/hydrothermal activity is sufficient to melt accumulated snowpacks.
    [Show full text]